

Deep Neural Network-Based Reconstruction to extract unpolarized Drell-Yan Angular Dependence from SeaQuest E906 Data

Arthur Conover and Dustin Keller

This work is supported by Department of Energy Contract No. DE-FG02-96ER40950

The Boer Mulders Function

- Describes the net polarization of the partons inside an unpolarized nucleon.
- When the nucleon is moving in a direction, the partons can be preferentially polarized in a certain direction.
- If this function is nonzero, then it reflects the presence of a handedness inside the nucleon.

→ Nucleon Spin

Quark Spin

Drell-Yan Angular Dependence

- A non-zero Boer-Mulders asymmetry can give rise to a cos(2φ) dependence in unpolarized DY in the Collins-Soper frame.
- If there is an azimuthal dependence, either μ or ν are non-zero.
- Other experiments have measured these values, but at different energy.

$$\frac{d\sigma}{d\Omega} \propto 1 + \lambda \cos^2 \theta + \mu \sin 2\theta \cos \phi + \frac{1}{2}\nu \sin^2 \theta \cos 2\phi$$

The SeaQuest Experiment

- Fermilab experiment that collected data from 2014-2017
- Designed to probe the sea quark structure of the nucleon.
- Fixed hydrogen, deuterium, carbon, iron, and tungsten targets.
- Used the 120 GeV main injector beam at Fermilab.
- Designed to measure Drell-Yan process with target anti-quarks and beam quarks.
- Covered target x range from [0.1,0.55].

Kalman Filter Based Reconstruction (KTracker)

Neural-Network-Based Reconstruction (QTracker)

Raw Data

- Visual representation of a triggered event – a hit matrix
- Most hits come from muons, but very few come from Drell-Yan muons from the target.
 - Good hits: hits that are part of a fully reconstructable muon track
 - Noisy hits: hits from tracks that are too fragmented to reconstruct.
- Of triggered events, very few have a reconstructable full track of a dimuon.

Training Data Generation

- Using Pythia and GEANT, generate a large number of examples of dimuons passing through the detector array.
- Place the Monte Carlo generated detector hits on a 54x201 array that corresponds to each detector and their corresponding elements.
 - For each hit, decide whether or not to include a hit based on detector sensitivity.
- Add additional random and correlated hits to the array to mimic real data.
 - Random electronic noise hits
 - Muon partial track hits

Comparison to Kalman Filter Reconstruction

	KTracker		QTracker	
	Precision	Accuracy	Precision	Accuracy
Dimuon Identification	92%	9% (Recall)	99%	54% (Recall)
р _х	0.42 GeV/c	0.16 GeV/c	0.22 GeV/c	-0.05 GeV/c
р _у	0.36 GeV/c	0.20 GeV/c	0.32 GeV/c	-0.03 GeV/c
р _z	4.1 GeV/c	-1.42 GeV/c	5.05 GeV/c	0.27 GeV/c
р _т	0.43 GeV/c	-0.18 GeV/c	0.36 GeV/c	0.05 GeV/c
x ₁	0.04	0.03	0.06	0.005
x ₂	0.04	-0.01	0.02	0.004
Μ	0.62 GeV/c ²	0.02 GeV/c ²	0.32 GeV/c ²	-0.06 GeV/c ²
θ	0.17 radians	0.02 radians	0.10 radians	-0.02 radians
φ	0.63 radians	-0.03 radians	0.41 radians	0.01 radians
Time (10,000 Dimuons)	23.5 hours		52 seconds	

Summary of QTracker Advantages

- Higher statistics
 - Approximately 6x as many reconstructed dimuons compared to geometric reconstruction.
 - Data also cleaner fewer non-dimuon events are identified as dimuons.
- Faster reconstruction
 - GPU reconstructs in less than 1/1000th the time of single CPU core.
- More precise reconstruction of kinematic variables
 - QTracker has closer agreement with Monte Carlo truth values for most variables, critically including θ and ϕ .

UNIVERSITY VIRGINIA

Asymmetry Fitting: Chi-Square Fit Method

- Events are binned into 2-d histogram of $cos(\theta)$ and ϕ .
- Those histograms are then adjusted using the bin-by-bin acceptance of the detector and reconstruction algorithm.
- The acceptance-adjusted histograms are then fit using a chi-square method to the differential cross-section to find values of λ, μ, and ν.

$$\frac{d\sigma}{d\Omega} \propto 1 + \lambda \cos^2 \theta + \mu \sin 2\theta \cos \phi + \frac{1}{2}\nu \sin^2 \theta \cos 2\phi$$

Asymmetry Fitting: Neural Network Method

- Like with chi-squared method, events are binned into 2-d histograms and given acceptance corrections.
- Those 2-d histograms are then fed into Convolutional Neural Networks that calculate λ , μ , and ν .

Inputs three 10x10 histograms : $\cos(\theta) \vee \sin \phi$. $\cos(\theta)$ vs $\cos(\phi)$, $\cos(\theta)$ vs $\cos(2\phi)$

Testing the two methods

- Randomly select λ, μ, and ν from the ranges [0.5,1.5], [-0.4,0.4], [-0.4,0.4], respectively.
- 2. Generate 10,000 Drell-Yan events with the selected angular dependence via von Neumann Rejection.
- 3. Reconstruct the kinematics of the Drell-Yan events using QTracker.
- 4. Save the reconstructed kinematics.
- 5. Perform the fitting method and compare to the true values of λ , μ , and ν .

Performance of the Two Methods

	Truth	Chi-Square Method	CNN Method
λ	0.85	1.0 ± 0.2	0.87 ± 0.10
μ	-0.05	-0.08 ± 0.04	-0.06 ± 0.02
ν	0.10	0.08 ± 0.04	0.09 ± 0.02
λ	1.24	0.8 ± 0.3	1.15 ± 0.08
μ	0.23	0.15 ± 0.06	0.21 ± 0.05
ν	-0.12	-0.10 ± 0.04	-0.11 ± 0.03
λ	0.98	0.7 ± 0.2	0.95 ± 0.09
μ	0.01	-0.04 ± 0.07	0.03 ± 0.04
v	0.01	0.04 ± 0.02	0.0 ± 0.02

Errors for Chi-Square method are uncertainties from fits, for CNN method, errors are empirical from similar kinematics.

Performance of the Two Methods (Empirical)

Chi-Square

Neural Network

16

Summary and Outlook

- QTracker method shows promise for fast performance, high statistics, and low error reconstruction of physics variables.
- QTracker, along with neural-network based extraction able to calculate the angular dependence variables of Drell-Yan data with high precision.
- Higher statistics will allow us to be able to optimize the binning of kinematic variables (x_1, x_2, x_F, M, p_T) for which we can measure asymmetry variables, enabling a better global extraction of the Boer-Mulders function.
- Work is ongoing on systematic studies and analysis of real data.