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The Boer Mulders Function

Leading Twist TMDs O—. Nucleon Spin @Quark Spin
e Describes the net polarization of the '
partons inside an unpolarized nucleon.
e \When the nucleon is moving in a i -0 h =(? I“d@

direction, the partons can be

preferentially polarized in a certain

direction.
e If this function is nonzero, then it
reflects the presence of a handedness

inside the nucleon.
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Drell-Yan Angular Dependence

A non-zero Boer-Mulders asymmetry
can give rise to a cos(2¢) dependence
in unpolarized DY in the Collins-Soper
frame.

If there is an azimuthal dependence,
either ¢ or v are non-zero.

Other experiments have measured
these values, but at different energy.
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Parameters A, y, vand 2v — (1 = A) vs. p T in the
Collins-Soper frame. From E866 NuSea at Fermilab.
Ref: L. Y. Zhu et al. arXiv:0811.4589 [nucl-ex]



The SeaQuest Experiment

e Fermilab experiment that collected
data from 2014-2017

e Designed to probe the sea quark
structure of the nucleon.

e Fixed hydrogen, deuterium, carbon,
iron, and tungsten targets.

e Used the 120 GeV main injector beam
at Fermilab.

e Designed to measure Drell-Yan
process with target anti-quarks and
beam quarks.

e Covered target x range from
[0.1,0.55].

https://cerncourier.com/a/fermilab-
gears-up-for-an-intense-future

Fermilab accelerator complex

Main Injector

low-energy neutrino
beam to MicroBooNE

Recycler Ring

proton beam
to SeaQuest,
TestBeam
Facility : high-energy
S5~ neutrino beam
to MINERvA,
MINOS, NOvA

Booster A
Muon DeliveryRing

Linac

beam starts here= ion source muon beam to Muon g-2, Mu2e
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The SeaQuest/Spinquest Detector U :i%ng

SeaQuest Collaboration: arXiv:1706.09990 [physics.ins-det]
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Kalman Filter Based Reconstruction (KTracker)

U
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Kalman Fast Tracking

Remove i Build triplets in stations 2& 3| Swim single muon tracks
- out-of-time hits = T P —P ::ggmﬂ;ga:g:%c fields and
Rl [Connect triplets from2&3 || § T
T =
Use sagitta to projecttrack || | || gpacn’ el (it
from station 2 & 3 to station 1 FMag /Am_ ...................
. i el
Cut events based on Single PT Kick through KMag :
multiplicity in
chambers, prop Build triplet in station 1 and
tubes, trigger roads. connect with projecton (| | || . | . |

Step |: X view
Triplets from
chambers

Step 2: asso

Remove bad hits by track
comparison

l

Finetune fit with Kalman Filter

Kalman fit vertex for the
dimuon pair from tracks

Ref: CBM-SOFT-note-2006-001 by
S. Gorbunov and I. Kisel

and drop low quality tracks

Noah Waurfel, University of Michigan




Neural-Network-Based Reconstruction (QTracker) Universrry

Raw Data

Event data \

represented as a 2-d

(54x201) image that

Event
Classification
CNN

can be fed into image
processing networks.

A modified version of
AlexNet is used to
classify events into
non-reconstructable,
single-muon, or
dimuon events.

A modified and expanded
version of LeNet is used
to identify the element ID
for each detector
associated with a muon
hit. The predicted track
are then matched to real
hits timing information.

Track Finder CNN

Using the particle track, a
deep-neural-network
calculates the particle
three-momenta for each
detected muons.

Kinematic
Reconstruction
DNN

7VIRGINIA

Using the Kinematics and
the particle track, a DNN
calculates the position at
which the detected
muons were created.

Vertex Finding
DNN

After filtering by vertex
location, track finding
and reconstruction can
be done iteratively to
increase precision.



Raw Data UNIVERSITY
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e \isual representation of a triggered 200
event — a hit matrix

e Most hits come from muons, but
very few come from Drell-Yan 150

muons from the target.
o Good hits: hits that are part of a fully

E906 Event

175

125

reconstructable muon track 100
o Noisy hits: hits from tracks that are too
fragmented to reconstruct. 5

e Of triggered events, very few have
a reconstructable full track of a
dimuon. 25

50




Training Data Generation

e Using Pythia and GEANT, generate a large number
of examples of dimuons passing through the
detector array.

e Place the Monte Carlo generated detector hits on a
94x201 array that corresponds to each detector and

their corresponding elements.

o For each hit, decide whether or not to include a hit based on
detector sensitivity.

e Add additional random and correlated hits to the

array to mimic real data.

o Random electronic noise hits
o Muon partial track hits

Element ID

Element ID

E906 Event

= i =i
10 20 30 40 50

10 20 30 40 50
Detector ID



Comparison to Kalman Filter Reconstruction

KTracker QTracker
Precision Accuracy Precision Accuracy
Dimuon 92% 9% (Recall) 99% 54% (Recall)
Identification
P, 0.42 GeV/c 0.16 GeV/c 0.22 GeV/c -0.05 GeV/c
P, 0.36 GeV/c 0.20 GeV/c 0.32 GeV/c -0.03 GeV/c
P, 4.1 GeVlic -1.42 GeV/c 5.05 GeV/c 0.27 GeVic
P; 0.43 GeV/c -0.18 GeV/ic 0.36 GeV/c 0.05 GeV/c
X, 0.04 0.03 0.06 0.005
X, 0.04 -0.01 0.02 0.004
M 0.62 GeV/c? 0.02 GeV/c? 0.32 GeV/c? -0.06 GeV/c?
(%] 0.17 radians 0.02 radians 0.10 radians -0.02 radians
¢ 0.63 radians -0.03 radians 0.41 radians 0.01 radians
Time (10,000 23.5 hours 52 seconds

Dimuons)

]

miine
U RSITY
%%RGINIA
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Summary of QTracker Advantages

e Higher statistics
o  Approximately 6x as many reconstructed dimuons compared to geometric reconstruction.
o Data also cleaner — fewer non-dimuon events are identified as dimuons.

e Faster reconstruction

o GPU reconstructs in less than 1/1000th the time of single CPU core.

e More precise reconstruction of kinematic variables

o QTracker has closer agreement with Monte Carlo truth values for most variables, critically
including 6 and ¢.

11
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Asymmetry Fitting: Chi-Square Fit Method U%%!fuélgsm
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Acceptance

e Events are binned into 2-d
histogram of cos(0) and ¢.

e Those histograms are then
adjusted using the bin-by-bin . . 3
acceptance of the detector and eosl?) i S

reconstruction algorithm. w
e The acceptance-adjusted
histograms are then fit using a 2 ool
chi-square method to the g w12
differential cross-section to find
values of 4, u, and v.
B S 8 4 s
% o 14\ cos? @+/usin 26 cos ¢+%l/ sin” § cos 2¢ cos(0) 12



Asymmetry Fitting: Neural Networ

Like with chi-squared method,
events are binned into 2-d
histograms and given acceptance
corrections.

Those 2-d histograms are then fed
into Convolutional Neural Networks
that calculate A, ¢, and v.

K Method

input: | [(None, 3, 10, 10)]
conv2d_2_input | InputLayer
output: | [(None, 3, 10, 10)]
input: | (None, 3, 10, 10)
conv2d_2 | Conv2D
- output: | (None, 2, 9, 512)
input: | (None, 2, 9, 512)
conv2d_3 | Conv2D
- output: | (None, 1, 8, 512)
input: | (None, 1, 8, 512)
flatten_1 | Flatten
= output: (None, 4096)
input: | (None, 4096)
dense_5 | Dense
- output: (None, 64)
input: | (None, 64)
dense_6 | Dense
- output: | (None, 32)
input: | (None, 32)
dense_7 | Dense
output: | (None, 16)
input: | (None, 16)
dense_8 | Dense
- output: | (None, 8)
input: | (None, 8)
dense 9 | Dense
- output: | (None, 3)

RSITY
7VIRGINIA

Inputs three 10x10
histograms :
cos(0) vs ¢,

cos(0) vs cos(¢),
cos(0) vs cos(2¢)

Outputs:

A, u, and v.
13



Testing the two methods

1. Randomly select 4, u, and v from the
ranges [0.5,1.5], [-0.4,0.4], [-0.4,0.4],
respectively.

2. Generate 10,000 Drell-Yan events with
the selected angular dependence via
von Neumann Rejection.

3. Reconstruct the kinematics of the
Drell-Yan events using QTracker.

4. Save the reconstructed kinematics.

5. Perform the fitting method and compare
to the true values of 4, i, and v.

0””0.5””1‘”.1.5.” 2 “‘2.5““3““3.5””4
pr (GeV/c)

Parameters A, y, vand 2v — (1 = A) vs. p T in the
Collins-Soper frame. From E866 NuSea at Fermilab.
Ref: L. Y. Zhu et al. arXiv:0811.4589 [nucl-ex]
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Performance of the Two Methods

U

v

Truth

0.85

-0.05

0.10

1.24

0.23

-0.12

0.98

0.01

0.01

Chi-Square Method

1.0+0.2

-0.08 £ 0.04

0.08 + 0.04

0.8+0.3

0.15 + 0.06

-0.10 £ 0.04

0.7+0.2

-0.04 £ 0.07

0.04 +0.02

U VERSITY
CNN Method 7 VIRGINIA

0.87 +0.10
-0.06 £ 0.02
0.09 +0.02
1.15+0.08
0.21 +0.05
-0.11 £ 0.03
0.95+0.09
0.03 + 0.04

0.0 £0.02

Errors for Chi-Square method are uncertainties from fits, for CNN method, errors are empirical from similar kinematics.
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Performance of the Two Methods (Empirical)

300 A lambda Error y mu Error nu Error
L Entries 2000 L Entries 2000 E Entries 2000
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Summary and Outlook U%I\Ill%%smng

e QTracker method shows promise for fast performance, high statistics, and low
error reconstruction of physics variables.

e QTracker, along with neural-network based extraction able to calculate the
angular dependence variables of Drell-Yan data with high precision.

e Higher statistics will allow us to be able to optimize the binning of kinematic
variables (x1, Xy X5 M, pT) for which we can measure asymmetry variables,
enabling a better global extraction of the Boer-Mulders function.

e Work is ongoing on systematic studies and analysis of real data.
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