An extraction of the Sivers, and the Boer-Mulders functions in SU(3) with DNNs

Ishara Fernando \& Dustín Keller September 25-29, 2023

25TH INTERNATIONAL SPIN PHYSICS SYMPOSIUM

September 24-29, 2023 Durham Convention Center Durham, NC, USA

Based on the recent publication (September 2023)
https://doi.org/10.1103/PhysRevD.108.054007

- A brief introduction to TMDs
- Sivers asymmetry from SIDIS
- Generalization of $\mathcal{N}_{q}(x)$ for $\operatorname{SU}(3)_{\text {flavor }}$
- Deep Neural Network (DNN) method

Outline

- Testing with pseudo-data
- DNN Fits \& Results for Sivers function
- DNN Boer-Mulders function extraction
- Summary and Outlook

Quark Polarization

TMD PDFs

$$
\Phi\left(x, k_{T} ; S\right)=\left.\int \frac{d \xi^{-} d \xi_{T}}{(2 \pi)^{3}} e^{i k . \xi}\langle P, S| \bar{\psi}(0) \mathcal{U}_{[0, \xi]} \psi(\xi)|P, S\rangle\right|_{\xi^{+}=0}
$$

At leading-twist, the Quark correlator can be decomposed into 8 components (6 T - even and 2 T -odd terms)

		Quark Polarization		
		U	L	T
$\begin{aligned} & \tilde{0} \\ & \stackrel{\widetilde{N}}{ } \\ & \end{aligned}$	U	$f_{1}=\bigcirc$	N / A	$\begin{aligned} & h_{1}^{\perp}=\varnothing-(\square \\ & \text { Boer-Mulders } \end{aligned}$
$\begin{aligned} & 0 \\ & 2 \\ & 5 \end{aligned}$	L	N / A	$g_{1 L}=\underset{\text { Helicity }}{\bigodot-\odot}$	$h_{11}{ }^{\perp}=\bigcirc-\bigcirc \bigcirc$
	T	$\underset{f_{1 r}}{\stackrel{\perp}{\text { Sivers }}} \ominus^{\perp}-\odot$	$g_{1 T}{ }^{\perp}=\bigcirc-¢$	

$\Phi\left(x, k_{T}, P, S\right)=f_{1}\left(x, k_{T}^{2}\right) \frac{P}{2}+\frac{h_{1 T}\left(x, k_{T}^{2}\right)}{4} \gamma_{5}\left[\$_{T}, \not P\right]+\frac{S_{L}}{2} g_{1 L}\left(x, k_{T}^{2}\right) \gamma_{5} \not P+\frac{k_{T} \cdot S_{T}}{2 M} g_{1 T}\left(x, k_{T}^{2}\right) \gamma_{5} \not P$

$$
+S_{L} h_{1 L}^{\perp}\left(x, k_{T}^{2}\right) \gamma_{5} \frac{\left[k_{T}, \not p\right]}{4 M}+\frac{k_{T} \cdot S_{T}}{2 M} h_{1 T}^{\perp}\left(x, k_{T}^{2}\right) \gamma_{5} \frac{[k / T, \not p]}{4 M}
$$

$$
+i h_{1}^{\perp}\left(x, k_{T}^{2}\right) \frac{\left[k_{T}, \not P\right]}{4 M}-\frac{\epsilon_{T}^{k_{T} S_{T}}}{4 M} f_{1 T}^{\perp}\left(x, k_{T}^{2}\right) \not P
$$

T-odd

TMD PDFs

Polarized Semi Inclusive DIS

Quark Polarization

		Quark Polarization		
		U	L	T
$\stackrel{\tilde{0}}{\stackrel{y}{N}}$	U	$f_{1}=\bigcirc$	N / A	$\begin{aligned} & h_{1}^{\perp}=(-)-(6) \\ & \text { Boer-Mulders } \end{aligned}$
$\begin{aligned} & \frac{\pi}{0} \\ & \vdots \\ & \vdots \end{aligned}$	L	N / A		$h_{14}^{\perp}=\bigcirc-$ - -
$\frac{\stackrel{\rightharpoonup}{\tilde{0}}}{\stackrel{y}{z}}$	T	$\underset{\text { Sivers }}{f_{1 r}=\ominus}$	$g_{1 T}{ }^{\perp}=\stackrel{\downarrow}{¢}-\odot$	

* For these two processes TMD factorization is proven

$$
\left.+\sin \left(3 \phi_{h}-\phi_{s}\right)\left(\epsilon A_{U T}^{\sin \left(3 \phi_{h}-\phi_{s}\right)}\right)\right]
$$

$$
\begin{aligned}
& \frac{d \sigma^{L O}}{d \Omega}=\frac{\alpha_{e m}^{2}}{F q} F_{v}^{1}\left\{1+\cos ^{2} \theta+\sin ^{2} \theta \cos 2 \phi_{C S} A_{U}^{\cos 2 \phi_{C S}}\right. \\
& +S_{T}\left[\left(1+\cos ^{2} \theta\right) \sin \phi_{s} A_{T}^{\sin \phi_{s}}+\sin ^{2} \theta\left(\sin \left(2 \phi_{C S}+\phi_{s}\right) A_{T}^{\sin \left(2 \phi_{C S}+\phi_{s}\right)}\right.\right. \\
& \left.\left.\quad+\sin \left(2 \phi_{C S}-\phi_{s}\right) A_{T}^{\sin \left(2 \phi_{C S}-\phi_{s}\right)}\right)\right]
\end{aligned}
$$

$$
A_{U U}^{\cos 2 \phi_{h}} \propto h_{1}^{\perp q} \circledast H_{1 q}^{\perp h} \quad \mathrm{BM} \circledast \mathrm{CF}
$$

$$
A_{U T}^{\sin \left(\phi_{h}-\phi_{s}\right)} \propto f_{1 T}^{\perp q} \circledast D_{1 q}^{h} \quad \text { Sivers } \circledast \mathrm{FF}
$$

$$
A_{U T}^{\sin \left(\phi_{h}+\phi_{s}\right)} \propto h_{1}^{q} \circledast H_{1 q}^{\perp h} \quad \text { Transv } \circledast \mathrm{CF}
$$

$$
A_{U T}^{\sin \left(3 \phi_{h}-\phi_{s}\right)} \propto h_{1 T}^{\perp q} \circledast H_{1 q}^{\perp h} \quad \text { Pretz } \circledast \mathrm{CF} \quad \begin{aligned}
& \left.h_{1}^{\perp q}\right|_{\text {sIDIS }}=-\left.h_{1}^{\perp q}\right|_{D Y} \\
& \left.f_{|T|}^{\perp q}\right|_{S D I S}=-\left.f_{I T}^{\perp q}\right|_{D V}
\end{aligned}
$$

$$
\begin{array}{|l|}
\left.h_{1}^{q}\right|_{\text {SIDIS }}=\left.h_{1}^{q}\right|_{D Y} \\
\left.h_{1 T}^{\perp q}\right|_{\text {SIDIS }}
\end{array}=\left.h_{1 T}^{\perp q}\right|_{D Y}
$$

$$
\begin{aligned}
A_{T}^{\cos 2 \phi_{C S}} & \propto h_{1}^{\perp q} \circledast h_{1}^{\perp q} & & \mathrm{BM} \circledast \mathrm{BM} \\
A_{T}^{\sin \phi_{s}} & \propto f_{1}^{q} \circledast f_{1 T}^{\perp q} & & \mathrm{PDF} \circledast \text { Sivers } \\
A_{T}^{\sin \left(2 \phi_{C S}-\phi_{s}\right)} & \propto h_{1}^{\perp q} \circledast h_{1}^{q} & & \mathrm{BM} \circledast \text { Transv } \\
A_{T}^{\sin \left(2 \phi_{C S}+\phi_{s}\right)} & \propto h_{1}^{\perp q} \circledast h_{1 T}^{\perp q} & & \mathrm{BM} \circledast \text { Pretz }
\end{aligned}
$$

Sivers Asymmetry from SIDIS

$\frac{d^{5} \sigma^{l_{p \rightarrow l} \rightarrow h X}}{d x d Q^{2} d z d^{2} p_{\perp}}=\sum_{q} e_{q}^{2} \int d^{2} \mathbf{k}_{\perp}\left(\frac{2 \pi \alpha^{2}}{x^{2} s^{2}} \frac{\hat{s}^{2}+\hat{u}^{2}}{Q^{4}}\right)$

$$
\begin{gathered}
\hat{f}_{q / p^{\uparrow}}\left(x, k_{\perp}\right)=f_{q / p}\left(x, k_{\perp}\right)+\frac{1}{2} \Delta^{N} f_{q / p^{\uparrow}}\left(x, k_{\perp}\right) \vec{S}_{T} \cdot\left(\hat{p} \times \hat{k}_{\perp}\right) \\
\Delta^{N} f_{q / p^{\uparrow}}\left(x, k_{\perp}\right)=2 \mathcal{N}_{q}(x) h\left(k_{\perp}\right) f_{q / p}\left(x, k_{\perp}\right)
\end{gathered}
$$

Anselmino et al. (2017)

Single Spin Asymmetry (Sivers Asymmetry)

$$
\begin{aligned}
& \left\langle p_{\perp}^{2}\right\rangle=0.12 \pm 0.01 \mathrm{GeV}^{2} \\
& \left\langle k_{\perp}^{2}\right\rangle=0.57 \pm 0.08 \mathrm{GeV}^{2}
\end{aligned} \quad A_{U T}^{\sin \left(\phi_{h}-\phi_{S}\right)}\left(x, y, z, p_{h T}\right)=\frac{d \sigma^{l \uparrow p \rightarrow h l X}-d \sigma^{l \downarrow p \rightarrow l h X}}{d \sigma^{l \uparrow p \rightarrow h l X}+d \sigma^{l} \downarrow p \rightarrow h l X} \equiv \frac{d \sigma \uparrow-d \sigma \downarrow}{d \sigma \uparrow+d \sigma \downarrow}
$$

$$
\begin{aligned}
& \mathcal{A}_{0}\left(z, p_{h T}, m_{1}\right) \\
& \quad=\frac{\sqrt{2 e} z p_{h T} T}{\left[z^{2}\left\langle k_{\perp}^{2}\right\rangle+\left\langle p_{\perp}^{2}\right\rangle\right\rangle\left\langle k_{S}^{2}\right\rangle^{2}} \\
& \left.m_{1}^{2}\left\langle k_{S}^{2}\right\rangle+\left\langle p_{\perp}\right\rangle\right]^{2}\left\langle k_{\perp}^{2}\right\rangle \\
& \\
& \times \exp \left[-\frac{p_{T h}^{2} z^{2}\left(\left\langle k_{S}^{2}\right\rangle-\left\langle k_{\perp}^{2}\right\rangle\right)}{\left(z^{2}\left\langle k_{S}^{2}\right\rangle+\left\langle p_{\perp}^{2}\right\rangle\right)\left(z^{2}\left\langle k_{\perp}^{2}\right\rangle+\left\langle p_{\perp}^{2}\right\rangle\right)}\right] \\
& \quad A_{U T}^{\sin \left(\phi_{h}-\phi_{S}\right)}\left(x, z, p_{h T}\right)=\mathcal{A}_{0}\left(z, p_{h T}, m_{1}\right)\left(\frac{\sum_{q} \mathcal{N}_{q}(x) e_{q}^{2} f_{q}(x) D_{h / q}(z)}{\sum_{q} e_{q}^{2} f_{q}(x) D_{h / q}(z)}\right) \\
& \left.\quad k_{S}^{2}\right\rangle=\frac{m_{1}\left\langle k_{\perp}^{2}\right\rangle}{m_{1}^{2}+\left\langle k_{\perp}^{2}\right\rangle}
\end{aligned}
$$

DNN Approach

$$
A_{U T}^{\sin \left(\phi_{h}-\phi_{S}\right)}\left(x, z, p_{h T}\right)=\mathcal{A}_{0}\left(z, p_{h T}, m_{1}\right)\left(\frac{\sum_{q} \mathcal{N}_{q}(x) e_{q}^{2} f_{q}(x) D_{h / q}(z)}{\sum_{q} e_{q}^{2} f_{q}(x) D_{h / q}(z)}\right)
$$

$>$ The exceptional capacity of DNN to be ideal for function approximation (Universal Approximation Theorem).
$>$ Each quark flavor q is independently handled by a separate $\mathcal{N}_{q}(x)$.
$>$ The only input to to each $\mathcal{N}_{q}(x)$ is x.
$>$ Statistical \& Systematic uncertainties from the experimental data are combined in quadrature; then propagated using bootstrap method by generating replicas.
$>$ Systematic uncertainty in method is evaluated with variations in generating function.

The "DNN Method" for extracting TMDs

$>$ Systematic study for both DNN models were performed separately using various generating functions.

> We trained two separate models for "proton" and "neutron" (deuteron) $>$ To take full advantage of the information provided by the model testing in the previous slide, the steps from method testing with pseudo-data are performed again separately for proton and deuteron SIDIS data.

$$
\epsilon_{q}\left(x, k_{\perp}\right)=\left(1-\frac{\left|\Delta^{N} f_{q / p^{\uparrow}}^{(\text {true })}-\Delta^{N} f_{q / p^{\uparrow}}^{(\text {mean })}\right|}{\Delta^{N} f_{q / p^{\uparrow}}^{(\text {true }}}\right) \times 100 \%
$$

$$
\sigma_{q}\left(x, k_{\perp}\right)=\sqrt{\frac{\sum_{i}\left(\Delta^{N} f_{q / p^{\uparrow}}^{(i)}-\Delta^{N} f_{q / p^{\uparrow}}^{(\mathrm{mean})}\right)^{2}}{N}}
$$

DNN Method testing with Pseudo data

$>$ Dashed lines represent the generating function in each iteration.
> A comparison: Improving the generating function Fine-tuning the hyperparameters
> Solid-lines and the band represent the mean and 68% CL with 1000 replicas of the DNN model.

Data Selection

$\left.\begin{array}{cccc}\text { Dataset } & \begin{array}{c}\text { Kinematic } \\ \text { coverage }\end{array} & \text { Reaction } & \text { Data } \\ \text { points }\end{array}\right]$

DNN Method: With Real data (Quality of the extraction)

The qualitative improvement of the extracted Sivers functions for u (blue), d (red), and s (green) quarks at $\mathrm{x}=0.1$ and $\mathrm{Q}^{2}=2.4 \mathrm{GeV}^{2}$ using the optimized proton-DNN model at the Second Iteration (solid-lines with dark-colored error bands with $68 \% \mathrm{CL}$), compared to the First Iteration (dashed-lines with light-colored error bands with $68 \% \mathrm{CL}$)

Sivers functions from the "Proton" DNN Model

Sivers $1^{\text {st }}$ moments from the "Proton" Model

$\Delta^{N} f_{q / p^{\uparrow}}^{(1)}(x)=\int d^{2} k_{\perp} \frac{k_{\perp}}{4 m_{p}} \Delta^{N} f_{q / p^{\uparrow}}\left(x, k_{\perp}\right)=-f_{1 T}^{\perp(1) q}(x)$

DNN Method: Results from the "Deuteron" Model

$>$ Trained on COMPASS 2009 SIDIS data with Deuteron target.

$>$ Did not imposed iso-spin symmetric conditions, or data cuts.

$$
\Delta^{N} f_{q / p^{\uparrow}}^{(1)}(x)=\int d^{2} k_{\perp} \frac{k_{\perp}}{4 m_{p}} \Delta^{N} f_{q / p^{\uparrow}}\left(x, k_{\perp}\right)=-f_{1 T}^{\perp(1) q}(x)
$$

DNN Model Projections: DY

DNN Model Projections: DY conpass 2017 DY Projections

DNN Model Projections: DY @ SpinQuest

DNN Models

$>$ SpinQuest (E1039) experiment at Fermilab is aiming to extract the Sivers function for the light-sea quarks.
> Unpolarized 120 GeV proton beam with polarized proton and deuteron targets (separately).
$>$ Proton-DNN model predictions (Red) Deuteron-DNN model predictions (Orange)

Boer-Mulders (BM) function

Boer Mulders function describes the polarized quark distributions inside an unpolarized hadron.

Based on the framework by Barone et al., PRD 91, 074019 (2015)

$$
\frac{d \sigma}{d x_{B} d y d z_{h} d p_{h T} d \phi}=\frac{\pi \alpha^{2}}{Q^{2} x_{B} y}\left(\left(1+(1-y)^{2}\right) F_{U U}+2(2-y) \sqrt{1-y} F_{U U}^{\cos \phi} \cos \phi+2(1-y) F_{U U}^{\cos 2 \phi} \cos 2 \phi\right)
$$

Twist-3

$$
\left.F_{U U}^{\cos \phi, h}\right|_{\mathbf{B M}}=\sum_{q} e_{q}^{2} x \int d^{2} \mathbf{k}_{\perp} \frac{k_{\perp} p_{h T}^{2}-z\left(\mathbf{k}_{\perp} \cdot \mathbf{p}_{\mathbf{h} \mathbf{T}}\right)}{Q p_{h T}^{2}} \frac{k_{\perp}}{m_{p}} h_{1}^{\perp}\left(x, k_{\perp}\right) \frac{2 p_{\perp}}{z m_{h}} H_{1}^{\perp}\left(z, p_{\perp}\right)+\left.F_{U U}^{\cos \phi}\right|_{\text {Cahn }}=-2 \sum_{q} e_{q}^{2} x \int d^{2} \mathbf{k}_{\perp} \frac{\left(\mathbf{k}_{\perp} \cdot \mathbf{p}_{\mathbf{h T}}\right)}{Q p_{h T}} f_{q}\left(x, k_{\perp}\right) D_{q}\left(z, p_{\perp}\right)
$$

Twist-4

$$
\begin{aligned}
&\left.F_{U U}^{\cos 2 \phi, h}\right|_{\mathrm{BM}}=-\sum_{q} e_{q}^{2} x \int d^{2} \mathbf{k}_{\perp} \frac{p_{h T}\left(\mathbf{k}_{\perp} \cdot \mathbf{p}_{\mathbf{h T}}\right)+\mathbf{z}\left(\mathbf{k}_{\perp}^{\mathbf{2}} \mathbf{p}_{\mathbf{h T}}-\mathbf{2}\left(\mathbf{k}_{\perp} \cdot \mathbf{p}_{\mathbf{h T}}\right)\right)}{2 k_{\perp} p_{h T}^{2}} \frac{k_{\perp}}{m_{p}} h_{\perp}^{\perp}\left(x, k_{\perp}\right) \frac{2 p_{\perp}}{z m_{h}} H_{1}^{\perp}\left(z, p_{\perp}\right) \\
&+F_{U U}^{\cos \phi} \left\lvert\, \operatorname{cahn}=2 \sum_{q} e_{q}^{2} x \int d^{2} \mathbf{k}_{\perp} \frac{2\left(\mathbf{k}_{\perp} \cdot \mathbf{p}_{\mathbf{h T}}\right)-\mathbf{k}_{\perp}^{2} \mathbf{p}_{\mathbf{h}}^{2}}{Q^{2} p_{h T}^{2}} f_{q}\left(x, k_{\perp}\right) D_{q}\left(z, p_{\perp}\right)\right.
\end{aligned}
$$

Boer-Mulders (BM) function

$$
A^{\cos (\phi)}=A_{B M}^{\cos (\phi)}+A_{C a h n}^{\cos (\phi)} \quad A^{\cos (2 \phi)}=A_{B M}^{\cos (2 \phi)}+A_{C a h n}^{\cos (2 \phi)}
$$

An exploratory rearrangement

$$
A^{\cos (\phi)}-Q A^{\cos (2 \phi)}=\frac{F_{B M}^{\cos (\phi)}}{F_{U U}}-Q \frac{F_{B M}^{\cos (2 \phi)}}{F_{U U}}+\frac{F_{C a h n}^{\cos (\phi)}}{F_{U U}}-Q \frac{\operatorname{cahn}}{\cos (2 \phi)}
$$

$$
\begin{gathered}
h_{1}^{\perp}\left(x, k_{\perp}\right)=\mathcal{N}_{q}(x) h\left(k_{\perp}\right) f_{q}\left(x, k_{\perp} ; Q^{2}\right) \\
\mathcal{N}_{q}(x)=N_{q} x^{\alpha}(1-x)^{\beta} \frac{(\alpha+\beta)^{(\alpha+\beta)}}{\alpha^{\alpha} \beta^{\beta}} \\
f_{q}\left(x, k_{\perp} ; Q^{2}\right)=f_{q}\left(x ; Q^{2}\right) \frac{e^{-k_{\perp}^{2} /\left\langle k_{\perp}^{2}\right\rangle}}{\pi\left\langle k_{\perp}^{2}\right\rangle} \\
h\left(k_{\perp}\right)=\sqrt{2 e} \frac{k_{\perp}}{m_{B M}} e^{-k_{\perp}^{2} / m_{B M}^{2}}
\end{gathered}
$$

$$
\begin{gathered}
\Delta D_{h / q \uparrow}\left(z, p_{\perp}\right)=\mathcal{N}_{q}^{C}(z) h^{C}\left(k_{\perp}\right) D_{h / q}\left(z, p_{\perp} ; Q^{2}\right) \\
\mathcal{N}_{q}^{C}(x)=N_{q}^{C} z^{\gamma}(1-z)^{\delta} \frac{(\gamma+\delta)^{(\gamma+\delta)}}{\gamma^{\gamma} \delta^{\delta}} \\
D_{h / q}\left(z, p_{\perp} ; Q^{2}\right)=D_{h / q}\left(z ; Q^{2}\right) \frac{e^{-p_{\perp}^{2} /\left\langle p_{\perp}^{2}\right\rangle}}{\pi\left\langle p_{\perp}^{2}\right\rangle} \\
h^{C}\left(p_{\perp}\right)=\sqrt{2 e} \frac{p_{\perp}}{m_{C}} e^{-p_{\perp}^{2} / m_{C}^{2}}
\end{gathered}
$$

From the framework by Barone et al., PRD 91, 074019 (2015)

$$
\left.\begin{array}{rl}
\frac{F_{B M}^{\cos (\phi)}}{F_{U U}}-Q \frac{F_{B M}^{\cos (2 \phi)}}{F_{U U}} & =\frac{2(2-y)}{\left[1+(1-y)^{2}\right]}\left(\frac{e p_{h T}}{m_{B M} m_{c} Q}\right) \frac{\left\langle p_{h T}^{2}\right\rangle}{\left\langle p_{h T}^{2}\right\rangle_{B M}^{3}}\left(\frac{\sum_{q} e^{q}\left(\mathcal{N}_{q}(x) f_{q / p}(x) \mathcal{N}_{q}^{c}(x) D_{h / q}(z)\right.}{\sum_{q} e^{q} f_{q / p}(x) D_{h / q}(z)}\right) \exp \left(\frac{p_{h T}^{2}}{\left\langle p_{h T}^{2}\right\rangle}-\frac{p_{h T}^{2}}{\left\langle p_{h T}^{2}\right\rangle}\right. \\
B M
\end{array}\right) .
$$

The "DNN Method" for extracting BM

$$
\begin{aligned}
& \text { Method Testing } \\
&\left\langle k_{\perp}^{2}\right\rangle_{B M}=\frac{m_{B M}^{2}\left\langle k_{\perp}^{2}\right\rangle}{\left\langle k_{\perp}^{2}\right\rangle+m_{B M}^{2}} \\
&\left\langle p_{\perp}^{2}\right\rangle_{C}=\frac{m_{C}^{2}\left\langle p_{\perp}^{2}\right\rangle}{\left\langle p_{\perp}^{2}\right\rangle+m_{C}^{2}} \\
&\left\langle P_{h T}^{2}\right\rangle=z^{2}\left\langle k_{\perp}^{2}\right\rangle+\left\langle p_{\perp}^{2}\right\rangle \\
&\left\langle p_{\perp}^{2}\right\rangle=A+z^{2} B \\
&\left\langle P_{h T}^{2}\right\rangle=A+z^{2}(B+C) \\
&\left\langle k_{\perp}^{2}\right\rangle=C
\end{aligned}
$$

Pseudo-data

Real-data
Available data:
HERMES (2013) [identified hadrons] COMPASS (2014) [unidentified hadrons]
Since this is exploratory, we use
the fit parameters from Barone et al
for the initial MINUIT fit
Barone et al., PRD 91, 074019 (2015)
generating function

Use 3-D
Kinematic
binning
Pseudo-data
(with exp. Uncert.)

DNN model

$$
\epsilon_{q}\left(x, k_{\perp}\right)=\left(1-\frac{\left|\Delta^{N} f_{q / p^{\uparrow}}^{(\text {true })}-\Delta^{N} f_{q / p^{\uparrow}}^{(\text {mean })}\right|}{\Delta^{N} f_{q / p^{\uparrow}}^{(\text {true }}}\right) \times 100 \%
$$

$$
\sigma_{q}\left(x, k_{\perp}\right)=\sqrt{\frac{\sum_{i}\left(\Delta^{N} f_{q / p^{\uparrow}}^{(i)}-\Delta^{N} f_{q / p^{\uparrow}}^{(\text {mean })}\right)^{2}}{N}}
$$

The "DNN Method" for extracting BM

$>$ All quark flavors in $\mathrm{SU}(3)$ are considered in a more generic fashion.
$>$ As this is exploratory, the fit results for the coefficients not related to $\mathcal{N}_{q}(x)$ are fixed by the Barone et al. (2015)fit results, for the purpose of extracting the "generating function".
$>$ Twist-4 Cahn term was not ignored.
$>$ A linear combination of $\cos (\phi)$ and $\cos (2 \phi)$ asymmetries were assumed.
$>$ Training in-progress for two separate DNN models: proton target and deuteron target
$>$ Prospective plan: use inputs $\mathrm{x}, \mathrm{Q}^{2}$ (for evolution), and target type

Boer-Mulders (BM) function

Very very preliminary DNN fits to HERMES 'proton' SIDIS data

Zhun Lu and Ivan Schmidt PhysRevD.81.034023 (2010)
From the fits to DY data

Sign-flip is expected from
QCD gauge invariance as BM is T-odd

Summary \& Outlook

$>$ We proposed a new method for performing global fits to extract TMDs.
$>$ Our method is based on the integration of AI and the use of generating function to ensure the accuracy and precision.
$>$ We have successfully tested our method with pseudo-data, also a dedicated systematic study.
$>$ We chose Deep Neural Net (DNN) to incorporate all x-dependent features of $\mathcal{N}_{q}(x)$.
$>$ We performed global fit with experimental data: Separately on polarized SIDIS with Proton target and Deuteron target and obtained reasonably well description and extracted the Sivers functions for all light quark flavors in $\mathrm{SU}(3)$.
$>$ We projected SIDIS and DY Sivers asymmetries: for existing (as a validation check) and upcoming experiments (such as SpinQuest).
> Currently working on Boer-Mulders function extraction...
Next:
$>$ Performing simultaneous global fit with SIDIS, $\mathrm{DY}, \mathrm{W}^{+} / \mathrm{W}^{-}$data including a study of TMD evolution with DNN techniques to extract the unpolarized TMD using DNN.
$>$ Applying the "DNN method" to extract other TMDs such as Transversity, Boer-Mulders function, as well as Spin-1 TMDs.

U.S. DEPARTMENT OF

ㄷㅁㄷㅁㅁ

Office of Science

Backup Slides

3D Tomography from the "Proton" DNN Model

I. P. Fernando and D. Keller

Phys. Rev. D. 108.054007 (2023)

Proton-DNN model

$$
\rho_{p \uparrow}^{a}\left(x, k_{x}, k_{y} ; Q^{2}\right)=f_{1}^{a}\left(x, k_{\perp}^{2} ; Q^{2}\right)-\frac{k_{x}}{m_{p}} f_{1 T}^{\perp a}\left(x, k_{\perp}^{2} ; Q^{2}\right)
$$

A. Bacchetta et al (2021) $\rho_{p t}^{u}$

$k_{T_{x}}(\mathrm{GeV})$

Backup

Proton DNN Fit Results

$>$ All data points are well-described by the proton-DNN model.
$>$ No kinematic cuts were implemented.

Calculated $\chi_{\text {total }}{ }^{2} / \mathrm{N}_{\mathrm{pt}}=1.04$

Deuteron DNN Fit Results

No kinematic cuts are applied
Backup
Deuteron-DNN model can describe data reasonably well
> No iso-spin symmetry conditions are applied

Deuteron DNN Projections for JLab Kinematics

TABLE III. The summary of the optimized sets of hyperparameters: The indications in the table are \mathcal{C}_{0}^{i} and \mathcal{C}_{0}^{f} for results from the pseudodata from the generating function, \mathcal{C}_{p}^{i}, and \mathcal{C}_{p}^{f} for results from SIDIS data from experiments associated with the polarized-proton target, and \mathcal{C}_{d}^{i} and \mathcal{C}_{d}^{f} for results from SIDIS data from experiments associated with the polarized-deuterium target, where i and f indicate the First Iteration and Second Iteration respectively. The initial learning rate is also listed $\left(\times 10^{-4}\right)$ as is the final training loss $\left(\times 10^{-3}\right)$. The accuracy and precision in each case are the maxima over the phase space.

Hyperparameter	\mathcal{C}_{0}^{i}	\mathcal{C}_{0}^{f}	\mathcal{C}_{p}^{i}	\mathcal{C}_{p}^{f}	\mathcal{C}_{d}^{i}	\mathcal{C}_{d}^{f}
Hidden layers	5	7	5	7	5	8
Nodes/layer	256	256	550	550	256	256
Learning rate	1	0.125	5	1	10	1
Batch size	200	256	300	300	100	20
Number of epochs	1000	1000	300	300	200	200
Training loss	0.6	0.05	1.5	1	2	1
$\varepsilon_{d}^{\max }$	95.67	99.27	55.21	94.04	56.80	93.02
$\varepsilon_{\max }^{\max }$	42.62	98.09	52.57	96.70	34.83	91.40
$\varepsilon_{d}^{\max }$	80.46	98.89	55.69	93.13	52.44	89.27
$\varepsilon_{d}^{\max }$	74.59	97.08	55.37	95.04	46.60	92.58
$\varepsilon_{s}^{\max }$	45.53	79.27	49.54	90.64	36.34	93.41
$\varepsilon_{s}^{\max }$	59.27	91.13	33.89	82.51	65.57	91.45
$\sigma_{u}^{\max }$	3	0.1	5	2	2	0.4
$\sigma_{u}^{\max }$	2	0.2	6	2	8	2
$\sigma_{d}^{\max }$	10	1	20	6	2	1
$\sigma_{d}^{\max }$	7	4	20	8	7	1
$\sigma_{s}^{\max }$	2	0.2	4	1	6	2
$\sigma_{s}^{\max }$	1	0.1	4	2	6	3

Systematic Studies: data cuts

$$
\begin{aligned}
W^{\mu \nu}= & \sum_{f}\left|\mathcal{H}_{f}\left(Q^{2}, \mu\right)\right|^{\mu \nu} \\
& \times \int d^{2} k_{\perp} d^{2} p_{\perp} \delta^{(2)}\left(z_{h} k_{\perp}+p_{\perp}-p_{h T}\right) \\
& \times F_{f / N^{\uparrow}}\left(x, z_{h} k_{\perp}, S ; \mu, \zeta_{F}\right) D_{h / f}\left(z_{h}, p_{\perp} ; \mu, \zeta_{D}\right) \\
& +Y\left(p_{h T}, Q^{2}\right)
\end{aligned}
$$

FIG. 17. Solid lines with light band represent the u (in blue), d (in red) Sivers functions using the cut $Q^{2}>1 \mathrm{GeV}^{2}$. These resulting DNN models made from the cuts from all tests are also shown.

The applicability of TMD factorization was ensured by applying cuts to SIDIS data based on various criteria in the literature.

In this exploratory effort with DNNs, the power corrections are not directly imposed. In addition to the basic data cut $\mathrm{Q}^{2}>1 \mathrm{GeV}^{2}$ we performed $\mathrm{Q}^{2>} 2 \mathrm{GeV}^{2}$ and $\mathrm{p}_{\mathrm{h} T}<\mathrm{zQ}$ cuts separately with the protonDNN model to understand the impact on the extracted Sivers functions.

FIG. 18. Sivers functions from a retrained DNN model using the cuts [65] to the data demonstrating that being selective with the data can reduce the error bands of the fit but may also add an unintentional bias.

Systematic Studies: Choice of $\mathrm{h}(\mathrm{k})$

FIG. 19. Using two different $h\left(k_{\perp}\right)$. Solid line with dark band represents the Sivers functions with $h\left(k_{\perp}\right)=\sqrt{2 e} \frac{k_{\perp}}{m_{1}} e^{-k_{\perp}^{2} / m_{1}^{2}}$, whereas the dashed line with light band represents the Sivers functions with $h\left(k_{\perp}\right)=\frac{2 k_{\perp} m_{1}}{m_{1}^{2}+k_{\perp}^{2}}$.

$$
h\left(k_{\perp}\right)=\sqrt{2 e} \frac{k_{\perp}}{m_{1}} e^{-k_{\perp}^{2} / m_{1}^{2}}
$$

$$
h\left(k_{\perp}\right)=\frac{2 k_{\perp} m_{1}}{m_{1}^{2}+k_{\perp}^{2}}
$$

Systematic Studies : TMD Evolution

Backup

The solution of the TMD evolution equations

$$
\begin{gathered}
\mu^{2} \frac{d F(x, b ; \mu, \zeta)}{d \mu^{2}}=\frac{\gamma_{F}(\mu, \zeta)}{2} F(x, b ; \mu, \zeta) \\
\zeta \frac{F(x, b ; \mu, \zeta)}{d \zeta}=-\mathcal{D}(b, \mu) F(x, b ; \mu, \zeta), \\
F(x, b ; \mu, \zeta)=\left(\frac{\zeta}{\zeta_{\mu}(b)}\right)^{-\mathcal{D}(b, \mu)} F(x, b) \\
\mu \sim Q, \quad \zeta_{F} \zeta_{D} \sim Q^{4}, \quad \mu^{2}=\zeta^{2}=Q^{2}
\end{gathered}
$$

$$
\mathcal{N}_{q}(x) \longrightarrow \mathcal{N}_{q}\left(x, Q^{2}\right)
$$

FIG. 21. The Sivers asymmetry evolution in Q^{2} compared to the result from [6]. The red-colored solid line and the band represent the mean and standard deviation of the $A_{U T}^{\sin \left(\phi_{h}-\phi_{s}\right)}$ from 1000 replica models of the proton DNN at $x=0.12, z=0.32$, $p_{h T}=0.14 \mathrm{GeV}$.

