

The International Spin Symposium SPIN 2023

Yixin Zhang (张宜新), for the STAR Collaboration Shandong University (山东大学)

Challenges in Transverse Single-Spin Asymmetry

> Anomalously large A_N in pp collisions observed for nearly 40 years

$$A_N = \frac{d\sigma^{\uparrow} - d\sigma^{\downarrow}}{d\sigma^{\uparrow} + d\sigma^{\downarrow}}$$

LO QCD predicts $A_N \sim 0$

G. Kane, J. Pumplin, W. Repko, Phys. Rev. Lett 41,1689 (1978).

> Left-right asymmetries for different hadrons at different beam energies

• Explained by the twist-3 and transverse-momentum-dependent (TMD) formalisms

Mechanisms for Transverse Single-Spin Asymmetry

- > Transverse Momentum Dependent (TMD) parton distributions and fragmentation functions.
 - Need two scales (Q and p_T), $Q >> p_T$
 - ✓ Sivers effect (*Sivers'90*):

Parton spin and k_T correlation in initial state (related to orbital angular momentum)

✓ Collins effect (Collins'93):

Quark spin and k_T correlation in fragmentation process (related to transversity)

- Twist-3 mechanism (Efremov-Teryaev'82, Qiu-Sterman'91):
 - Collinear/twist-3 quark-gluon correlation + fragmentation functions
 - Need one scale $(Q \text{ or } p_T), Q, p_T >> \Lambda_{QCD}$
 - Both mechanisms apply when $Q >> p_T >> \Lambda_{QCD}$

• We will study Sivers effect with inclusive jet, and Collins effect with hadron in jets in pp collisions at STAR

 $\vec{S} \cdot (\vec{p} \times \vec{k}_T)$

Relativistic Heavy Ion Collider (RHIC)

> RHIC is the world's only machine capable of colliding high-energy beams of polarized protons

The Solenoidal Tracker At RHIC (STAR)

- Time Projection Chamber (TPC)
 - $|\eta| < 1$ and $\phi \in [0, 2\pi]$
 - Main detector for tracking and PID
- Time Of Flight (TOF)
 - $|\eta| < 1.0$ and $\phi \in [0, 2\pi]$
 - Improve PID of tracks
- ElectroMagnetic Calorimeter
 - BEMC: $|\eta| < 1.0$ and $\phi \in [0, 2\pi]$.
 - EEMC: $1.08 < \eta < 2.0$ and $\phi \in [0, 2\pi]$
 - Reconstruction of photon, e, π^0 and triggering

STAR Data of pp Collision and Kinematic Coverage

STAR measurements overlap much of the x range of SIDIS but at a dramatically higher range of Q²

STAR Phys.Lett.B 780 (2018), 332-339

10⁻¹

10⁻¹

10⁻²

Х

Extraction of Transverse Single-Spin Asymmetry

> For π^{\pm} within jets in *pp* collisions, the spin dependent cross section can be expressed:

Extraction of Transverse Single-Spin Asymmetries

$$A_N sin(\phi) = \frac{1}{P} \cdot \frac{\sqrt{N^{\uparrow}(\phi)N^{\downarrow}(\phi+\pi)} - \sqrt{N^{\downarrow}(\phi)N^{\uparrow}(\phi+\pi)}}{\sqrt{N^{\uparrow}(\phi)N^{\downarrow}(\phi+\pi)} + \sqrt{N^{\downarrow}(\phi)N^{\uparrow}(\phi+\pi)}}$$

- Cross ratio formalism can cancel detector efficiencies and spin dependent luminosity.
- $N^{\uparrow}(\text{or } N^{\downarrow})$ is the yield for a given spin state.

Jet Reconstruction

Jet reconstruction : \geq

- Anti-K_T algorithm with R = 0.5٠
- TPC tracks and EMC energy deposition as input ٠
- Off-axis cone method to estimate underlying event contribution ٠

Simulation \triangleright

- **PYTHIA 6.4.28 + GEANT3** ٠
- Partonic $p_T > 5 \text{GeV/c}$ ٠
- Kinematic correction & Systematic uncertainty estimation ٠

Particle identification and Asymmetries purification

> Particle rich region for TOF unmatched / matched

- Good particle identification through TPC and TOF.
- Raw asymmetries can be extracted in different particle rich region.
- Calculate the fraction of particle type in each particle rich region as matrix element for asymmetries purification.
- Asymmetries purification through Moore-Penrose inverse.

 $f_{i \, rich}^{J}$: the fraction of particle type *j* in the *i*-rich sample.

Sivers Asymmetry from STAR 2017 Data

Results for inclusive jet

- Sivers asymmetries for inclusive jets and pion tagged jets are consistent with 0. ٠
- Sensitive to Sivers function at twist-3. ٠

> Collins results as a function of jet p_T

- Positive for π^+ and negative for π^- , and increase with increasing jet p_T for $x_F > 0$
- The asymmetries for $x_F < 0$ are consistent with 0.

12

> Collins results as a function of jet p_T

- Positive for π⁺ and negative for π⁻, and increase with increasing jet p_T for x_F > 0
- The asymmetries for $x_F < 0$ are consistent with 0.

 New results are consistent with previous run11 data, but with 14 times more statistics

Sep 25, 2023

Comparison to STAR 200 GeV Results

> Collins results as a function of x_T for 200 GeV and 510GeV:

Sep 25, 2023

- The high precision Collins results of 510 GeV and 200 GeV nicely align with jet x_T scale, giving almost no energy dependence.
- These data provide important constraints on the scale evolution for Collins asymmetry. Yixin Zhang, SPIN2023

> Collins results as a function of z in different jet p_T regions at 510 GeV:

z: the pion's longitudinal momentum fraction in the jet

• These results provide more detailed constraints on the Collins fragmentation function

> Collins results as a function of j_T in different jet p_T regions at 510 GeV:

 j_T : charged pion's transverse momentum relative to the jet axis

• These results provide more detailed constraints on the Collins fragmentation function

Comparison to STAR 200 GeV Results

- Collins results as a function of j_T for 200 GeV and 510 GeV:
 - In the same x_T bin, the Collins asymmetries versus j_T in different z regions are in good agreement for 510 GeV and 200 GeV
 - No energy dependence observed again

17

STAR

Comparison to theoretical calculations

 \succ Collins results as a function of z, compared with theoretical results:

- The results of z dependence from two RHIC running periods are in good agreement.
- Generally, experimental results and theories are in agreement, but model calculations slightly undershoot the observed asymmetries.

Summary & Outlook

- New preliminary results on transverse single-spin asymmetries of jets and π^{\pm} in-jets in pp at $\sqrt{s} = 510$ GeV with STAR 2017 data, 14 times more statistics to previous measurement with 2011 data.
- No significant non-zero Sivers asymmetries have been observed at 510 GeV in pp collision.
- The high precision Collins asymmetries for π^+ and π^- results at 510 GeV, in excellent consistency with 200 GeV data versus x_T , no energy dependence observed.
- Collins asymmetries for π^+ and π^- versus z and j_T are also reported.
- These data provide important constraints on the scale evolution, and test of universality for Collins asymmetry.
- A large data sample of transverse polarized p+p data taken in 2022 at STAR ($\sim 400 pb^{-1}$), with the forward detectors (2.5 < η < 4) installed, provides an unique opportunity to study Collins and Sivers asymmetries in the forward region.