The 25th International Spin Symposium (Spin2023)

Angular distribution analysis in the Drell-Yan process with 120 GeV proton beam and LH₂ target at SeaQuest experiment

Zhaohuizi Ji Shandong University For SeaQuest collaboration

Outline

- Physics motivation
- SeaQuest experiment
- Measurement of the angular distribution
- Preliminary results

Drell-Yan process and its angular distribution functions

- Drell-Yan process: $q + ar{q} o \gamma^{\star} \!\!\!\! o l + ar{l}$
 - Anti-quark is always involved (If hadron is the proton, anti-quark is sea quark)
- Cross-section:

$$\left(rac{d^2\sigma}{dx_Bx_T}
ight)_{D-Y} = rac{4\pilpha^2}{9sx_Bx_T}\sum_n e_n^2[q_n(x_B)ar{q}_n(x_T)+ar{q}_n(x_B)q_n(x_T)]
onumber \ ,$$

• Angular distribution in Drell-Yan process (general expression) $\frac{d\sigma}{d\Omega} \propto 1 + \lambda \cos^2 \theta + \mu \sin 2\theta \cos \phi + \frac{\nu}{2} \sin^2 \theta \cos 2\phi$ C. S. Lam and W. K. Tung, Phys. Rev. D 18, 2447 (1978).

$$\circ$$
 LO, $rac{\mathrm{d}\sigma}{\mathrm{d}\Omega} \propto 1 + \cos^2 heta$, $\lambda=1,\,\mu=
u=0.$

- No quark transverse momenta
- No gluon emissions
- \circ NLO,

Collins Soper frame (dilepton center of mass frame) θ : polar angle of $l^ \phi$: azimuthal angle of l^-

Transverse momentum dependent distribution functions

- Three dimensional momentum densities of the patronic structure: x (longitudinal) + k_{\perp} (transverse)
- Carry information on transverse parton momenta and spin-orbit correlations.
- Sivers function:
 - SpinQuest,
 - Sea quark contribution to the orbital angular momentum.
- Boer-Mulders function:
 - SeaQuest,
 - Contribution to the $\cos 2\phi$ dependence.

Boer-Mulders function $h_1^{\perp}(x,k_{\perp})$

• Boer pointed out that the $\cos 2\phi$ dependence can be caused by the presence of the Boer-Mulders function.

 $u \propto h_1^\perp(x_q,k_{\perp q})h_1^\perp(x_{ar q},k_{\perp ar q})$ D. Boer, Phys. Rev. D 60, 014012 (1999).

- Research status:
 - \circ $\,$ Pion induced Drell-Yan in NA10 and E615, pronounced $\cos 2\phi^{\rm 0.2}$ dependence was observed. $\,$
 - Proton induced Drell-Yan in NuSea, significantly smaller (nonzero) $\cos 2\phi$ dependence were observed.

 $egin{aligned} &
uig(\pi^-W o \mu^+\mu^-ig) \propto ig[valence\,h_1^ot(\pi)ig]ig[valence\,h_1^ot(p)ig] \ &
uig(pp(d) o \mu^+\mu^-ig) \propto ig[valence\,h_1^ot(p)ig]ig[sea\,h_1^ot(p)ig] \end{aligned}$

Cited from Jen-Chieh Peng's slides reported at IWHSS 2016

 The comparison among NuSea and NA10/E615 experiments indicate Boer-Mulders functions for sea quarks are significantly smaller than those for valence quarks.

Motivation for angular distribution measurement at SeaQuest

- Angular distribution results by proton induced Drell-Yan process are only by NuSea by far.
 - SeaQuest present another set of data.
 - Different kinematics: SeaQuest cover Boer-Mulders function at larger x region.
 NuSea: 0.015 < x <0.35, SeaQuest: 0.15 < x < 0.45.
 J.Dove, etc. Nature 590, 561 (2021)
- SeaQuest provides full a ϕ range measurement, suitable to extract μ and ν :

 $\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega} = 1 + \lambda \cos^2 \theta + \frac{\mu}{2} \sin^2 \theta \cos \phi + \frac{\nu}{2} \sin^2 \theta \cos 2\phi$

• SeaQuest provides a stringent verification of the sea quark Boer-Mulders function magnitude:

 $h_1^\perp(sea)\,<\,h_1^\perp(valence)\,?$

SeaQuest experiment setup

- 120 GeV proton beam, 2x10¹² protons per second.
- Fixed target: 7 kinds, LH_2 in use.
- Four tracking stations:
 - Hodoscopes trigger drift chambers tracking proportional tubes muon identification.
- Data acquisition: year 2013 2017.
 - Data in year 2014 is in use, accounting for 40% of whole acquired data.

the 25th International Spin Symposium

Drell-Yan produced dimuon selection

- After track reconstructions, selection criteria is applied to select dimuons:
 - o track cuts
 o dimuon cuts
 o physics cuts
 o occupancy and intensity cuts
- Mass fitting method to subtract dimuons from non Drell-Yan process

- Sources: J/ψ , ψ ', Drell-Yan, random coincidence and empty flask.
- 4.4 GeV/c² mass cut is applied to separate J/ ψ and ψ ' from Drell-Yan, leaving Drell-Yan data (87%), random coincidence data (8%) and empty flask data (5%).

Background subtraction

• The angular distributions in $(\cos \theta, \phi)$ two dimensions:

• In the selected mass region, dimuons from Drell-Yan process are obtained via:

$$s_k = (n_k - r_f \cdot f_k - r_b \cdot b_k) \cdot rac{1}{A(\cos heta, \phi)} \cdot rac{1}{E(\cos heta, \phi, occ)} \, ,$$

- Random coincidence and empty flask events are subtracted from raw data bin by bin.
- Data are corrected by acceptance $A(\cos \theta, \phi)$ and rate dependent efficiency $E(\cos \theta, \phi, occ)$ to obtain physics distributions.

Acceptance correction

- detector efficiency
- detector resolution

$$A(\cos heta,\phi) = rac{MC_{clean}}{MC_{4\pi}}$$
 detector level MC generator level MC

Rate dependent efficiency correction

- Tracking efficiency \propto beam intensity \propto station 1 chamber occupancy.
- In each $(\cos \theta, \phi)$ bin, efficiency has a linear dependence on station 1 chamber occupancy.

Angular distribution fitting

- Fitting function: $\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega} = 1 + \lambda \cos^2 \theta + \mu \sin 2\theta \cos \phi + \frac{\nu}{2} \sin^2 \theta \cos 2\phi$
- Fitting method:
 - maximum likelihood

• unbinned fitting by RooFit package

- Fitting conditions:
 - $\circ \quad -0.375 < \cos\theta < 0.375 \qquad \qquad \circ \quad 50 \text{ x 50 bins of } (\cos\theta, \phi)$
 - \circ $\lambda = 1$ fixed, the different λ setting values are one of sources of systematic uncertainties.
- Fittings are iterated until resulting μ and ν are converged.

Preliminary results

- μ is consistent with zero within uncertainties, in agreement with E866/NuSea results.
- ν is obtained non-zero, larger than those from E866/NuSea, at similar level as the pion induced Drell-Yan results.
 - Other mechanism might be involved for the $\cos 2\phi$ dependence origin.

the 25th International Spin Symposium

Summary and outlook

- Angular distribution measurement in proton induced Drell-Yan process is a good tool to access sea quark Boer-Mulders Function.
- Release SeaQuest preliminary results for μ and ν :
 - \circ μ is consistent with zero.
 - Large ν is obtained, indicating there might be other mechanism involved in the origin of the $\cos 2\phi$ dependence.
- Results are obtained with 40% of full SeaQuest data. Full statistics will be used in the final results.
- Study of the LD₂ data is ongoing. The results will be compared to the LH₂ data to investigate quark flavor dependence.

Backup

L. Y. Zhu et al., Phys. Rev. Lett. 102, 182001 (2009)

- The solid curve/dotted curve: the calculation using Boer-Mulders function parametrizations deduced from a fit to the p + d data.
- The dot-dashed curve is the contribution from the QCD process.
- At lower p_T : QCD contribution < Boer-Mulders functions contribution. At high p_T : QCD contribution > Boer-Mulders functions contribution.