

Measurements on longitudinal and transverse spin transfer to $\Lambda/\overline{\Lambda}$ in p+p collisions at STAR

Qinghua Xu (Shandong University) for the STAR Collaboration Sep. 26, 2023

Office of Science

Longitudinal spin transfer D_{LL} predictions in p+p

• Longitudinal spin transfer of $\Lambda(\overline{\Lambda})$ in p+p:

$$D_{LL}^{\Lambda} \equiv \frac{d\sigma(p^+p \to \Lambda^+ X) - d\sigma(p^+p \to \Lambda^- X)}{d\sigma(p^+p \to \Lambda^+ X) + d\sigma(p^+p \to \Lambda^- X)} = \frac{d\Delta\sigma^{\Lambda}}{d\sigma^{\Lambda}}$$

$$d\Delta\sigma^{\Lambda} = \sum \int dx_a dx_b dz \Delta f_a(x_a) f_b(x_b) \Delta\sigma(ab \to cd) \Delta D^{\Lambda}(z)$$

helicity distribution pOCD calculable polarized F

- D_{LL} provides access to helicity distribution and polarized fragmentation function.
- Strange quark helicity not well constrained yet

• D_{LL} predictions in p+p with modeling polarized fragmentation function:

Transverse spin structure of nucleon

- Transversity involves helicity flip, thus no access in inclusive DIS process.
- Possible experimental measurements on $\delta q(x)$:
 - Via Collins function (SIDIS, p+p), di-hadron production (SIDIS and p+p)
 - Transversely polarized Drell-Yan process
 - Transverse spin transfer to hyperons (DIS, p+p)

Transverse spin transfer of hyperons and $\delta q(x)$

- D. de Florian, J. Soffer, M. Stratmann, W. Vogelsang, PLB439, 176 (1998).
- Q. Xu, Z. T. Liang, PRD70, 034015 (2004).
- Q. Xu, Z. T. Liang, E. Sichtermann, PRD73, 077503 (2006).

Sep 26, 2023

RHIC- a polarized proton+proton collider

- Data sample I: longitudinally polarized p+p collisions at 200GeV with STAR in 2015, ~52pb⁻¹, beam polarization ~53%. -> D_{LL}
- Data sample II: transversely polarized p+p collisions at 200GeV with STAR in 2015, ~52pb⁻¹, beam polarization ~57%. -> D_{TT}

Sep 26, 2023

STAR - Solenoid Tracker At RHIC

- Time Projection Chamber (TPC)
 - → $|\eta| < 1.3$ with 2π azimuthal coverage
 - Tracking and particle identification.

• Time of Flight (TOF)

- \succ |η| < 1.0 with 2π azimuthal coverage
- Particle identification.

• Electromagnetic Calorimeter (EMC)

- > Barrel EMC (BEMC): $|\eta| < 1.0$
- > Endcap EMC (EEMC): $1.086 < \eta < 2.0$
- > Photon, π^0 , also serve as trigger detectors.

Vertex Position Detector (VPD)

- ▶ 4.2< |η| < 5.1
- Vertex & relative luminosity.

Hyperon & jet reconstruction

- Select hard scattering events using a jet trigger based on the energy deposits in the EMC
- $\Lambda(\overline{\Lambda})$ reconstruction: $\Lambda \to p + \pi^-$; $\overline{\Lambda} \to \overline{p} + \pi^+$
 - Topological cuts to reduce background
 - Side-band method to estimate residual background.

Require hyperons to be part of a jet:

> Jets reconstructed with anti- k_T algorithm (R=0.6) with TPC tracks, EMC energy deposits, and $\Lambda(\overline{\Lambda})$

Background subtraction:

r : background fraction (~10%)

Extraction of spin transfer D_{LL} in p+p

• Λ polarization is usually extracted from the angular distribution of its weak decay ($\Lambda \rightarrow p\pi^{-}$):

 $dN = \frac{N_{tot}}{2} A(\cos\theta^*) (1 + \alpha P_{\Lambda} \cos\theta^*)$

 α : decay parameter A($\cos\theta^*$): detector acceptance

• D_{LL} has been extracted from Λ counts with opposite beam polarization within a small interval of $\cos\theta^*$: -STAR, PRD80, 11102 (2009)

$$D_{LL} = \frac{1}{\alpha \cdot P_{beam} < \cos\theta^* >} \cdot \frac{N^+ - N^-}{N^+ + N^-}$$

, where the acceptance cancels.

 $\cos\theta^* \propto \vec{P}_{\Lambda} \cdot \vec{p}_p^*$

$$N^{+} = N^{++} \frac{L_{--}}{L_{++}} + N^{+-} \frac{L_{--}}{L_{+-}}$$
$$N^{-} = N^{-+} \frac{L_{--}}{L_{-+}} + N^{--}$$

Relative luminosity ratio measured with VPD, ZDC, and P_{beam} in RHIC.

Sep 26, 2023

Previous $D_{L\!L}$ results with STAR 2009 data

• D_{LL} measurements from STAR 2009 data, statistically limited.

- X.N. Liu, B.Q. Ma, EPJC 79,409 (2019)

Sep 26, 2023

New D_{11} results with STAR 2015 data

- New results are in agreement with previous measurements, with twice statistics. No clear difference observed between Λ and (Λ).
- Results are in agreement with various model predictions, except "DSV" calculation with "scen. 3" of polarized fragmentation function.

$D_{LL}\xspace$ vs z results with STAR 2015 data

- First measurements of D_{LL} vs z in polarized p+p collisions, directly probing the polarized fragmentation functions.
- The results are comparable to model prediction within uncertainties.

- Z.-B. Kang, K. Lee, F. Zhao, Phys. Lett. B 809, 135756 (2020).

Direction of transverse polarization

• The direction of transverse polarization is rotated along the normal of scattering plane in partonic scattering, using reconstructed jet axis

J.Collins, S.Heppelmann, G.Ladinsky, NPB420 (1994)565

- Measurements on transverse spin transfer:
 - D_{TT} : final state polarization along the pol. of outgoing hard quark (considering the rotation in scattering plane)--- jet correlation

Extraction of transverse spin transfer D_{Π}

• D_{TT} is extracted from a cross-ratio asymmetry using Λ counts with opposite beam polarization within a small interval of $\cos\theta^*$:

-STAR, PRD 98, 091103R (2018)

$$D_{TT} = \frac{1}{\alpha P_{beam} \langle cos\theta^* \rangle} \frac{\sqrt{N^{\uparrow}(cos\theta^*)N^{\downarrow}(-cos\theta^*)} - \sqrt{N^{\uparrow}(-cos\theta^*)N^{\downarrow}(cos\theta^*)}}{\sqrt{N^{\uparrow}(cos\theta^*)N^{\downarrow}(-cos\theta^*)} + \sqrt{N^{\uparrow}(-cos\theta^*)N^{\downarrow}(cos\theta^*)}}$$

 N^{\uparrow} : $\Lambda(\bar{\Lambda})$ counts with positive beam polarization N^{\downarrow} : $\Lambda(\bar{\Lambda})$ counts with negative beam polarization

 P_{beam} : polarization of beam < $\cos\theta^*$ > : mean in each $\cos\theta^*$ bin

- Acceptance of reverse beam polarization is expected to be the same in each cosθ* bin, thus cancelled
- Luminosity is also cancelled in the cross-ratio asymmetry

Previous D_{Π} results with STAR 2012 data

D_{TT} measurements in p+p collision at 200 GeV with STAR 2012 data:
 -STAR, PRD98, 091103R (2018)

> First D_{TT} Measurement in p+p, reaches $p_T \sim 6.7$ GeV/c with statistical uncertainty of 0.04.

> D_{TT} of $\Lambda/\overline{\Lambda}$ are consistent with a model prediction, also consistent with zero within uncertainty.

New D_{TT} results with STAR 2015 data

- AR
- New D_{TT} results from 2015 are consistent with previous 2012 data, with twice statistics. Most precise data up to date.
- D_{TT} is consistent with the model predictions within uncertainties.

STAR $p^{\uparrow} + p \rightarrow \Lambda^{\uparrow} + X, \sqrt{s} = 200 \text{ GeV}$ **STAR** 2015 $p^{\uparrow} + p \rightarrow \Lambda^{\uparrow} + X, \ \sqrt{s} = 200 \text{ GeV}$ 0.05 $0.05 \left[\alpha_{\Lambda(\overline{\Lambda})} = \pm 0.732, 0 < \eta_{\Lambda(\overline{\Lambda})} < 1.2 \right]$ $\alpha_{\Lambda(\overline{\Lambda})} = \pm 0.732$ $p_{T}^{jet} > 5 \text{ GeV}$ D_{TT} $p_{T}^{jet} > 5 \text{ GeV}$ -0.05▲ Λ 2015 □ Λ 2012 $-0.05 \vdash 0 < \eta_{1.7} < 1.2$ • <u>Λ</u> 2015 • <u>Λ</u> 2012 (a) (a) 6 Λ 0.05 • 1 $\Lambda 2012 + 2015$ $0 < \eta_{\Lambda(\overline{\Lambda})} < 1.2$ • $\overline{\Lambda}$ 2012 + 2015 0.05 D_{TT} -0.05 $-1.2 < \eta_{\Lambda(\overline{\Lambda})} < 0$ **(b)** --XLS, Λ, SU6 -0.05---- XLS, $\overline{\Lambda}$, SU6 2 7 6 8 $p_{T,\,\Lambda(\overline{\Lambda})}\,({\rm Ge}\widetilde{{\rm V}}/c)$ **(b)** 3 5 $p_{T,\Lambda(\overline{\Lambda})}(\check{\mathrm{GeV}}/c)$ Sep 26, 2023 Qinghua Xu, SPIN2023

STAR, arXiv: 2309.14220

New D_{TT} results STAR 2015 data

- First measurement of D_{TT} vs. z for $\Lambda(\overline{\Lambda})$ in p+p collisions, providing ۲ constraints on transversely polarized fragmentation functions.
- Results are consistent with zero within uncertainties.

Summary and Outlook

- The longitudinal spin transfer, D_{LL} , for $\Lambda(\overline{\Lambda})$ in p+p at 200 GeV at STAR:
 - ► Measurement of D_{LL} for $\Lambda(\overline{\Lambda})$ versus hyperon p_T up to 8GeV/c, with twice statistics of previous publication. One scenario of polarized fragmentation function is disfavored.
 - > The first measurement of D_{LL} versus z, provide direct information on the longitudinal polarized fragmentation functions.
- The transverse spin transfer, D_{TT} , for $\Lambda(\overline{\Lambda})$ in p+p at 200 GeV at STAR:
 - > D_{TT} for $\Lambda(\overline{\Lambda})$ versus hyperon p_T up to 8GeV/c, with twice statistics of previous publication. Results consistent with zero within uncertainty.
 - > The first measurement of D_{TT} versus z, provide direct constraints on the transversely polarized fragmentation functions.
- Large data samples of longitudinally polarized p+p taken in 2013, and transversely polarized p+p in 2017, 2022 at 510 GeV at STAR will improve the precision of spin transfer measurements significantly.

Summary and Outlook

- The longitudinal spin transfer, D_{LL} , for $\Lambda(\overline{\Lambda})$ in p+p at 200 GeV at STAR:
 - ➢ Measurement of D_{LL} for $\Lambda(\overline{\Lambda})$ versus hyperon p_T up to 8GeV/c, with twice statistics of previous publication. One scenario of polarized fragmentation function is disfavored.
 —Talk on A_{LL} of $\Lambda(\overline{\Lambda}, K_0^s)$, Yi Yu,
 - Sep 26, 3pm, Helicity session The first measurement of D_{LL} versus z, provide direct information on the longitudinal polarized fragmentation functions.
- The transverse spin transfer, D_{TT} , for $\Lambda(\overline{\Lambda})$ in p+p at 200 GeV at STAR:
 - > D_{TT} for $\Lambda(\overline{\Lambda})$ versus hyperon p_T up to 8GeV/c, with twice statistics of previous publication. Results consistent with zero within uncertainty.
 - > The first measurement of D_{TT} versus z, provide direct constraints on the transversely polarized fragmentation functions.
- Large data samples of longitudinally polarized p+p taken in 2013, and transversely polarized p+p in 2017, 2022 at 510 GeV at STAR will improve the precision of spin transfer measurements significantly.