# Measurements of Transverse Spin Dependent $\pi^+\pi^-$ Azimuthal Correlation Asymmetry and Unpolarized $\pi^+\pi^-$ **Cross-Section in** *pp* **Collisions at** $\sqrt{s} = 200$ **GeV at STAR**



**Babu Pokhrel** for the STAR Collaboration Sept. 24 - 29, 2023









0.2

0.1

 $\left( \right)$ 

0.05

0.00

-0.05

-0.10

-0.15



- Leading twist parton distribution function (PDF), which provides transverse spin structure of the nucleon.
- Chiral-odd quantity, less known from experiments than f(x) and g(x).
- Its extraction requires coupling to another chiral-odd object, such as Interference Fragmentation Function (IFF) in dihadron production channel.

**Motivation: Measurement of observables** in  $\pi^+\pi^-$  channel to constrain  $h_1^q(x)$  in the collinear framework in polarized *pp* collisions.

**Babu Pokhrel** 

**Transversity**,  $h_1^q(x)$ 



Transversity:

- $\overrightarrow{P}$  = Nucleon polarization
- $\vec{p}$  = Nucleon momentum
- $\vec{s}$  = Quark polarization





SPIN2023, Sept. 24 - 29, Duke University



#### **Dihadron Channel:** $p^{\uparrow} + p \rightarrow h^+ h^- + X$

Bachhetta & Radici *Phys.Rev.D* 70 (2004) 094032

#### **Polarized Cross Section:**

$$d\sigma_{UT}^{p_a^{\uparrow}p_b \to (h_1, h_2)X} \propto \sin(\phi_S - \phi_R) \sum_{i, j, k, l} \int dx_a \int dx_b \int dz \ h_1^{i/p_a}(x_a) f_1^{j/p_a}(x_b) \int dx_b \int dz \ h_1^{i/p_a}(x_b) f_1^{j/p_a}(x_b) f_1^{j$$

**Unpolarized Cross Section:**  $\vec{p}_a^{\uparrow} \leftrightarrow p_a, h_1^q \leftrightarrow f_1, H_1^{\triangleleft} \leftrightarrow D_1$  $d\sigma_{UU}^{p_a p_b \to (h_1, h_2)X} \propto \sum_{i, j, k, l} \int dx_a \int dx_b \int dz \ f_1^{i/p_a}(x_a) \ f_1^{j/p_b}(x_b) \frac{d\Delta \hat{\sigma}^{ij \to kl}}{d\hat{t}} \ D_1^{h_1 h_2/k}(z, M_h^2)$ 

**Babu Pokhrel** 











#### Dihadron Azimuthal Correlation Asymmetry, A

$$A_{UT} = \frac{d\sigma_{UT}}{d\sigma_{UU}} = \frac{d\sigma^{\uparrow} - d\sigma^{\downarrow}}{d\sigma^{\uparrow} + d\sigma^{\downarrow}} \propto \frac{\sum_{i,j,k} h_1^{i/p_a}(x_a)f}{\sum_{i,j,k} f_1^{i/p_a}(x_a)}$$

• Independent measurement of  $H_1^{\triangleleft}$  is required from  $e^+e^-$  experiments. • $D_1^{h_1h_2}$  is least known, specifically for gluon fragmentation.

#### • Unpolarized Dihadron Cross-Section, $d\sigma_{UU}$ , in $p + p \rightarrow h^+h^- + X$

- $d\sigma_{UU}$  is crucial for the  $D_1^{h_1h_2}$ , which provides equal access to quarks and gluons.
- $d\sigma_{UU}$  and  $A_{UT}$  allows model-independent extraction of  $h_1(x)$ .

**Babu Pokhrel** 

Bachhetta & Radici Phys.Rev.D 70 (2004) 094032

SPIN2023, Sept. 24 - 29, Duke University

**Observables for Transversity**  $h_1^q(x)$  in pp

$$A_{UT}$$
, in  $p^{\uparrow} + p \rightarrow h^+ h^- + X$ 

 $f_{1}^{j/p_{b}}(x_{b})H_{1}^{\triangleleft h_{1}h_{2}/k}(z,M_{h}^{2})$  $(j)f_1^{j/p_b}(x_b)D_1^{h_1h_2/k}(z,M_b^2)$ 







SPIN2023, Sept. 24 - 29, Duke University

### **STAR Detector at RHIC**





#### **Babu Pokhrel**

SPIN2023, Sept. 24 - 29, Duke University









# **IFF Studies at STAR**

|                |            |                     |                 |        | 7                  |
|----------------|------------|---------------------|-----------------|--------|--------------------|
| pr             | oton-prot  | on                  |                 |        |                    |
| 1              | transverse | 9                   |                 |        |                    |
| 2012           | 2015       | 2017                | 2022            | 2024   |                    |
| 200            | 200        | 510                 | 508             | 200    | _                  |
| ~ 22           | ~ 52       | ~ 350               | ~ 400           | ??     | -                  |
| ~ 57           | ~ 57       | ~ 55                | ~ 52            | ??     |                    |
| inaries<br>GeV | • STAF     | $\frac{1}{s} = 510$ | relimina<br>GeV | .ry •] | Planned<br>Section |
|                |            |                     |                 |        |                    |

#### IFF and Cross Measurements

7



#### $\pi^+\pi^-$ Formation and Azimuthal Angles

- Polarized parton fragments to  $\pi^+\pi^-$ .
- Two crucial vectors:  $\vec{p}_h = \vec{p}_{h_1} + \vec{p}_{h_2}$ ,  $\vec{R} = \frac{1}{2}(\vec{p}_{h_1} \vec{p}_{h_2})$
- Access to the quark polarization  $\sim \vec{S} \cdot \vec{R} \times \vec{p}_{h}$ .
- Pion identification by measuring the ionization energy loss (dE/dx)with  $p_T^{\pi} > 1.5 \text{ GeV}/c$  and  $|\eta| < 1$ .
- Oppositely charged pion pairs,  $\pi^+\pi^-$ .
- Direction of  $\overrightarrow{R}$  points from  $\pi^-$  to  $\pi^+$  (or the other way); otherwise  $A_{UT}$  gets diluted.
- $\pi^+\pi^-$  Azimuthal angle,  $\phi_{RS} = \phi_S \phi_R$

#### **Babu Pokhrel**

**STAR Run 2015**  $\pi^+\pi^-$  **Asymmetry Analysis**  $p^{\uparrow} + p \rightarrow \pi^+\pi^- + X$  at  $\sqrt{s} = 200$  GeV





• 
$$A_{\text{UT}}^{\sin(\phi_{\text{RS}})}$$
 extracted as a function of  $M_{\text{inv}}^{\pi^+\pi^-}$ ,  $p_{\text{T}}^{\pi^+\pi^-}$ , and

•**Cross-ratio formula:** 

$$A_{UT}\sin(\phi_{RS}) = \frac{1}{P} \frac{\sqrt{N^{\uparrow}(\phi_{RS})N^{\downarrow}(\phi_{RS}+\pi)} - \sqrt{N^{\downarrow}(\phi_{RS})N^{\uparrow}(\phi_{RS}+\pi)}}{\sqrt{N^{\uparrow}(\phi_{RS})N^{\downarrow}(\phi_{RS}+\pi)} + \sqrt{N^{\downarrow}(\phi_{RS})N^{\uparrow}(\phi_{RS}+\pi)}}$$

- Free from relative luminosity terms (cancels out in symmetric detector system!)
- Two transverse polarization states:  $\uparrow$ ,  $\downarrow$
- 16  $\phi_{RS}$  bins of uniform widths over  $[-\pi, \pi]$ .
- Symmetry between  $[-\pi, 0]$  and  $[0, \pi]$  hemispheres.
- Count  $\pi^+\pi^-$  yields in each 16  $\phi_{RS}$  bins for each polarization states:  $N^{\uparrow}(\phi_{RS}), N^{\downarrow}(\phi_{RS}).$





- Amplitude of the fit in  $[-\pi, 0]$  gives the A<sub>UT</sub>.
- A<sub>UT</sub> extracted for Blue and Yellow beams separately. Final  $A_{IIT}$  is the weighted average of both.







- $A_{IIT}$  increases with the  $\eta^{\pi^+\pi^-}$ .
- Sizable  $h_1^q(x)$  is expected in the  $\eta > 0$  region.

Bottom Panel:

- Mean x and z from simulation.
- $0.1 < \langle x \rangle < 0.22$ ,  $\langle z \rangle \sim 0.46$



#### **Babu Pokhrel**

- Asymmetry is enhanced around  $M_{inv}^{\pi^+\pi^-} \sim 0.8$ , consistent with the previous measurement and theory prediction.
- Statistical precision is significantly improved in the new result.
- Systematic uncertainty is dominated by the PID, which is expected to improve significantly when including TOF PID.

**Details in <u>SciPost Phys.Proc. 8 (2022) 047</u>** 







# **STAR Run 2012 Unpolarized** $\pi^+\pi^-$ **Cross-Section (** $d\sigma_{UU}^{\pi^+\pi^-}$ **) Measurement** $p + p \rightarrow \pi^+ \pi^- + X$ at $\sqrt{s} = 200$ GeV

• Inclusive  $\pi^+\pi^-$  differential cross section:

- As a function of invariant mass,  $M_{inv}^{\pi^+\pi^-}$ , in  $|\eta| < 1$ .
- Much needed for the  $D_1^{h_1h_2}$  extraction.
- Access to  $D_1^{h_1h_2/g}$ .
- STAR Run 2012 dataset @  $\sqrt{s} = 200 \text{ GeV}$
- Triggers: JP0, JP1, JP2
- Lower trigger threshold provides better gluon sensitivity than Run 2015.
- $\pi^+\pi^-$  construction is same as in the IFF analysis, except for the track  $p_T > 0.5$  GeV/c.

#### **Babu Pokhrel**





SPIN2023, Sept. 24 - 29, Duke University

11



- Unfolding accounts for the **bin migration effect**.
- Embedding (PYTHIA simulated events, reconstructed through the GEANT 3 package embedded in the zero-bias events) are used for the unfolding. <sup>10<sup>2</sup></sup>
- Backgrounds are subtracted before unfolding.
- **Unfolding Using TUnfoldDensity**
- TUnfoldDensity is based on least square fit with Tikhonov regularization.
- •Input  $\equiv$  Background corrected data.
- Migration matrix transforms the "detector" yields to the "true" yields.
- Output  $\equiv$  "True" yields
- Small shape change in the unfolding output than the input.
- Unfolding is performed for each trigger, allowing independent measurement of triggered cross-section.



SPIN2023, Sept. 24 - 29, Duke University







12







## **STAR Run 2012 Unpolarized** $\pi^+\pi^-$ **Cross-Section (** $d\sigma_{IIII}^{\pi^+\pi^-}$ **) Measurement** $p + p \rightarrow \pi^+ \pi^- + X$ at $\sqrt{s} = 200$ GeV

#### **STAR Preliminary Top panel:**

- First unpolarized cross-section measurement in pp via  $\pi^+\pi^-$  channel.
- The measured cross-section is in good agreement with the cross-section from the **PYTHIA simulation** and **JAM DiFF prediction.**

#### **Bottom panel:**

- Systematic uncertainty (green band) (Details in backup!)
- Relative difference between PYTHIA and measured cross-section (closed circle).
- Statistical uncertainty (red band).
- This measurement provides access to  $D_1^{h_1h_2}$  for gluons.
- Together with the Belle measurements, IFF and cross-section in pp opens up a path for the model-independent extraction of transversity.

**Babu Pokhrel** 







# **Summary and Outlook**



#### • Precision $\pi^+\pi^-$ IFF asymmetry measurement

- Probes valence quarks (*u* and *d*) transversity.
- Dominant PID systematic uncertainty expected to shrink comparable to the statistical uncertainty, including TOF.

$$A_{UT} = \frac{d\sigma_{UT}}{d\sigma_{UU}} = \frac{d\sigma^{\uparrow} - d\sigma^{\downarrow}}{d\sigma^{\uparrow} + d\sigma^{\downarrow}} \propto \frac{\sum_{i,j,k} h_1^{i/p_a}(x_a) f_1^{j/p_b}(x_b) H_1^{\triangleleft}}{\sum_{i,j,k} f_1^{i/p_a}(x_a) f_1^{j/p_b}(x_b) D_1^{h_b}}$$

- First unpolarized  $\pi^+\pi^-$  cross-section measurement in pp
  - Provides access to  $D_1^{h_1h_2}$  for gluons.
  - Path to the model-independent extraction of  $h_1(x)$ .
  - Planned double differential cross-section in  $M_{inv}^{\pi^+\pi^-}$  and  $p_T^{\pi^+\pi^-}$ .

 $^{\sharp h_1 h_2 / k}(z, M_h^2)$  $L^{\mu_1 h_2/k}(z, M_h^{2^{\gamma}})$ 











- Precision IFF asymmetries  $a/\sqrt{s} = 200$  GeV probing transversity beyond valence quarks
  - Precision  $\pi^+\pi^-$  IFF asymmetry from Run 2015+2024
  - Proposed  $K^+K^-$  IFF asymmetry, sensitive to the "strange quark" transversity.

#### **Thank you for your attention!**

# **Summary and Outlook**







# Backup







#### **Simulation and Embedding Sample**

- Simulation and Embedding sample needed for:
  - Data unfolding
  - PID corrections
  - Efficiency analysis
  - Systematic studies
- **PYTHIA** simulated events, reconstructed through the **GEANT 3** package embedded in the zero-bias events to effectively reconstruct STAR detector responses (Embedding).
- Good agreement between the data and embedding.

# **STAR Run 2012 Unpolarized** $\pi^+\pi^-$ **Cross-Section (** $d\sigma_{UU}^{\pi^+\pi^-}$ **) Measurement** $p + p \rightarrow \pi^+\pi^- + X$ at $\sqrt{s} = 200$ GeV











(c)  $M_{inv}^{\pi^+\pi^-}$  comparison for JP2 trigger





• Unfolding accounts for the bin migration effect and backgrounds.

$$y_i = \sum_{j=1}^{m} A_{ij} x_i + b_i, \ 1 \le i \le n, \ n \ge m$$

- v = detector level, x = truth level
- A = Migration matrix, b = background

### **Unfolding Using TUnfoldDensity**

- TUnfoldDensity is based on least square fit with Tikhonov regularization.
- Input  $(y) \equiv$  Raw detector yields.
- Migration matrix transforms the "detector" yields to the "true" yields.
- Output  $(x) \equiv$  "True" yields

# **STAR Run 2012 Unpolarized** $\pi^+\pi^-$ **Cross-Section (** $d\sigma_{IIII}^{\pi^+\pi^-}$ **) Measurement** $p + p \rightarrow \pi^+ \pi^- + X$ at $\sqrt{s} = 200$ GeV



0.2

1.5

SPIN2023, Sept.<sup>5</sup>24 - 29, Duke University

10<sup>3</sup> 1.5

o 19



## **STAR Run 2012 Unpolarized** $\pi^+\pi^-$ **Cross-Section (** $d\sigma_{IIII}^{\pi^+\pi^-}$ **) Measurement** $p + p \rightarrow \pi^+ \pi^- + X$ at $\sqrt{s} = 200$ GeV

#### Systematic uncertainties

- 1.  $\pi^+\pi^-$  Purity Fraction ( $\delta_{\text{fake}}$ )
- 2.  $\pi^+\pi^-$  Loss Fraction ( $\delta_{loss}$ )
- 3. Trigger Dependence ( $\delta_{trg}$ )
- 4. Trigger Bias ( $\delta_{\text{bias}}$ )
- 5. Simulation Statistics ( $\delta_{\text{embstat}}$ )

$$\delta_{\rm sys} = \sqrt{\delta_{\rm fake}^2 + \delta_{\rm loss}^2 + \delta_{\rm trg}^2 + \delta_{\rm bias}^2 + \delta_{\rm embstat}^2}$$

#### **Babu Pokhrel**

Uncertainty









#### **Corrections (Bin by bin)**

- 1.  $\pi^+\pi^-$  Purity Fraction (f<sub>fake</sub>)
- 2.  $\pi^+\pi^-$  Loss Fraction (f<sub>loss</sub>)
- 3. Tracking Efficiency  $(\epsilon_{trk}^{\pi})$
- 4. Trigger Efficiency  $(\epsilon_{trg}^{\pi^+\pi^-})$

#### **Triggered Cross Sections**

$$\frac{\mathrm{d}\sigma^{\mathrm{pp}\to\pi^{+}\pi^{-}}}{\mathrm{d}M^{\pi^{+}\pi^{-}}} = \frac{\mathrm{f}_{\mathrm{fake}}\cdot\mathrm{f}_{\mathrm{loss}}}{\mathrm{L}\cdot\epsilon_{\mathrm{trk}}^{\pi^{+}}\cdot\epsilon_{\mathrm{trk}}^{\pi^{-}}\cdot\epsilon_{\mathrm{trg}}^{\pi^{+}\pi^{-}}} \cdot \frac{\mathrm{d}\mathrm{N}_{\mathrm{true}}^{\pi^{+}\pi^{-}}}{\mathrm{d}\mathrm{M}^{\pi^{+}\pi^{-}}}$$

- Good agreement between triggered cross-sections; disagreement is considered as "Trigger Inefficiency".
- Final cross-section ("Comb." in the figure) is the weighted average of triggered cross-sections.

#### **Babu Pokhrel**

### **Unpolarized** $\pi^+\pi^-$ **Cross Section Measurement** $p + p \rightarrow \pi^+ \pi^- + X$ at $\sqrt{s} = 200$ GeV



