Transverse Single Spin Asymmetry for Inclusive and Diffractive Electromagnetic Jets at Forward Rapidity in $p^{\uparrow}+p$ Collisions at $\sqrt{s} = 200$ GeV and 510 GeV at STAR

Xilin Liang, for the STAR Collaboration

University of California, Riverside

25th International Spin Symposium (SPIN 2023) Duke University, Durham, NC Sept. 25, 2023

Supported in part by

Inclusive and Diffractive EM-jet A_N at STAR

Transverse Single-Spin Asymmetry (TSSA, A_N)

- $A_N = \frac{\sigma_L \sigma_R}{\sigma_L + \sigma_R}$
- pQCD predicts $A_N \sim \frac{m_q \alpha_s}{\sqrt{s}} \sim 0.001$
- Large A_N at forward region is observed in proton-proton collisions
 - eg. $p^{\uparrow} + p \rightarrow \pi + X$

References:

- E.C. Aschenauer et al., arXiv:1602.03922

- (STAR) J. Adam et al., Phys. Rev. D 103, 092009 (2021)

Inclusive and Diffractive EM-jet A_M at STAR

Detector

Right

Left

Possible Mechanisms for TSSA

• TMDs framework:

Sivers effect : correlation between initial parton k_T and proton spin S_p

Ref: D. Sivers, Phys. Rev. D 41, 83 (1990)

Collins effect : correlation between fragmentation hadron k_T and its parent quark spin S_a

Ref: J. Collins, Nucl Phys B 396 (1993) 161

• Twist-3: Quark-gluon / gluon-gluon correlations and fragmentation functions Ref: J.W. Qiu and G. Sterman, Phys. Rev. Lett. 67 2264 (1991)

ELE OQO

Indication of Large TSSA from Diffractive Process

- Previous analysis of A_N for forward π^0 in $p^{\uparrow} + p$ collisions at STAR
 - Inclusive $\pi^0 A_N$: Isolated π^0 has larger A_N than non-isolated π^0
 - Isolated π⁰: No other surrounding photons
- It indicates that there might be non-trivial contributions to the large A_N from diffractive processes

Ref: (STAR) J. Adam et al., Phys. Rev. D 103, 092009 (2021)

Xilin Liang

Inclusive and Diffractive EM-jet A_N at STAR

The STAR Experiment

The STAR Experiment is at a collision point at Relativistic Heavy Ion Collider (RHIC) located at Brookhaven National Laboratory (BNL).

• STAR sub-detectors used in measuring the A_N

- Forward Meson Spectrometer (FMS): 2.6 $<\eta<$ 4.2 , $\phi\in(0,2\pi)$
- Roman Pot (RP): detect scattered protons
- Triggering, determining vertex:
 - Beam-Beam Counter (BBC)
 - Vertex Position Detector (VPD)
 - Zero Degree Calorimeter (ZDC)

Year	\sqrt{s} [GeV]	$\mathcal{L}\left[\textit{pb}^{-1} ight]$	Polarization orientation	Polarization P [%]
2015	200	52	Transverse	57
2017	510	350	Transverse	55

• Inclusive and diffractive EM-jet A_N studies using STAR 2015 and 2017 data

- These are the currently available datasets at forward region with high luminosity and good beam polarization
- The analysis results for STAR 2015 data and statistical projections for STAR 2017 data will be presented

• Electromagnetic jets (EM-jets) are jets that consist of only photons

- FMS can detect photons, neutral pions, and eta mesons in the forward direction
- Unable to detect charged hadrons at the forward region for these 2 datasets

Inclusive EM-jet A_N at Forward Rapidity using FMS

\star Motivation:

- Explore potential sources of large A_N
- Characterize EM-jet A_N as a function of EM-jet p_T, energy and photon multiplicity

- ★ EM-jet reconstruction for inclusive processes:
 - Only reconstructed FMS photon candidates as input for jet reconstruction: Anti- k_T algorithm with R = 0.7
 - Minimum EM-jet p_T requirement based on trigger threshold or fixed threshold depending on the dataset
- ★ Corrections for EM-jets based on simulation:
 - PYTHIA 6.4 Perugia 2012 with GEANT based STAR detector simulation
 - EM-jet p_T is corrected for Underlying Event using off-axis cone method
 - EM-jet energy is corrected to the particle level based on the simulation

Detailed Investigations of Inclusive EM-jet A_N at Forward Rapidity at 200 GeV

- The EM-jet A_N decreases with increasing photon multiplicity
 - A_N is larger for the EM-jets consisting of 1 or 2 photons
 - A_N is smaller for EM-jets consisting of 4 or 5 photons
- A_N at x_F < 0 is consistent with 0
- The systematic uncertainties (boxes) mainly come from possible misidentification of the event categories

Inclusive EM-jet A_N at Forward Rapidity at 200 GeV

- A_N increases with x_F
- EM-jets consisting of 1 or 2 photons have the strongest A_N
 - Indications that large A_N could come from diffractive processes

Diffractive EM-jet A_N at Forward Rapidity using FMS

- ★ Motivation: Measure diffractive contributions to A_N in $p^{\uparrow} + p$ collisions
- ★ Determine the diffractive channels:
 - 2 possible diffractive channels. Both Require to tag scattered proton(s) in Roman Pot

(1) Only 1 proton track on FMS side (west side) and no proton track on the away side (east side)

p[†] X p p

(2) Only 1 proton track on FMS side (west side) and only 1 proton track on away side (east side).

- The EM-jet reconstructions and corrections are the same as inclusive processes
- RP track is required to be well reconstructed and within geometric acceptance
- BBC hit cuts to reduce accidental coincidences and ensure the presence of rapidity gap for diffractive processes
- Energy sum cuts to reduce pile-up effect
 - Energy sum: E(west side RP track) + E(EM-jet)

Diffractive EM-jet A_N at Forward Rapidity at 200 GeV

- A non-zero A_N for $x_F > 0$ is observed with 3.3 σ significance for diffractive process at forward rapidity at 200 GeV
- A_N at $x_F < 0$ is consistent with 0
- Large A_N is observed in high x_F region
- Sign of A_N is negative, which is different from that for inclusive process. Theoretical inputs are needed to understand such different sign
- The diffractive EM-jet *A_N* does not show evidence to have contribution to large *A_N* in inclusive process

Note 1: All red points are shifted -0.005 along x-axis Note 2: The rightmost point is for 0.3 < $|x_F| < 0.4$

Inclusive and diffractive EM-jet A_N projection

- Expect to have much more precise measurements with p[↑] + p 510 GeV dataset in 2017 compared to p[↑] + p 200 GeV dataset in 2015
- Allow to explore A_N more precisely at higher kinematic regions

- ★ A_N for inclusive EM-jets with different jet substructures in $p^{\uparrow} + p$ collisions at 200 GeV at STAR
 - The EM-jet A_N increases with decreasing photon multiplicity and increasing x_F
- ★ A_N for diffractive EM-jets in $p^{\uparrow} + p$ collisions at 200 GeV at STAR
 - A non-zero diffractive EM-jet A_N with negative sign for $x_F > 0$ is observed
 - Sign of A_N is negative, which needs further theoretical study to understand
 - The diffractive EM-jet A_N can not provide evidence to have contribution for large A_N in inclusive process at 200 GeV
- ★ Analyses for inclusive and diffractive EM-jet A_N in p[↑] + p collisions at 510 GeV at STAR are in progress
 - High luminosity dataset from 2017 will significantly improve the measurements

Back up

RHIC: Relativistic Heavy Ion Collider

- Located at Brookhaven National Laboratory (BNL) on Long Island, NY
- World's only polarized proton-proton collider with transverse and longitudinal polarization
- STAR experiment is at one of the collision points at RHIC (6 o'click)

Forward Meson Spectrometer (FMS)

- FMS can detect photons, neutral pions, and eta mesons in the forward direction
- $2.6 < \eta < 4.2$

- FMS consists of 1264 Lead-Glass cells with photomultiplier tubes (PMT) readout connected, separated into two regions
- Inner region (green) have smaller size cells than the outer region (red), which can provide better photon separation ability
- All cells have ${\sim}18$ radiation length

Roman Pot (RP)

- Roman Pots (RP) are vessels which house the Silicon Strip Detector planes (SSDs). They are put close to the beam pipe
- RPs are able to detect and track slightly scattered protons close to beamline

- 2 sets of RP (inner and outer) on each side
- Each RP set contains a package above and below the beamline
- 4 SSDs per package (2 x-type and 2 y-type)

E SQA

Underlying Events Correction and Energy Correction

- The EM-jet p_T values are corrected for contamination from Underlying Events (UE) with off-axis cone method
- The EM-jet energy is corrected to the particle level from simulation

Figure: Detector EM-jet energy to particle level correction

Phys Rev D 91 112012 (2015), ALICE Collaboration

BBC hit cuts

- Beam Beam Counter (BBC) can be used to triggering, monitoring luminosity and local polarimetry
- BBC are located on both forward and backward side
 - BBC: 2.1 $<|\eta|<$ 5, partially overlap with FMS in some η coverage
- Benefits for cuts on BBC hits:
 - Reduce accidental coincidence events with a second interaction in the same bunch crossing
 - · Get rid of high luminosity events which may cause pile-up effect

