Strained Superlattice photocathodes with CBE

SPIN 2023 25th International Symposium on Spin Physics

Marcy Stutzman, Jefferson Lab Chris Palmstrøm and Aaron Engel, UCSB Greg Blume, Old Dominion University

Why we want polarized electros

A. Hirohata et al., Journal of Magnetism and Magnetic Materials, **509**, (2020), 166711. https://doi.org/10.1016/j.jmmm.2020.166711.

Sample

Photoemission from GaAs

Direct Band Gap

 Photoexcitation promotes carriers to conduction band Three step photoemission from GaAs

Spin Polarized Photoemission from Bulk GaAs

 σ - : Left circularly polarized light

- ► Laser excitation from $P_{3/2}$ to $S_{1/2}$: $E_{gap} < E_{\gamma} < E_{gap} + \Delta$
- Electron Polarization: $P_e < \frac{3-1}{3+1} = 50\%$

Reverse electron polarization by reversing light polarization

Ε

How does spin selectivity arise in III-Vs?

- Circularly polarized light couples to electron angular momentum
- Degeneracy limits the theoretical maximum spin polarization
- <u>Confinement and strain break heavy hole/light hole degeneracy</u>

Strained Superlattice Development through SBIR program

- SVT SBIR Partnerships with SLAC or JLab for high polarization photocathodes:
 - -Phase 1: 2001, 2005, 2007, 2012, 2013
 - -Phase II: 2002, 2008, 2013, 2014
- Compositions
 - GaAs/GaAsP
 - -GaAsSb
 - AlGaAs/GaAs
 - Distributed Bragg Reflector

- Parameters
- Quantum Well thickness
- Barrier thickness
- Dopant concentration
- Number of periods

SVT no longer producing

FOA 20-2310: Initiative to restore high polarization photocathode supply

MBE, GSMBE, CBE and MOCVD

MBE

Molecular Beam Epitaxy

elemental As, P, Ga

- Pressure ~10⁻⁸
 mbar
- Growth rates
 ~ 1 µm/hr
- Very precise control

GSMBE

Gas Source Molecular Beam Epitaxy

AsH₃, PH₃, elemental Gallium

CBE

Chemical Beam Epitaxy

AsH₃, PH₃, triethyl gallium (TEGa) or elemental Gallium

Pressure <10⁻⁴
 mbar

Molecular

and gas sources

 Growth rates 0.5-1 µm/hr

MOCVD

Metal organic chemical vapor deposition

AsH₃, PH₃, trimethylgallium (TMGa)

- Pressures >100 mbar during growth
- Growth Rates 10 µm/hr
- Traditionally difficult to get sharp interfaces

Gas sources

Photocathode Growth at UCSB

U California Santa Barbara

Semiconductor Deposition System

- CBE and MBE growth
- ARPES, XPS, STM, LEED, Auger analysis
- Half-metal Heusler Alloys

 potential 100%
 photocathode
- Collaborators for growing GaAs/GaAsP SSL

Figure 2 Semiconductor deposition system at Chris Palmstrom's lab at UCSB. The CBE system for the growth of this material is shown at the back and labelled "VG V80H III-V CBE".

Original Research Plan

- 1. Grow GaAs/GaAsP: UCSB CBE instead of MBE
- 2. Measure Polarization: JLab
- 3. Use Photocathodes!

Obstacles -> Innovation

UCSB Highlights: Graded layer GaAs to GaAsP

X-ray Reciprocal space mapping

- -Plot of lattice distance during growth
- -Graded Layer with minimal strain
- -GaAs layer (5-10 nm) strained: lattice constant that of GaAsP

- Triethyl-gallium + P: high vapor pressure residue
 - -Return to solid source Ga
 - CBE becomes MBE
- Rebuild system, recalibrate growth
 parameters with new heaters & sources
- Meanwhile Literature Review

 Try InAlGaAs/AlGaAs
 Photoemissive Layer
 Non-emissive lattice mismatched layer

Benefits of InAlGaAs/AlGaAs

[1] L. G. Gerchikov, et al. Semiconductors 40, 1326–1332 (2006)

Strained well: GaAs/GaAsP

III-IV semiconductor alloys: Band gaps and lattice constants

• Strain and valence band offset coupled: both fixed by virtual substrate

Jefferson Lab 12

Strained well: InAIGaAs/AIGaAs

III-IV semiconductor alloys: Band gaps and lattice constants

Strained well: InAIGaAs/AIGaAs

- No virtual substrate necessary!
- Much more band engineering possible
 - Zero conduction band offset [1]
 - Graded barrier heights
- Better growth temperature agreement
- Best reported InAIGaAs/AIGaAs photocathodes are comparable to GaAs/GaAsP
- Easily tunable DBRs in AIAs/AIGaAs system

[1] L. G. Gerchikov, et al. Semiconductors 40, 1326–1332 (2006)

Polarized Emission from InAlGaAs/AlGaAs

"Excites to opposite channel as superlattice"

Based on Mamaev et al., Appl. Phys. Lett. 93, 081114 (2008) and https://www.slac.stanford.edu/pubs/slacpubs/11250/slac-pub-11403.pdf

MATERIALS

First photocathode

X-ray diffraction measurement of Superlattice

- Fully strained
- Superlattice period good 8% less than goal

Atomic Force Microscope surface morphology

- Verification of arsenic cap coverage
- Some excess As will desorb in first heat cycle

First Activation InAlGaAs/AlGaAs SSL

Max Polarization > 82.5% Max QE at max: 0.34%

Vary Growth Temperature for InAlGaAs/AlGaAs

Photoluminescence

 Lower temperature growth produces more intense PL from superlattice XRD shows more visible fringes in films grown at lower temperature, indicating sharper interfaces

19

erson Lab

520°C sample tested, 480 and 560°C in the queue

Random Alloy Disorder

- Quaternary well (InAlGaAs) àdds randóm alloy disorder
 - increased bandwidth

ΗH

decreased spin polarization

~50 meV hole splitting •

Random Alloy Disorder

Quaternary well (InAlGaAs) adds random alloy disorder

•

increased • bandwidth

ΗH

decreased spin • polarization

Jefferson Lab 22

Successful DBR Structures

Distributed Bragg Reflector

- Enhance QE by reflecting light for several passes through SSL
- Designed for peak reflectivity at 770 nm
- Analog and Digital AlAs/AlGaAs DBR structures designed and tested
- Digital Alloy: better uniformity across wafer

UCSB Photocathodes

- Varied growth temp: Samples 198, 199
- Increase strain: Sample 144
- Higher dopant top & band gap shift: Sample 143
- Digital alloy barrier layer: Sample 202

At JLab awaiting testing

Jefferson Lab

Next

- Different Top Layer
- Distributed Bragg Reflector Photocathode
- Lots of parameters to optimize

FOA timeline over but more samples coming - awaiting JLab polarization measurments Amorphous As cap Thin, highly doped GaAs InAlGaAs/AlGaAs strained superlattice AlGaAs barrier AlAs/AlGaAs DBR GaAs/AlGaAs superlattice GaAs substrate (AXT Zn-doped)

MicroMott Polarimeter — A Series of Unfortunate Events

- Multiple issues during refurbishment
- Nearly there!
- Wish List: more robust polarimeter with JLab puck loadlock

Project Summary

JLab: First UCSB sample tested Polarimeter nearly ready to continue

UCSB

- Initial GaAs/GaAsP growth characterized
 - Extensive chamber maintenance to remove phosphorous compounds
- InAIGaAs/AIGaAs superior in many aspects
 - -Temperature compatibility
 - -Strain and band gap independent
 - -Higher dopant potential
 - -Digital structures for both SSL and DBR
- More to come

Many Thanks to Aaron Engle for photocathode growth, characterization and slides, and Chris Palmstrøm for guidance

