Achieving High Deuteron Tensor Polarization For Polarized Target Experiments

Allison J. Zec (she/her)

Univ. of New Hampshire

2023-09-26

What Deuterons Do That Protons Don't

Proton

 $\mathsf{Spin}\text{-}\frac{1}{2}\;\mathsf{System}$

$$m = +\frac{1}{2}$$

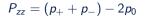
$$m=-rac{1}{2}$$

"Typical" Vector Polarization

$$P_z = p_+ - p_-$$

Deuteron

Spin-1 System



= +1

Vector and Tensor Polarization

J Forest, et al, PRC **54** 646 (1996)

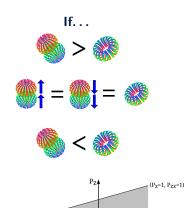
Tensor Polarization Properties

 $(P_Z=0, P_{ZZ}=0)$

Then...

$$0 < P_{zz} \le 1$$

$$P_{zz}=0$$


$$-2 \le P_{zz} < 0$$

- P_z ranges from -1 to +1
- ullet P_{zz} ranges from -2 to +1
- In deuterons both P_z and P_{zz} can be nonzero simultaneously

(Pz=0, Pzz=-2)

(Pz=-1, Pzz=1)

Tensor Polarization Properties

 $(P_Z=0, P_{ZZ}=0)$

Then...

$$0 < P_{zz} \le 1$$

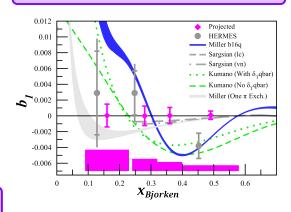
$$P_{zz}=0$$

$$-2 \leq P_{zz} < 0$$

A high-luminosity tensor-polarized target has promise as a novel probe of nuclear physics

(Pz=0, Pzz=-2)

(Pz=-1, Pzz=1)


*b*₁ Experiment

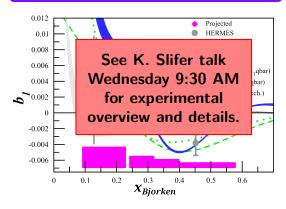
- Intended to improve upon HERMES' 2005 data
- Verifications of zero-crossing
 - Implications for Close-Kumano sum rule
- Tensor physics at quark level
- Better understanding of b₁ allows discrimination of different deuteron components by spin (e.g., quarks vs gluons)

Approved by JLab with A-physics rating!

F12-13-011

The Deuteron Tensor Structure Function b_1

K. Slifer *et al*, JLab C12-13-011 **Spokespersons**: K. Slifer, O.R. Aramayo, J.P. Chen, N. Kalantrians, D. Keller, E. Long, P.


b₁ Experiment

- Intended to improve upon HERMES' 2005 data
- Verifications of zero-crossing
 - Implications for Close-Kumano sum rule
- Tensor physics at quark level
- Better understanding of b₁ allows discrimination of different deuteron components by spin (e.g., quarks vs gluons)

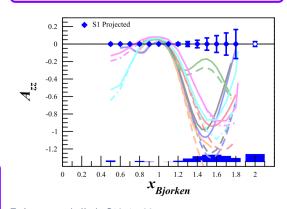
Approved by JLab with A-physics rating!

E12-13-011

The Deuteron Tensor Structure Function b_1

K. Slifer *et al*, JLab C12-13-011 **Spokespersons**: K. Slifer, O.R. Aramayo, J.P. Chen, N. Kalantrians, D. Keller, E. Long, P.

A_{zz} Experiment


- First-of-its-kind quasielastic
 A_{zz} measurement
- Implications for SRC physics and deuteron wavefunction
- Widest range of x covered by a single measurement
- Measurement of T₂₀ included!

Spokespersons: E. Long, K. Slifer, P. Solvignon, D. Day, D. Keller, D. Higinbotham

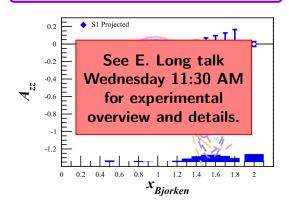
Approved by JLab with A-physics rating!

E12-15-005

Quasi-Elastic and Elastic Deuteron Tensor Asymmetries

E. Long et al, JLab C12-15-005

A_{zz} Experiment


- First-of-its-kind quasielastic
 A_{zz} measurement
- Implications for SRC physics and deuteron wavefunction
- Widest range of x covered by a single measurement
- Measurement of T₂₀ included!

Spokespersons: E. Long, K. Slifer, P. Solvignon, D. Day, D. Keller, D. Higinbotham

Approved by JLab with Apphysics rating!

E12-15-005

Quasi-Elastic and Elastic Deuteron Tensor Asymmetries

E. Long et al, JLab C12-15-005

Tensor Target

*b*₁ Systematics Estimates

Source	Systematic
Polarimetry	8.0%
Dilution/Packing Fraction	4.0%
Others	2.1%
Total	9.2%

A_{zz} Systematics Estimates

Source	A_{zz} Systematic	T ₂₀ Systematic
Polarimetry	6.0%	6.0%
Dilution Factor	6.0%	2.5%
Packing Fraction	3.0%	3.0%
Others	2.5%	2.5%
Total	9.2%	7.4%

$$A_{zz} = \frac{2}{f P_{zz}} \left(\frac{\sigma_p}{\sigma_0} - 1 \right)$$

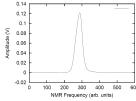
Tensor Target

*b*₁ Systematics Estimates

Source	Systematic
Polarimetry	8.0%
Dilution/Packing Fraction	4.0%
Others	2.1%
Total	9.2%

A_{zz} Systematics Estimates

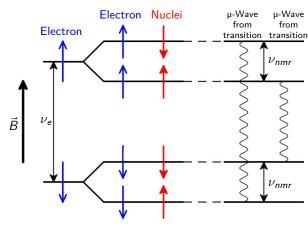
Source	Azz Systematic	T ₂₀ Systematic
Polarimetry	6.0%	6.0%
Dilution Factor	6.0%	2.5%
Packing Fraction	3.0%	3.0%
Others	2.5%	2.5%
Total	9.2%	7.4%


$$A_{zz} = \frac{2}{f P_{zz}} \left(\frac{\sigma_p}{\sigma_0} - 1 \right)$$

Both experiments require a highly (\geq 30%) tensor-polarized deuterium target with precise measurement of P_{zz} . How can we achieve that?

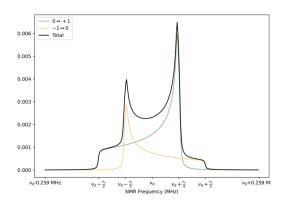
Dynamic Nuclear Polarization (DNP)

- Using µwaves, drive spin transitions of unpaired electrons
- Electrons transfer spin to nuclei
- Nuclear absorption spectrum gives polarimetry info



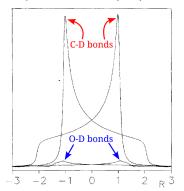
Above: Characteristic lineshape of the proton

Above: Diagram of the energy level transitions in the DNP process.


C.D. Keith et al, NIM A 501

Adapted from Annu. Rev. Nucl. Part. Sci. 1997. 47:67-109

Deuteron Polarization


- NMR at nuclear spin transition frequency drives further spin transitions
- Proton lineshape from $-1/2 \leftrightarrow 1/2$ transition
- Deuteron lineshape has $-1 \leftrightarrow 0$ and $0 \leftrightarrow 1$ components
 - But NMR only gives the sum of the two
- Signal shape affected by material properties and magnetic field angle

Above: Simulated deuteron lineshape showing the contributions from both the $-1 \to 0$ transition and the $0 \to 1$ transition.

ND₃ and Other Target Materials

C. Dulya, et al, NIM A 398 (1997)

- Both b_1 and A_{zz} experiments call for solid ND₃ targets
- Polarization also done with frozen chemically-doped deuterated alcohols
- Lineshape affected by quadrupole splitting of molecule
 - ullet Different for ND₃ vs butanol

Left: C-D, O-D bond contribution to the deuteron NMR lineshape in d-butanol

Material	Dopant & method	Polarizable nucleons % by weight	
ND ₃ d-ammonia	$\stackrel{ND_2}{D_2}$	~30%	
C ₄ D ₉ OD TEMPO d-butanol Chemical		23.7%	


D. Crabb, W. Meyer, Annu. Rev. Nucl. Part. Sci 47 67-109 (1997)

The UNH polarized target group is hard at work!

The UNH polarized target group is hard at work!

The UNH polarized target group is hard at work!

Above: UNH LHe refrigerator

D. M. Aliaga et al. NIM 976 (2020) 164277

Refrigerator and Magnet

1 K LHe
evaporative su
fridge, with
2.4 W cooling
power

5 T Nb-Sn superconducting solenoidal magnet

Above: UNH LHe refrigerator

D. M. Aliaga et al. NIM 976 (2020) 164277

Refrigerator and Magnet

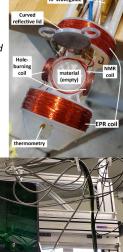
1 K LHe
evaporative su
fridge, with
2.4 W cooling
power

5 T Nb-Sn superconducting solenoidal magnet

Microwaves

Solid-state microwaves producing >100 mW power between 136 and 144 GHz. Source is movable by remote motor control. System designed by Bridge12 inc.

Below: Microwave source and mount.

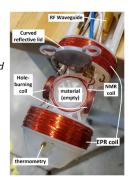

Target Insert

Designed, printed and assembled in-house. Also houses overmodal microwave waveguide.

Right: 3D-printed target insert ladder with coils wound and no target material.

Below: Microwave

source and mount.


Microwaves

Solid-state microwaves producing >100 mW power between 136 and 144 GHz. Source is movable by remote motor control. System designed by Bridge12 inc.

Target Insert

Designed, printed and assembled in-house. Also houses overmodal microwave waveguide.

Right: 3D-printed target insert ladder with coils wound and no target material.

Below left: frozen unirradiated NH_3 . Below right: frozen doped butanol.

Target Material

Material, both ammonia and doped alcohols, frozen and stored on-site.

Left: VME crate for NMR control system and analyzer.

NMR System

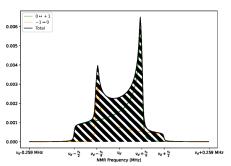
NMR system with LANL design sweeps at deuteron transition frequency (\simeq 30 MHz).

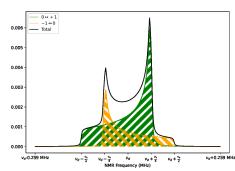
P. McGaughey, et al, NIM A 995 (2021) 165045

Below left: frozen unirradiated NH₃. Below right: frozen doped butanol.

Target Material

Material, both ammonia and doped alcohols, frozen and stored on-site.


Measuring Tensor Polarization


Vector Polarization Measurement

Tensor Polarization Measurement

$$P_z = C(I_+ + I_-) \tag{1}$$

where C is a dimensionless calibration constant, $I_+=n_+-n_0$, and $I_-=n_0-n_-$

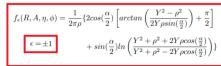
Figures courtesy of E. Long

NMR Curve Fitting

- Fit NMR lineshape with procedure from C. Dulya et al, NIM A 398 (1997) 109-125
- Includes effects from molecular bond quadrupole terms
- Can naively use peak height ratio r to estimate polarization

$$P_z = \frac{r^2 - 1}{r + r^2 + 1}$$

$$P_{zz} = \frac{r^2 - 2r + 1}{r^2 + r + 1}$$
(3)


 Then compare ratio and area methods for P_{zz} measurement consistency

Right: Parts of the curve fitting method suggested by C. Dulva et al.

R, A, η, ϕ compacting variables

$$\rho^2 = \sqrt{A^2 + [1 - \epsilon R - \eta cos(2\phi)]^2} \qquad \qquad R = \frac{\omega - \omega_d}{3\omega_q}$$

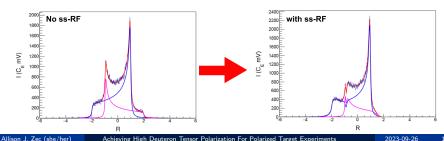
$$cos(\alpha) = \frac{1 - \epsilon R - \eta cos(2\phi)}{\rho^2} \qquad \qquad -3 \le R \le 3$$

functional form of signal $\sqrt[4]{}$

phi average 🞝

$$F_{\epsilon} \approx \frac{1}{J+1} \sum_{j=0}^{J} \frac{\sqrt{3} f_{\epsilon}(R,A,\eta,\phi_j)}{\sqrt{3-\eta cos(2\phi_j)}}$$

positive & negative spin flips \bigcup

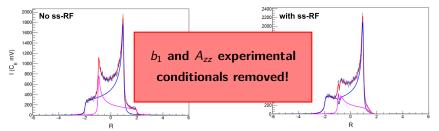


Tensor Polarization Measurement (UVA)

- UVA-pioneered tensor enhancement technique
- Additional RF coils drive spin flips
- Manipulates area of NMR curve

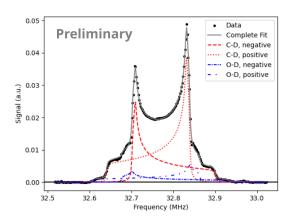
- Small frequency range
- UVA lab achieved $P_{zz} = 31.1 \pm 8.5\%$ with ssRF technique

Right: ssRF coil schematic. Below: NMR lineshapes without and with ssRF applied. Figures reproduced from D. Keller, et al. NIM A 981 164504 (2020)



Tensor Polarization Measurement (UVA)

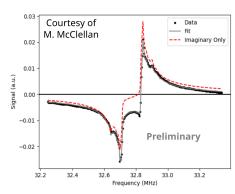
- UVA-pioneered tensor enhancement technique
- Additional RF coils drive spin flips
- Manipulates area of NMR curve


- Small frequency range
- UVA lab achieved P_{zz} =31.1 \pm 8.5% with ssRF technique

Right: ssRF coil schematic. Below: NMR lineshapes without and with ssRF applied. Figures reproduced from D. Keller, et al. NIM A **981** 164504 (2020)

Tensor Polarization (UNH)

- Fit with Dulya procedure closely matches data from recent UNH cooldown
 - C. Dulya et al, NIM A 398 (1997) 109-125
- Reconstruct spin-flip and quadrupole curves from fit parameters
- With reconstruction can do more in-depth polarization analysis
- Fit method works very well for UNH data!
- New helium reliquifier system will enhance UNH's ability to run and get physics data!

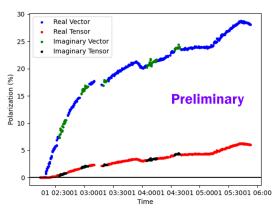

Above: Curve fit of NMR lineshape from recent target cooldown at UNH.

Real & Imaginary Fits

- Can now manually set NMR phase angle ϕ during cooldowns
- Fit using a rotation of the absorptive (χ'') and dispersive (χ') around phase angle:

Real =
$$\chi'' \cos \phi - \chi' \sin \phi$$

Imag = $\chi'' \sin \phi + \chi' \cos \phi$ (4)


- Can fit a simultaneous mixture of real and imaginary
- First fits with the new method match data well, look very promising!

Above: Fit of recent cooldown data using real and imaginary parts. Fit is compared with an "imaginary only" signal and then fitted for a phase mistune.

Real & Imaginary NMR Signals

- Switch from real to imaginary lineshape by tuning phase
- Use fitting for real and imaginary lineshapes differently
- Demonstrated resilience to having phase not tuned perfectly
- Real and imaginary measurements match each other well!

Above: Data from recent UNH cooldown with both real and imaginary line data for both vector and tensor polarization. Figure courtesy of M. McClellan.

Summary

Professors

Thank you to the UNH **PolTarg** Group and our collaborators at UVA!

David Ruth

- Tensor target experiments approved!
- Conditionals removed for both experiments
- target development at UNH and **UVA**

- Improvements with ss-RF for better tensor polarization
- UNH group polarizing more (publications upcoming. . .)
- Exciting new developments upcoming!

Trans & Nonbinary Physicists

The Trans and Nonbinary Physicists
Discord server is an online
community for transgender and
nonbinary physicists — from
enthusiasts to professors! — to
socialize, network, and support one
another. All are welcome, and so far
we have over 200 members from
across the world!

Follow

@transphysicists

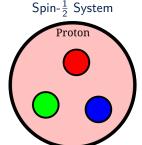
on twitter!

Trans & Nonbinary Physicists

The Trans and Nonbinary Physicists
Discord server is an online
community for transgender and
nonbinary physicists — from
enthusiasts to professors! — to
socialize, network, and support one
another. All are welcome, and so far
we have over 200 members from
across the world!

Follow

Otransphysicists

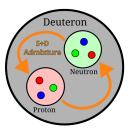

on twitter!

Questions, comments, concerns, observations?

Backup Slides

Protons & Deuterons

Proton


Three valence quarks + gluons and sea quarks

No nucleon-nucleon interactions

 $m=\pmrac{1}{2}$ S. Kumano, IOP Proc. Tens. Pol. Targ. (2014)

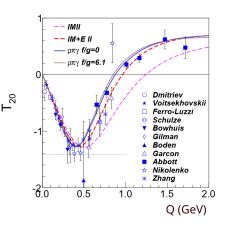
Deuteron

Spin-1 System

Proton-Neutron bound state

Simplest nuclear system: nucleon interaction effects

$$m = \pm 1, 0$$


Elastic Tensor Analyzing Power

For
$$1.5 \le x \le 2.0$$

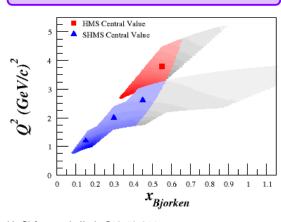
$$T_{20} \approx \frac{A_{zz}}{\sqrt{2}d_{20}} \tag{5}$$

- Third of three elastic scattering functions of deuteron
- Extracted by measuring A_{zz} near elastic peak
- Current data doesn't constrain models well at high x

M. Kohl Nucl Phys A 805 (2008)

Above: T_{20} with current measurements and theoretical models.

R. Holt, R. Gilman Rept.Prog.Phys. 75 (2012)

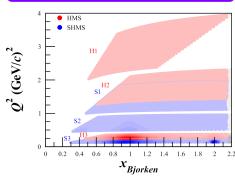

b₁ Kinematics

- Approved for 30 days of physics running + 10.8 days overhead
- 11 GeV beam incident on polarized target
- 9.2% systematic error on A_{zz}
- Foward scattering angles

	x _{Bj}	Q^2 [GeV 2]	E_0' [GeV]	$\begin{bmatrix} \theta_{e'} \\ [^{\circ}] \end{bmatrix}$
SHMS	0.15	1.21	6.70	7.35
SHMS	0.30	2.00	7.45	8.96
SHMS	0.452	2.58	7.96	9.85
HMS	0.55	3.81	7.31	12.50

E12-13-011

The Deuteron Tensor Structure Function b_1

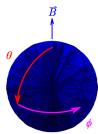

K. Slifer et al, JLab C12-13-011

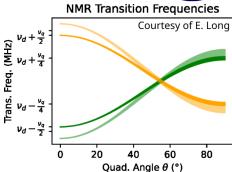
A_{zz} Kinematics

- Approved for 34 days of physics running + 10.3 days overhead
 - 25 days 8.8 GeV beam
 - 8 days 6.6 GeV beam
 - 1 day of 2.2 GeV beam
- 9.2% systematic error on A_{zz} , 7.4% on T_{20}
- Forward scattering angles

	E_0 [GeV]	Q^2 [GeV ²]	E_0' [GeV]	$\begin{bmatrix} \theta_{e'} \\ [^{\circ}] \end{bmatrix}$
SHMS (S1)	8.8	1.5	8.36	8.2
HMS (H1)	8.8	2.9	7.26	12.2
SHMS (S2)	6.6	0.7	6.35	7.5
HMS (H2)	6.6	1.8	5.96	12.3
SHMS (S3)	2.2	0.2	2.15	10.9
HMS (H3)	2.2	0.3	2.11	14.9

E12-15-005 Quasi-Elastic and Elastic Deuteron Tensor Asymmetries



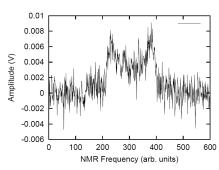

E. Long et al, JLab C12-15-005

From Spin Flips To Lineshape

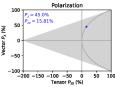
- Simulation derived from Cohen & Reif model (1957)
- Assume random distribution of quadrupole angles θ from 0°-90°
- Then calculates transition frequency based on angle and energy level
- Performs 125,000 spin flips into 300 angle bins, giving NMR signal
- Simulation can reproduce results from UVA polarized target lab, as well as previous UNH cooldowns

Right: Quadrupole angles randomly distributed in B-field. Below: Spin transition frequencies for each angle θ and each transition.

BACKUP: Tensor Polarization Analysis


Thermal Equilibrium & Enhancement

Deuteron thermal equilibrium (TE) polarization before microwave irradiation:


$$P(1) = \frac{4 \tanh\left(\frac{g_i \mu_i B}{2k_B T}\right)}{3 + \tanh^2\left(\frac{g_i \mu_i B}{2k_B T}\right)} \tag{6}$$

Only 0.1% polarization at 5 T and 1 K.

TE signal can be used for calibration if detected. Signal is then enhanced with microwaves.

Above: Deuteron TE signal from CLAS target. From C. Keith et al, NIM A 501 (2003). Right: Polarization curve during enhancement.

