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First, some background
Run Group H comprises three highly rated, high-impact experiments utilizing a transversely polarized 
target 
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Plan A: a frozen-spin target
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The exponential decay of 
polarization is characterized by T1, 
the spin-lattice relaxation time.
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All proposals assumed the use of HDice , a frozen-spin target of solid hydrogen deuteride. 
PAC Condition: the target must maintain its polarization for at least 
21 days under a beam current of 1 nA (∼1013 s-1)
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All proposals assumed the use of HDice , a frozen-spin target of solid hydrogen deuteride. 
PAC Condition: the target must maintain its polarization for at least 
21 days under a beam current of 1 nA (∼1013 s-1)



B hu = µB

Q: What causes the nuclear spins to flip and the 
target to lose polarization?
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All proposals assumed the use of HDice , a frozen-spin target of solid hydrogen deuteride. 
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B hu = µB

Q: What causes the nuclear spins to flip and the 
target to lose polarization?
A: Lattice vibrations produce spin flips of 
paramagnetic impurities in the sample.  These 
flip the nuclear spins via dipole-dipole coupling.
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All proposals assumed the use of HDice , a frozen-spin target of solid hydrogen deuteride. 
PAC Condition: the target must maintain its polarization for at least 
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B hu = µB

These impurities can be created by ionizing radiation.
In solid HD, an electron beam creates (paramagnetic) H and D atoms.

Plan A: a frozen-spin target
All proposals assumed the use of HDice , a frozen-spin target of solid hydrogen deuteride. 
PAC Condition: the target must maintain its polarization for at least 
21 days under a beam current of 1 nA (∼1013 s-1)
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HDice & electron beams
Three irradiations of polarized, solid HD with high energy electrons
• Cornell Synchrotron (1975): T1 decreased from about 14 h to 15 m after 1 µC/cm2

• JLab Hall B (2012): T1 decreased from 20 d to ∼3 h after 10 µC/cm2

• JLab UITF (2019): T1 decreased from 5 d to 2.4 h after 10 µC /cm2
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HDice & electron beams
Three irradiations of polarized, solid HD with high energy electrons

~11 hours
at ¼ nA

Beam OFF
Beam OFF

Beam ON

UITF: Polarization vs Dose UITF: Relaxation time vs Dose

Kevin Wei, U. Connecticut Kevin Wei, U. Connecticut

• Cornell Synchrotron (1975): T1 decreased from about 14 h to 15 m after 1 µC/cm2

• JLab Hall B (2012): T1 decreased from 20 d to ∼3 h after 10 µC/cm2

• JLab UITF (2019): T1 decreased from 5 d to 2.4 h after 10 µC /cm2
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What about ammonia?
The de facto solid polarized target material for intense electron beams is ammonia, NH3

HDice
0.2 K, 1 T

NH3
1 K, 5 T

Butanol
1K, 5 T

0 1×1015 2×1015 3×1015 4×1015e-/cm2
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Is a frozen-spin ammonia target feasible?
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An ammonia frozen spin target?

Surface
temperature, TS

Liquid helium 
temperature, TL

A 1 nA electron beam will deposit a time-averaged power of about 3 µW into each ammonia bead (radius = 1 mm)
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𝑞 = heat deposited by beam
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ℜ = thermal resistivity of solid ammoniaInterior

temperature, T(r)
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An ammonia frozen spin target?
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minimum relaxation time for a 
useful target.
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This means the holding field 
needs to be at least 2.5 T.

In that case, you might as well 
use the field to dynamically 
polarize the target on a 
continual basis!
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Plan B: A dynamically polarized target
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Plan B: A dynamically polarized target

CLAS12 field Electron beam

The biggest problem for designing a transversely polarized target for 
CLAS12, is 5 T LONGITUDINAL magnetic field from the CLAS12 solenoid. 

This field must be eliminated and a transverse field created in its place. 

The initial proposals assumed a series of superconducting coils inside the 
HDice cryostat.  An ingenious high-temperature superconducting shield 
of MgB2 was later proposed but is still in the R&D stage.

A dynamically polarized target requires a higher and more uniform field 
than its frozen spin counterpart, sooo….

… the simplest option is to just remove the solenoid…
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Plan B: A dynamically polarized target

Electron beam

Target field

… and replace it with a field dedicated to polarizing the target.
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The biggest problem for designing a transversely polarized target for 
CLAS12, is 5 T LONGITUDINAL magnetic field from the CLAS12 solenoid. 

This field must be eliminated and a transverse field created in its place. 

The initial proposals assumed a series of superconducting coils inside the 
HDice cryostat.  An ingenious high-temperature superconducting shield 
of MgB2 was later proposed but is still in the R&D stage.

A dynamically polarized target requires a higher and more uniform field 
than its frozen spin counterpart, sooo….

… the simplest option is to just remove the solenoid…



Plan B: A dynamically polarized target

The new, proposed, design looks like the standard 5T/1K dynamically polarized target 
already used in Halls A, B, & C.

refrigerator and insert. The Hall C coils produce a field with a
relative uniformity of o10!4 over a spherical volume of 30 mm
diameter. The uniform field region of the Hall B magnet is smaller:
o10!4 over a cylindrical volume 20 mm in diameter and 20 mm
long. While this is smaller than the dimensions of the ammonia
target cells (25 mm diameter"30 mm long), we saw no adverse
effects on the proton polarization.

Major modifications were necessary to install the Hall B
magnet in the Hall C cryostat. First, the magnet was rotated 1801
about the field axis in order to locate the magnet leads at the top
rather than the bottom of the coil packages. The access port for the
leads was also used to supply liquid helium to the coils via a short
length of stainless steel hose connected to the underside of the
cryostat's liquid helium dewar. One aluminum support ring was
attached to the top of the magnet and a second suspended from
the helium dewar using three 1-in. threaded rods. With assistance
from Jefferson Lab's Survey and Alignment Group, the magnet was
accurately positioned relative to the top plate of the cryostat, and
the two support rings were then clamped together. We regard this
as an improvement over the original scheme, where the Hall C
magnet was rigidly suspended from the helium dewar with two
indium-sealed flanges, and no fine positioning of the magnet
inside the cryostat was possible.

3.2. Refrigerator

A new, high cooling power, 4He evaporation refrigerator was
constructed to replace the original refrigerator that was damaged
during its last use in Hall C. The new refrigerator design includes
modifications to accommodate the new rotation scheme, to improve
reliability, and to satisfy the requirements of the ASME pressure
vessel code. The design, shown in Fig. 3, is well-established and will
be briefly described here.

Using a well-insulated, flexible transfer line, 4 K liquid helium
is continuously siphoned from the superconducting magnet's
dewar into the top of a 1 l stainless steel vessel called the
“separator”, where it drains through a 1 mm thick plate of sintered
stainless steel to remove vapor that is transferred with the liquid.
The vapor is pumped away using a small diaphragm pump and
cools a series of perforated copper baffles located between the
separator and the pumping manifold for the evaporation refrig-
erator. A vapor flow of 5 slpm is sufficient to cool the uppermost,
warmest baffle to about 70 K. The separator is instrumented with a
thermometer and a miniature superconducting level probe.

Liquid is drained from the bottom of the separator through a
3 mm copper tube and delivered to a pumped bath of liquid
helium that is used to cool the polarized target samples to 1 K.
Between the separator and the 1 K bath, the tube is thermally
anchored to a second series of perforated copper plates which are
cooled by gas pumped from the bath. A small needle valve, located
at the cold end of this gas–liquid heat exchanger, is used to meter
the flow of liquid to the bath. The valve is actuated by a room
temperature stepper motor, and a computer-controlled feedback
loop is used to maintain a constant bath level without user
intervention. A second needle valve is used to bypass the heat
exchanger for more rapid cooling.

Fig. 2. Hall B polarized target magnet suspended from the Hall C polarized target
cryostat, after covering with super-insulation.

Fig. 3. The 1 K evaporation refrigerator.

J. Pierce et al. / Nuclear Instruments and Methods in Physics Research A 738 (2014) 54–6056
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Plan B: A dynamically polarized target

1K Superfluid

Superconducting Magnet

Microwave horn

Target
samples

Aluminum tube

(⌀25 x 30) mm3 
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Plan B: A dynamically polarized target

1K Superfluid

Superconducting Magnet

Microwave horn

Target
samples

Aluminum tube

(⌀15 x 5) mm3 

L ~ 5x1034 @ 5 nA
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About that superconducting magnet

R

B

Split = R

27∘

63∘

-1.0 -0.5 0.5 1.0

5.×10-6

0.00001

0.000015

Coil 1 Coil 2

Net field

DNP requires the magnetic field around the target to be uniform to about 100 ppm or so.

This is easy to achieve with a solenoid, but this design doesn’t work so well when the field is perpendicular to 
the electron beam.

The standard design is a split-coil magnet with Helmholtz geometry.

Coil 1 Coil 2

The “Helmholtz line”
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R

B

Split = R

27∘

63∘

The magnets for the original targets in B & C had three sets 
of Helmholtz pairs, producing 5 T at the center.

The coil sizes and supports limited the scattering angles to 
±50° along the field, and ±15° perpendicular to it. 

Coil 1 Coil 2

About that superconducting magnet
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The “Helmholtz line”



This produces a depression in the central field region.

R

B

Split > R

To increase the opening in the 
direction transverse to the field, 
the coils must be moved apart.

Coil 1 Coil 2
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About that superconducting magnet
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R

B

Split > R

Additional coils or ferromagnetic shims can further depress the central field and make it more uniform.

B’

Coil 3 Coil 4

Coil 1 Coil 2

-2 -1 1 2

5.×10-6

0.00001

The field is now larger outside the central region.

Coil 1Coil 2

Coil 3 Coil 4

About that superconducting magnet
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Homogeneity is ± 50 ppm over a 25 mm 
diameter spherical volume (DSV)
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Figure 12: Plot of homogeneity on a 25mm DSV at 89.6A (max=55ppm, min=-52pm). 

 
Figure 13: Plot of homogeneity on a 25mm DSV at 90.0A (max=43ppm, min=-55pm). 

In 2019, I began procurement of a 5 T magnet with an increased 
opening for transversely polarized experiments in Hall C.  

The opening angles for forward-scattered particles are
Longitudinal (field ││ to beam): ±35°
Transverse (field ⏊ to beam: ±25°

Received and tested at JLab in 2021
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The outer vacuum vessel is designed for a maximum external differential pressure of 1.0 bar during 
normal operation and for leak testing. The top plate of the outer vacuum vessel is equipped with a 
1psi safety valve, which maintains safety if a leak was to develop on the system. Calculations of 
pressure safety have been performed to BS5500 and the results presented below. 
 

Component Minimum thickness [mm] Actual thickness [mm] 
Base plate unstayed (with a 

1.1 bar design pressure) 
19.3 30 

 
Component Maximum safe external 

pressure [bar] 
Design pressure [bar] 

Outer tube, external pressure, 
buckling (abraded thickness 

9.5mm) 

4.96 1.1 (internal vacuum) 

 

3D model 
 
The CAD model of the system is now complete and ready for review and detailing. The following 
screenshots show the magnet in the two orientations. 
 

 
Figure 7: Cut-away of the 2 orientations for the magnet. 

There is now a breakout box for the wiring connections. We have defined 4 Fischer connectors for 
the temperature sensors, switch heaters and the voltage taps. Additional space is available on the 

FIELD
BEAM

About that superconducting magnet
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The outer vacuum vessel is designed for a maximum external differential pressure of 1.0 bar during 
normal operation and for leak testing. The top plate of the outer vacuum vessel is equipped with a 
1psi safety valve, which maintains safety if a leak was to develop on the system. Calculations of 
pressure safety have been performed to BS5500 and the results presented below. 
 

Component Minimum thickness [mm] Actual thickness [mm] 
Base plate unstayed (with a 

1.1 bar design pressure) 
19.3 30 

 
Component Maximum safe external 

pressure [bar] 
Design pressure [bar] 

Outer tube, external pressure, 
buckling (abraded thickness 

9.5mm) 

4.96 1.1 (internal vacuum) 

 

3D model 
 
The CAD model of the system is now complete and ready for review and detailing. The following 
screenshots show the magnet in the two orientations. 
 

 
Figure 7: Cut-away of the 2 orientations for the magnet. 

There is now a breakout box for the wiring connections. We have defined 4 Fischer connectors for 
the temperature sensors, switch heaters and the voltage taps. Additional space is available on the 

The magnet can also be oriented to produce a vertical 
field (preferred for Hall B), but the opening angle of ±25°
is insufficient for the DVCS experiment.
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The aluminum ring separating the 
upper and lower sets of 
superconducting coils

(Cold Mass Intercoil Support) 
has four large circular openings that 

limit the scattering angle to ±25° in both 
horizontal and vertical planes.
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The outer vacuum vessel is designed for a maximum external differential pressure of 1.0 bar during 
normal operation and for leak testing. The top plate of the outer vacuum vessel is equipped with a 
1psi safety valve, which maintains safety if a leak was to develop on the system. Calculations of 
pressure safety have been performed to BS5500 and the results presented below. 
 

Component Minimum thickness [mm] Actual thickness [mm] 
Base plate unstayed (with a 

1.1 bar design pressure) 
19.3 30 

 
Component Maximum safe external 

pressure [bar] 
Design pressure [bar] 

Outer tube, external pressure, 
buckling (abraded thickness 

9.5mm) 

4.96 1.1 (internal vacuum) 

 

3D model 
 
The CAD model of the system is now complete and ready for review and detailing. The following 
screenshots show the magnet in the two orientations. 
 

 
Figure 7: Cut-away of the 2 orientations for the magnet. 

There is now a breakout box for the wiring connections. We have defined 4 Fischer connectors for 
the temperature sensors, switch heaters and the voltage taps. Additional space is available on the 
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The current plan is to replace the existing 
magnet with an identical coils, but a support 
ring that gives ±25° in the vertical plane and 
±65° in the horizontal.FIELD

About that superconducting magnet

Beam

130°

27

The magnet can also be oriented to produce a vertical 
field (preferred for Hall B), but the opening angle of ±25°
is insufficient for the DVCS experiment.



Conceptual design of  the target

28

The target system must be substantially 
“compressed” in order to fit inside the HTCC, 
but it’s probably possible.



Conceptual design of  the target

The target system must be substantially 
“compressed” in order to fit inside the HTCC, 
but it’s probably possible. This is an easier target to design, build and operate 

than the Run Group C target, but it will require a 
significant design & construction effort.

29



Summary

• The Run Group H remains a compelling suite of experiments in Hall B

• The original idea to use a frozen-spin polarized target will not work

• An alternative approach, dynamically polarized NH3 at 5T/1K is expected to 
work very well (albeit with compromised acceptance)

• A new magnet design is being pursued based on an existing system with a 
different Intercoil Support

• The goal is a design that provides ±25° vertical acceptance and ±65°
horizontal

• Once the magnet issue is settled, the Target Group can commence work on 
the rest of the polarized target components

30



Backup Slides

Instead of the Kapitza conductance k, it is more common 
in the literature to quote the Kapitza resistance Rk

q = 𝜅𝐴(𝑇!" − 𝑇#")

➔ q = 4𝜅𝐴𝑇3ΔT
= ΔT/Rk

Or, RkAT3 =
#
$%

Values of RkAT 3 for liquid helium and a variety of solids can be found in
the literature. I will consider a number of sources to estimate the Kapitza
conductivity between liquid helium and solid ammonia. These estimates
vary by one order of magnitude, from about 10 to 100 cm2K4/W.

• In a paper describing an early frozen spin target, Niinikoski assumes
a value RkAT 3 = 100 cm2K4/W, “common for most light dielectric
materials in helium” [2].

• A measurement between superfluid helium and mylar, a dielectric
slightly denser than solid ammonia, reports RkAT 3 = 12.8 cm2K4/W
at 1.4–2.1 K [3]. A measurement for kapton reports RkAT 3 = 10.5
cm2K4/W in the same temperature range [4].

• For temperatures below 100 mK, Pobell indicates values of 20–40
cm2K4/W between liquid helium and dielectrics such as teflon and
kapton [5].

• Boyes et al. extracted both the Kapitza and bulk thermal resistances
of butanol at 1.08 K using microwaves to heat samples of various sized
beads and determining the average bead temperature from the mea-
sured spin-relaxation time. A value RkAT 3 = 74± 35 cm2K4/W was
reported [6].

• The Bonn polarized target group measured the temperature di↵erence
between superfluid helium and NH3 with electron beam currents up
to 70 nA [7]. The temperature of the 1.5 mm target granules was
determined from their thermal equilibrium polarization at 2.5 T. My
simple analysis of the results indicates RkAT 3 ⇡ 80 cm2K4/W.

• Modeling the temperature of NH3 in the COMPASS polarized target,
Doshita assumes a value RkAT 3 = 50 cm2K4/W, based on the Kapitza
resistance of CrK crystals in liquid helium at low temperatures [8].

• The KEK frozen spin target of 1,2-propanediol was utilized on multiple
occasions with 650–1200 MeV proton beams. By comparing the polar-
ization lifetime with beam on and beam o↵, Ishimoto et al extracted
a value RkAT 3 = 70± 7 cm2K4/W [9].

The heat deposited by the electron beam varies according to the volume
of the target sample, while the removal of heat is proportional to the sample’s
surface area. Therefore it is better to use numerous small beads of frozen
ammonia instead of a single large crystal. A smaller bead size will also reduce
the impact of the bulk thermal resistivity of the ammonia. The butanol
beads in the FROST target were 1.0–1.5 mm in diameter. In principle,

3

Reasonable estimates of RkAT3 for solid 
ammonia vary 10 – 100 cm2K4/W

~70 cm2K4/W is the most probable
➔ 𝜅 = 3.6 mW/cm2K4

C.D. Keith, “eFROST” (2008) unpublished
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Smaller beads help a little (larger surface-to-volume). 

Beam Heating
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If the target is exposed to ionizing radiation, the rate of polarization loss  will not be constant.

Instead, the rate will increase in proportion to the dose (particles/cm2) on the target:
R1 = a·dose

Assuming a constant beam current, this will add a linear time dependence to the relaxation rate:
R1(t) = R1(0) + bt

and a quadratic term to the relaxation curve
P(t) = Po exp(-R1(0)t – bt2)
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Brute-force Polarization of Solid HD in 5 easy steps
1. HD gas is highly purified to remove all impurities, including molecular H2 and D2
2. A small quantity of ortho-H2 is added to the gas to promote fast spin relaxation
3. The gas is frozen and brute-force polarized at an ultra-low temperature and high magnetic field
4. Wait (and wait and wait…) until the paramagnetic ortho-H2 has converted to the nonmagnetic para-H2
5. Transfer frozen-spin polarized sample into an “in-beam” cryostat at start taking data 


