A High-Field Polarized ³He Target for Jefferson Lab's CLAS12 Spectrometer

J. Maxwell

for CLAS12 Polarized 3He Collaboration

25th International Spin Symposium September 26, 2023

Outline

1 Polarized ³He for Nuclear Physics **Optical Pumping** Opportunity for a New Target 2 Proposed Target for CLAS12 Design Development Outlook 3 Path to In-Beam Tests Transverse Polarization?

Outline

1 Polarized ³He for Nuclear Physics **Optical Pumping** Opportunity for a New Target

Why Polarized Helium 3?

- About 90% of the time, ³He's 2 proton spins are anti-aligned in a spin singlet
- ³He spin is primarily neutron spin
- By polarizing ³He, we have a surrogate for polarized free neutrons

Polarized ³He Targets at JLab

- 6 GeV era: 13 experiments in Hall A
- 12 GeV era: 7 experiments approved
- Spin Exchange Optical Pumping
- 60% in-beam polarization in 10 bar gas

Polarized ³He for Nuclear Physics

Optical Pumping

Spin Exchange Optical Pumping

- Pump Rb in \sim 30 G holding field
 - 795 nm laser light: $5S_{1/2} \rightarrow 5P_{1/2}$
- Spin exchange polarizes K, then ³He
- Pressures up to 13 atm
- Polarize in oven, transfer target cell
- $P_{\mathsf{Rb}}\sim 95$ %, $P_{^3\mathsf{He}}\sim 80\%$
 - In-beam reduced to $P_{^3{
 m He}}\sim 60\%$
 - Longitudinal or transverse
- 13 exp. in Hall A 6 GeV, 7 approved 12 GeV
 - In 1991: 35% at 1 μA
 - Currently running in Hall A: 60% at 60 μ A
- Never used in large acceptance Hall B

Polarized ³He for Nuclear Physics

Optical Pumping

Spin Exchange Optical Pumping

- Pump Rb in \sim 30 G holding field
 - 795 nm laser light: $5S_{1/2} \rightarrow 5P_{1/2}$
- Spin exchange polarizes K, then ³He
- Pressures up to 13 atm
- Polarize in oven, transfer target cell
- $P_{\mathsf{Rb}}\sim 95$ %, $P_{^3\mathsf{He}}\sim 80\%$
 - In-beam reduced to $P_{^3{\rm He}}\sim 60\%$
 - Longitudinal or transverse
- 13 exp. in Hall A 6 GeV, 7 approved 12 GeV
 - In 1991: 35% at 1 μA
 - Currently running in Hall A: 60% at 60 μ A
- Never used in large acceptance Hall B

Spin Exchange Optical Pumping

- Pump Rb in \sim 30 G holding field
 - 795 nm laser light: $5S_{1/2} \rightarrow 5P_{1/2}$
- Spin exchange polarizes K, then ³He
- Pressures up to 13 atm
- Polarize in oven, transfer target cell
- $P_{\mathsf{Rb}}\sim 95$ %, $P_{^3\mathsf{He}}\sim 80\%$
 - In-beam reduced to $P_{^3{\rm He}}\sim 60\%$
 - Longitudinal or transverse
- 13 exp. in Hall A 6 GeV, 7 approved 12 GeV
 - In 1991: 35% at 1 μA
 - Currently running in Hall A: 60% at 60 μ A
- Never used in large acceptance Hall B

Polarized ³He for Nuclear Physics

Optical Pumping

Metastability Exchange Optical Pumping

- 1963, Colgrove et al (TI)
- Pure 3 He, \sim 30 G field
- Discharge promotes states to 2³S₁
- Laser drives polarization
- Collisions between 2³S₁ and ground state polarize nuclei
- Requires ~2 mbar, >100 K
- 10^5 faster than SEOP
- 10⁴ lower pressure has limited use for scattering experiments

Polarized ³He for Nuclear Physics

Optical Pumping

Metastability Exchange Optical Pumping

- 1963, Colgrove et al (TI)
- Pure 3 He, \sim 30 G field
- Discharge promotes states to 2³S₁
- Laser drives polarization
- Collisions between 2³S₁ and ground state polarize nuclei
- Requires \sim 2 mbar, >100 K
- 10⁵ faster than SEOP
- 10⁴ lower pressure has limited use for scattering experiments

Metastability Exchange and Spin Exchange Optical Pumping

SEOP

- Pump: alkali metals in mixture
- Transfer: spin exchange
- Low pumping rate
- Walls carefully selected
- Needs oven (473 K)
- 100 W laser typical
- Large pressure range (1 to 13 bar)

MEOP

- Pump: metastable population
- Transfer: metastability exchange
- High pumping rate
- Less sensitive to wall interactions
- Temperature above 100 K
- 4 W laser typical
- Limited pressure (~1 mbar)
- Pressure attainable has made SEOP the most attractive tool for JLab
- Neither have historically worked in high magnetic fields

MEOP Double-Cell Cryo Target: Bates 88-02

- Quasi-elastic asymmetries in 1988, 1993
- MEOP pumping cell at 2 mbar, 300 K, 30 G: 40% in-beam polarization
- Cu target cell at 2 mbar, 17 k
- Cu foil beam windows (4.6 μ m)
- Cold surfaces coated with N₂ to reduce depolarization from wall interactions
- 7.2×10^{32} ³He/cm²/s Luminosity w/ 10 μ A
- P measurement performed in pumping cell
- *P* in target inferred from rate equations: *P* relaxation and diffusion

MEOP Double-Cell Cryo Target: Bates 88-02

- Quasi-elastic asymmetries in 1988, 1993
- MEOP pumping cell at 2 mbar, 300 K, 30 G: 40% in-beam polarization
- Cu target cell at 2 mbar, 17 k
- Cu foil beam windows (4.6 μ m)
- Cold surfaces coated with N₂ to reduce depolarization from wall interactions
- 7.2×10^{32} ³He/cm²/s Luminosity w/ 10μ A
- P measurement performed in pumping cell
- *P* in target inferred from rate equations: *P* relaxation and diffusion

High Magnetic Field MEOP

- OP not historically done at high B
 - SEOP: Increasing wall relaxation
 - MEOP: Weak hyperfine coupling ...?
- Kastler-Brossel Lab at ENS in Paris found by increasing *B*₀, MEOP effective at higher pressures (Nikiel-Osuchowska *et al*, Eur. Phys. J.D., 2013.)
- Near 60% at 100 mbar!
- Zeeman splitting separates states for laser pumping
 - Decouples relaxation paths
 - Creates probe peaks (Suchanek *et al.*, Euro Phys JST, 2007.)

High Magnetic Field MEOP

- OP not historically done at high B
 - SEOP: Increasing wall relaxation
 - MEOP: Weak hyperfine coupling ...?
- Kastler-Brossel Lab at ENS in Paris found by increasing *B*₀, MEOP effective at higher pressures (Nikiel-Osuchowska *et al*, Eur. Phys. J.D., 2013.)
- Near 60% at 100 mbar!
- Zeeman splitting separates states for laser pumping
 - Decouples relaxation paths
 - Creates probe peaks (Suchanek *et al.,* Euro Phys JST, 2007.)

³He Transitions at Low Field

³He Transitions at Low Field

³He Transitions at Low Field

³He Transitions at High Field

³He Transitions at High Field

Polarized ³He for Nuclear Physics

Opportunity for a New Target

³He Transitions at High Field

Measuring Optical Pumping via Probe Peaks

Measuring Optical Pumping via Probe Peaks

High Magnetic Field MEOP for EIC

- High field MEOP techniques already being applied for nuclear physics
- BNL-MIT: Polarized ³He Ion Source for EIC (D. Raparia this morning)
- BNL's Electron Beam Ion Source operates at 5 T
- MEOP within 5 T field, transfer into EBIS for ionization and extraction
- Tests between 2 to 4 T gave nearly 90% at 1.3 mbar (Maxwell et al., NIM A 959, 2020)
- Installation in 2023

High Magnetic Field MEOP for EIC

- High field MEOP techniques already being applied for nuclear physics
- BNL-MIT: Polarized ³He Ion Source for EIC (D. Raparia this morning)
- BNL's Electron Beam Ion Source operates at 5 T
- MEOP within 5 T field, transfer into EBIS for ionization and extraction
- Tests between 2 to 4 T gave nearly 90% at 1.3 mbar (Maxwell *et al.*, NIM A 959, 2020)
- Installation in 2023

Results at 1.3 mbar

An Opportunity in Hall B's CLAS12

- CEBAF Large Acceptance Spectrometer for Jefferson Lab's 12 GeV upgrade
 - High luminosity electron scattering
 - Multi-particle final state response
 - 5 T solenoid in interaction region
- Proposal to PAC48: A program of spin-dependent electron scattering using a polarized ³He target in CLAS12
 - P_T -dependence of n longitudinal spin structure
 - Nuclear corrections to SIDIS
 - Conditionally approved with A- rating
 - Spokespeople: Avakian, Maxwell, Milner, Nguyen
- Novel target needed for standard config

An Opportunity in Hall B's CLAS12

- CEBAF Large Acceptance Spectrometer for Jefferson Lab's 12 GeV upgrade
 - High luminosity electron scattering
 - Multi-particle final state response
 - 5 T solenoid in interaction region
- Proposal to PAC48: A program of spin-dependent electron scattering using a polarized ³He target in CLAS12
 - P_T -dependence of n longitudinal spin structure
 - Nuclear corrections to SIDIS
 - Conditionally approved with A- rating
 - Spokespeople: Avakian, Maxwell, Milner, Nguyen
- Novel target needed for standard config

Creating a New Target for CLAS12

Double-Cell Cryo Target

- Polarize at 300 K
- Transfer to 5 K target cell
- Density increase 60×

High Field MEOP

- High Polarization (~60%)
- High magnetic fields (5 T)
- Pressure increase 100×
- By combining established technologies: a new polarized target (Maxwell, Milner, NIM A, 2021.)
- Achieve 5.4 amg, roughly half JLab SEOP target gas density
- Polarize within 5 T solenoid: CLAS12 standard configuration

Outline

 Polarized ³He for Nuclear Physics Optical Pumping Opportunity for a New Target
 Proposed Target for CLAS12 Design Development
 Outlook Path to In-Beam Tests Transverse Polarization?

Proposed Target

293 K Pumping Cell

- 200 cm³ borosilicate glass
- MEOP to 60% polarization
- Annular cylindrical volume

5 K Target Cell

- 100 cm³, 20 cm long aluminum cell
- Cooled by LHe heat exchanger
- Luminosity of 2.7×10^{34} nuc/cm²/s at $0.5 \,\mu$ A

Proposed Target

293 K Pumping Cell

- 200 cm³ borosilicate glass
- MEOP to 60% polarization
- Annular cylindrical volume

5 K Target Cell

- 100 cm³, 20 cm long aluminum cell
- Cooled by LHe heat exchanger
- Luminosity of 2.7×10^{34} nuc/cm²/s at $0.5 \,\mu\text{A}$

Depolarization Mechanisms

- Wall relaxation on Al: H₂ coatings yield days long relaxation at 4 K (Lefevre-Seguin, Low Temp. P. 1988.)
- Depolarization from transverse magnetic field gradients, dependent on pressure, temperature
 - In CLAS12 solenoid: minimal
- Beam produces ³He₂⁺ ions: increase with density, but decrease with higher field. (Bonin, PRA, 1988)

Depolarization Mechanisms

- Wall relaxation on Al: H₂ coatings yield days long relaxation at 4 K (Lefevre-Seguin, Low Temp. P. 1988.)
- Depolarization from transverse magnetic field gradients, dependent on pressure, temperature
 - In CLAS12 solenoid: minimal
- Beam produces ³He₂⁺ ions: increase with density, but decrease with higher field. (Bonin, PRA, 1988)

Depolarization Mechanisms

- Wall relaxation on Al: H₂ coatings yield days long relaxation at 4 K (Lefevre-Seguin, Low Temp. P. 1988.)
- Depolarization from transverse magnetic field gradients, dependent on pressure, temperature
 - In CLAS12 solenoid: minimal
- Beam produces ³He₂⁺ ions: increase with density, but decrease with higher field. (Bonin, PRA, 1988)

Cryogenics and Heat Load

- Heat loads on 5 K target cell:
 - Beam heating (<150 mW)
 - Pumping cell at 293 K, transfer through glass and gas (<500 mW)
 - Radiative heating minimized by heat shield (<20 mW)
- Pulse-tube cryocooler for 2.5 W at 4.2 K should be sufficient (Cryomech PT425)
- JLab's Hall D cryotarget provides liquid ${\rm H_2}$ and ${\rm He_2}$
 - Few modifications needed to design to support a MEOP double-cell cryotarget

Cryogenics and Heat Load

- Heat loads on 5 K target cell:
 - Beam heating (<150 mW)
 - Pumping cell at 293 K, transfer through glass and gas (<500 mW)
 - Radiative heating minimized by heat shield (<20 mW)
- Pulse-tube cryocooler for 2.5 W at 4.2 K should be sufficient (Cryomech PT425)
- JLab's Hall D cryotarget provides liquid H₂ and He₂
 - Few modifications needed to design to support a MEOP double-cell cryotarget

Planned Research Program

- High field MEOP test stand explore high field polarization vs. pressure and field, reproduce results of KBL
- Flow tests between cold and warm cells with Target Group's 4 K test stand
- Full, double-cell prototype to allow in-beam tests at injector test facility, perhaps in hall?

Planned Research Program

- High field MEOP test stand explore high field polarization vs. pressure and field, reproduce results of KBL
- Flow tests between cold and warm cells with Target Group's 4 K test stand
- Full, double-cell prototype to allow in-beam tests at injector test facility, perhaps in hall?

Planned Research Program

- High field MEOP test stand explore high field polarization vs. pressure and field, reproduce results of KBL
- Flow tests between cold and warm cells with Target Group's 4 K test stand
- Full, double-cell prototype to allow in-beam tests at injector test facility, perhaps in hall?

Beginning Polarization

- First MEOP pumping stand at JLab
 - Enclosed, interlocked system (class 1)
 - On wheels to allow transport to 5 T warm-bore solenoid
- Shakedown with low-field Helmholtz pair
 - Low-field, 668 nm liquid crystal polarimeter (Maxwell *et al.*, NIM A, 2014.)
 - Sealed ³He cells at first
 - 60% nuclear polarization with 80 sec relaxation
- Unfortunately, pumping laser fiber sustained damage in preparation for high field tests, limiting power to 0.3 W

Beginning Polarization

- First MEOP pumping stand at JLab
 - Enclosed, interlocked system (class 1)
 - On wheels to allow transport to 5 T warm-bore solenoid
- Shakedown with low-field Helmholtz pair
 - Low-field, 668 nm liquid crystal polarimeter (Maxwell *et al.*, NIM A, 2014.)
 - Sealed ³He cells at first
 - 60% nuclear polarization with 80 sec relaxation
- Unfortunately, pumping laser fiber sustained damage in preparation for high field tests, limiting power to 0.3 W

High Field Test Setup

(X. Li, 2023)

- High Field Polarization
 - Probe laser polarimetry with second, lower-power DFB laser (Suchanek *et al.*, Euro Phys JST, 2007.)
 - Wavelength meter
 - Python DAQ software
- Limited laser power, wavelength
 - Confirmed operation of probe polarimeter
 - Mapped pump and probe laser peaks at 2, 3, 4 T
- Once laser repaired, 77% achieved

- High Field Polarization
 - Probe laser polarimetry with second, lower-power DFB laser (Suchanek *et al.*, Euro Phys JST, 2007.)
 - Wavelength meter
 - Python DAQ software
- Limited laser power, wavelength
 - Confirmed operation of probe polarimeter
 - Mapped pump and probe laser peaks at 2, 3, 4 T
- Once laser repaired, 77% achieved

A High-Field Polarized ³He Target

Development

- High Field Polarization
 - Probe laser polarimetry with second, lower-power DFB laser (Suchanek *et al.*, Euro Phys JST, 2007.)
 - Wavelength meter
 - Python DAQ software
- Limited laser power, wavelength
 - Confirmed operation of probe polarimeter
 - Mapped pump and probe laser peaks at 2, 3, 4 T
- Once laser repaired, 77% achieved

- High Field Polarization
 - Probe laser polarimetry with second, lower-power DFB laser (Suchanek *et al.*, Euro Phys JST, 2007.)
 - Wavelength meter
 - Python DAQ software
- Limited laser power, wavelength
 - Confirmed operation of probe polarimeter
 - Mapped pump and probe laser peaks at 2, 3, 4 T
- Once laser repaired, 77% achieved

NIM A Paper Accepted (X. Li, et al.), Tests at 1.3 mbar

NIM A Paper Accepted (X. Li, et al.), Tests at 1.3 mbar

Table 1: Steady-state nuclear polarization (M_s) , build-up time (T_b) and discharge-on relaxation time (T_r) measured at 2, 3 and 4 T using the four optical pumping schemes and a pump laser output power of 3 W. The pumping rate (R) is calculated using Eq. 3.

В (Т)	Transition scheme	M_s (%)	T_b (s)	R (atoms/s)	T_r (s)
2	$\begin{array}{c} f_{2}^{+} \\ f_{4}^{+} \\ f_{2}^{-} \\ f_{4}^{-} \end{array}$	49 75 50 72	113 104 129 116	$\begin{array}{c} 1.4\!\times\!10^{16} \\ 2.3\!\times\!10^{16} \\ 1.3\!\times\!10^{16} \\ 2.0\!\times\!10^{16} \end{array}$	278 293 297 286
3	$\begin{array}{c} f_{2}^{+} \\ f_{4}^{+} \\ f_{2}^{-} \\ f_{4}^{-} \end{array}$	42 70 41 70	193 194 196 193	$\begin{array}{c} 7.0\!\times\!10^{15} \\ 1.2\!\times\!10^{16} \\ 6.7\!\times\!10^{15} \\ 1.2\!\times\!10^{16} \end{array}$	380 369 362 374
4	$\begin{array}{c} f_{2}^{+} \\ f_{4}^{+} \\ f_{2}^{-} \\ f_{4}^{-} \end{array}$	38 72 38 69	226 280 280 224	$\begin{array}{c} 5.4\!\times\!10^{15} \\ 8.3\!\times\!10^{15} \\ 4.4\!\times\!10^{15} \\ 1.0\!\times\!10^{16} \end{array}$	388 379 375 404

NIM A Paper Accepted (X. Li, et al.), Tests at 1.3 mbar

Taken using same cell from BNL tests (Maxwell, 2020). Slightly less polarization.

Preparations for Varied Pressure

- New, valved pumping cell
 - Turbopump, getter, RGA on hand
 - Gas panel in preparation
 - Significant baking, pumping needed to reach clean gas
- Recondenser installed
 - LHe for magnet is costly, inconvenient.
 - Operate for months with this setup
- Laser upgrades
 - Old laser fiber repaired
 - New laser with wider 300 GHz tuning band arrived, allows 5 T. Faulty.
 - Shortages meant acquisition took 1 year
 - Yet another laser on order

Preparations for Varied Pressure

- New, valved pumping cell
 - Turbopump, getter, RGA on hand
 - Gas panel in preparation
 - Significant baking, pumping needed to reach clean gas
- Recondenser installed
 - LHe for magnet is costly, inconvenient
 - Operate for months with this setup
- Laser upgrades
 - Old laser fiber repaired
 - New laser with wider 300 GHz tuning band arrived, allows 5 T. Faulty.
 - Shortages meant acquisition took 1 year
 - Yet another laser on order

Outline

 Polarized ³He for Nuclear Physics Optical Pumping Opportunity for a New Target
 Proposed Target for CLAS12 Design Development
 Outlook Path to In-Beam Tests Transverse Polarization?

- Modular evaporator to allow the mounting of our MEOP cells
- Will provide beam-ready physical, cryogenic infrastructure: get in hall sooner

- Modular evaporator to allow the mounting of our MEOP cells
- Will provide beam-ready physical, cryogenic infrastructure: get in hall sooner

- Modular evaporator to allow the mounting of our MEOP cells
- Will provide beam-ready physical, cryogenic infrastructure: get in hall sooner

- Modular evaporator to allow the mounting of our MEOP cells
- Will provide beam-ready physical, cryogenic infrastructure: get in hall sooner

- Modular evaporator to allow the mounting of our MEOP cells
- Will provide beam-ready physical, cryogenic infrastructure: get in hall sooner

- Modular evaporator to allow the mounting of our MEOP cells
- Will provide beam-ready physical, cryogenic infrastructure: get in hall sooner

Key Development Questions

- Can we reproduce, improve the polarization performance of the KBL group?
- How much polarization relaxation is expected at 100 mbar and 5 K in 0.5 μ A beam while inside a 5 T magnetic field?

Two Development Efforts

- Tests of MEOP performance at varied fields, pressure
 - Existing MEOP polarizer, magnet with new cells and filling system
- Tests of depolarization at high field with experimental beam
 - Construction of 2-cell prototype with interface to existing cryotarget
 - Polarize at 5 K, 5 T in existing magnet, modified test cryostat
 - Polarize in the hall for full commissioning tests with beam

Key Development Questions

- Can we reproduce, improve the polarization performance of the KBL group?
- How much polarization relaxation is expected at 100 mbar and 5 K in 0.5 μ A beam while inside a 5 T magnetic field?

Two Development Efforts

- Tests of MEOP performance at varied fields, pressure
 - Existing MEOP polarizer, magnet with new cells and filling system
- Tests of depolarization at high field with experimental beam
 - Construction of 2-cell prototype with interface to existing cryotarget
 - Polarize at 5 K, 5 T in existing magnet, modified test cryostat
 - Polarize in the hall for full commissioning tests with beam

Key Development Questions

- Can we reproduce, improve the polarization performance of the KBL group?
- How much polarization relaxation is expected at 100 mbar and 5 K in $0.5 \,\mu$ A beam while inside a 5 T magnetic field?

Two Development Efforts

- Tests of MEOP performance at varied fields, pressure
 - Existing MEOP polarizer, magnet with new cells and filling system
- Tests of depolarization at high field with experimental beam
 - Construction of 2-cell prototype with interface to existing cryotarget
 - Polarize at 5 K, 5 T in existing magnet, modified test cryostat
 - Polarize in the hall for full commissioning tests with beam

Path to In-Beam Tests

Efficient Use of Hall B's Experimental Schedule

- Using the Hall B cryotarget allows us faster access to the hall
- During the accelerator down before a scheduled cryotarget run, we can install and polarize our MEOP cells
- Take data in beam for a couple days, then quickly switch back to liquid

Projected Schedule

- Polarization at varied pressures: December 2023
- Double cryogenic cell target prototype constructed: March 2024
- 2-cell polarization in test cryostat, magnet: Summer 2024
- In-beam tests of depolarization: 2025
- Very preliminary schedule for polarized ³He experiment in Hall B: 2027

Efficient Use of Hall B's Experimental Schedule

- Using the Hall B cryotarget allows us faster access to the hall
- During the accelerator down before a scheduled cryotarget run, we can install and polarize our MEOP cells
- Take data in beam for a couple days, then quickly switch back to liquid

Projected Schedule

- Polarization at varied pressures: December 2023
- Double cryogenic cell target prototype constructed: March 2024
- 2-cell polarization in test cryostat, magnet: Summer 2024
- In-beam tests of depolarization: 2025
- Very preliminary schedule for polarized ³He experiment in Hall B: 2027

Transverse Polarization?

Transverse Polarized ³He in CLAS12?

- Three high-impact Hall B experiments hoped to use transversely polarized HD-Ice Target
- Transverse with CLAS12: bulk superconductor
 - Cancel 2 T || CLAS12 field
 - Create a $1.5 \text{ T} \perp$ holding field
- For ${}^{3}\text{He:}$ same but holding field ${\sim}50\,\text{G}$
- Pumping cell in longitudinal field
- Rotate spin adiabatically in transit to target cell

MgB2 cylinder: 86 mm Ø 250 mm long 7 mm wall

 $\begin{array}{l} 1.25 \text{ T transverse magnetization} \\ 2.0 \text{ T axial shield} \\ 5x10-3 \text{ uniformity } (\text{Y}_{20}/\text{Y}_{00}) \\ \text{over 20 mm radius sphere} \end{array}$

M. Lowry

Transverse Polarization?

Transverse Polarized ³He in CLAS12?

- Three high-impact Hall B experiments hoped to use transversely polarized HD-Ice Target
- Transverse with CLAS12: bulk superconductor
 - Cancel 2 T || CLAS12 field
 - Create a $1.5 \text{ T} \perp$ holding field
- For ${}^{3}\text{He:}$ same but holding field ${\sim}50\,\text{G}$
- Pumping cell in longitudinal field
- Rotate spin adiabatically in transit to target cell

Field along Cylinder Axis

Spin2023

Transverse Polarization?

Transverse Polarized ³He in CLAS12?

- Three high-impact Hall B experiments hoped to use transversely polarized HD-Ice Target
- Transverse with CLAS12: bulk superconductor
 - Cancel 2 T || CLAS12 field
 - Create a 1.5 T \perp holding field
- For ${}^{3}\text{He:}$ same but holding field ${\sim}50\,\text{G}$
- Pumping cell in longitudinal field
- Rotate spin adiabatically in transit to target cell

Summary

- A polarized ³He target in CLAS12 would offer a wide new class of observables of quark and gluonic structure in the neutron.
- We are developing a novel target system to operate within CLAS12 without significant modification to the spectrometer.
- Combines the successful design of the Bates 88-02 double-cell cryotarget with new developments in high magnetic field MEOP.
- Polarization tests have begun at Jefferson Lab, with an aggressive development schedule aiming to provide a target to Hall B within the next few years.

CLAS12 Polarized 3He collaboration:

- MIT: R. Milner, X. Li
- JLab: H. Avakian, J. Brock, C. Keith, J. Maxwell, D. Meekins, D. Nguyen

Thank you for your attention!

Parameter	Bates 88-02 Target Achieved	CLAS12 Target Proposed
Pumping cell pressure (mbar)	2.6	100
Pumping cell volume (cm^3)	200	120
Target cell volume (cm^3)	79	100
Target cell length (cm)	16	20
Number of atoms in pumping cell	$1.2 imes 10^{19}$	3×10^{20}
Number of atoms in target cell	6×10^{19}	$1.5 imes 10^{22}$
Holding field (T)	0.003	5
Polarization	40%	60%
Incident electron beam energy (GeV)	0.574	10
Cell temperature (K)	17	5
Target thickness $({}^{3}\text{He}/\text{cm}^{2})$	1.2×10^{19}	3×10^{21}
Beam current (μA)	10	2.5
Luminosity $({}^{3}\text{He}/\text{cm}^{2}/\text{s})$	$7.2 imes 10^{32}$	4.5×10^{34}

Spin-Dependent Scattering from Polarized ³He in CLAS12

- Proposal to JLab PAC 48 for 30 days
 - *P*_T-dependence of the neutron longitudunal spin structure
 - Nuclear corrections to SIDIS
- Complement to studies on dueteron
- Synergistic with efforts such as SoLID
- Luminosity 2.7×10^{34} nucleons/cm³/s with 0.5 μA beam current
- Approved with A- rating, conditional on target development

