SpinQuest (E1039) Polarized Target: An Overview

Muhammad Farooq, Dustin Keller, Waqar Ahmed For the UVA Spin-Physics Group

Dated: September 26, 2023

UVA - Spin

This work was supported by DOE contract *DE-FG02-96ER40950*

SPIN

QUES

‡ Fermilab

Office of

Science

Outlines of the talk

- Physics motivation
- SpinQuest (E1039) experiment setup at Fermilab
- Cryoplatform at NM4 and Polarized target at NM3
- Dynamic Nuclear Polarization (DNP) Method
- Microwave System
- Target materials
- Superconducting Magnet system
- NMR (Nuclear Magnetic Resonance)
- Evaporation Fridge
- ➢ Summary

Physics Motivation

• Spin crises: 70% of the nucleon spin is missing!

OAM from sea quarks could contribute up-to half of the proton's spin

SpinQuest Goals

• Sivers function: The Sivers function describes the correlation between the momentum of the struck quark and the spin of its parent nucleon.

$$f_{1T}^{\perp}(x,k_T) = \bigodot^{\uparrow} - \bigcirc$$

- A non-vanishing Sivers function for the sea quarks is evidence there is sea quark orbital angular momentum (OAM).
- If sea-quark Sivers asymmetry is non-zero, then sea quarks have non-zero OAM.
- A non-zero Sivers asymmetry from SpinQuest is "smoking gun" evidence for sea quark OAM.
- SpinQuest will measure the correlation between the angular distribution of the di-muons and the proton spin. If this is non-zero, then the antiquarks must have some orbital angular momentum.

SpinQuest Goals

- Separately measure the Sivers function for the sea quarks .
- Measure Sign and Magnitude •

$$f_{1T}^{\perp}|_{SIDIS} = -f_{1T}^{\perp}|_{DY}$$

- Measurement of Sivers function for gluons $(I/\psi SSA)$ ٠
- Polarized \overline{u} to \overline{d} ratio ٠
- Extensions: transversely, tensor charge, tensor polarized observables, dark sector, polarized proton beam, $p + p^{\uparrow} \rightarrow \mu^+ \mu^- X$

$$e + p^{\uparrow} \rightarrow e' \pi X$$

Polarized Semi-Inclusive DIS •

- L-R asymmetry in hadron production
- Quark to hadron fragmentation function
- Valence-sea quark: mixed

$$A_{UT}^{SIDIS} \propto \frac{\sum_{q} e_{q}^{2} f_{1T}^{\perp,q}(\mathbf{x}) \otimes D_{1}^{q}(z)}{\sum_{q} e_{q}^{2} f_{1}^{q}(\mathbf{x}) \otimes D_{1}^{q}(z)}$$

- L-R asymmetry in Drell-Yan production
- No fragmentation function
- Valence-sea quark: isolated

$$A_N^{DY} \propto \frac{\sum_q e_q^2 \left[f_1^q(x_1) \cdot f_{1T}^{\perp,\bar{q}}(x_2) + 1 \leftrightarrow 2 \right]}{\sum_q e_q^2 \left[f_1^q(x_1) \cdot f_1^{\bar{q}}(x_2) + 1 \leftrightarrow 2 \right]}$$

FERMILAB (E1039) EXPERIMENT

(Un)Polarized Drell-Yan Experiments

Experiment	Particles	Energy (GeV)	x_b or x_t	Luminosity	$A_T^{\sin \phi_s}$	P_b or P_t	rFOM [#]	Timeline
				$(cm^{-2}s^{-1})$		(1)		
COMPASS	$\pi^- + p^\uparrow$	190	$x_t = 0.1 - 0.3$	2×10^{33}	0.14	$P_t = 90\%$	1.1×10^{-3}	2015, 2018
(CERN)		$\sqrt{s} = 17.4$				f=0.22		
PANDA (GSI)	$\overline{p} + p^{\uparrow}$	15	$x_t = 0.2 - 0.4$	2×10^{32}	0.07	$P_t = 90\%$	1.1×10^{-4}	2032
		$\sqrt{s} = 5.5$				f=0.22		
PAX (GSI)	$p^{\uparrow} + \overline{p}$	Collider	$x_b = 0.1 - 0.9$	2×10^{30}	0.06	$P_{b} = 90\%$	2.3×10^{-5}	?
	• •	$\sqrt{s} = 14$	-			_		
NICA (JINR)	$p^{\uparrow} + p^{\uparrow}$	Collider	$x_b = 0.02 - 0.9$	1×10^{32}	0.04	$P_b = 70\%$	6.8×10^{-5}	2028
SPD		$\sqrt{s} = 27$						
PHENIX/STAR	$p^{\uparrow} + p^{\uparrow}$	Collider	$x_b = 0.05 - 0.1$	2×10^{32}	0.08	$P_{b} = 60\%$	1.0×10^{-3}	2000-2016
(RHIC)	• •	$\sqrt{s} = 510$				_		
sPHENIX	$p^{\uparrow} + p^{\uparrow}$	$\sqrt{s} = 200$	$x_b = 0.1 - 0.5$	8×10^{31}	0.08	$P_{b} = 60\%$	4.0×10^{-4}	2023-2025
(RHIC)		$\sqrt{s} = 510$	$x_b = 0.05 - 0.6$	$6 imes 10^{32}$		$P_{b} = 50\%$	2.1×10^{-3}	
SeaQuest	p + p	120	$x_t = 0.1 - 0.45$	3.4×10^{35}				2012-2017
(FNAL: E-906)		$\sqrt{s} = 15$	$x_b = 0.35 - 0.85$					
SpinQuest ‡	$\boldsymbol{p} + \boldsymbol{p}^{\uparrow}$	120	$x_t = 0.1 - 0.5$	5×10^{35}	0-0.2*	$P_t = 80\%$	0.15 or 0.09	2024-2025
(FNAL: E-1039)		$\sqrt{s} = 15$				f=0.176		
SpinQuest \pm	$\boldsymbol{p} + \boldsymbol{p}^{\uparrow}$	120	$x_b = 0.1 - 0.5$	5×10^{35}	0-0.2*	$P_t = 80\%$	0.15 or 0.09	2026-2029
(Transversity)		$\sqrt{s} = 15$				f=0.176		
12 - 2 - 2 - 1 $17 - 2 - 1 + 17 - 2 - 1 + 17 - 2 - 1 + 17 - 2 - 1$								

 \pm 8 cm ammonia target / $L = 10^{36} cm^{-2} s^{-1}$, \pm (Tensor Polarized Spin-1 target) / $L = 10^{36} cm^{-2} s^{-1}$

*not constrained by SIDIS data / #rFOM = relative lumi * P² * f² w.r.t E-1027 (f=1 for pol. P beams, f=0.02 for π^- beam on

Cryoplatform at NM4 and Polarized Target in NM3

SpinQuest/E1039 Experiment Setup @ FNAL

• FNAL 120 GeV proton beam

- $\sqrt{s} = 15.5 \text{ GeV}$
- (5×10^{12}) protons/spill with 4.4 sec/min
- 7.7×10¹⁷ protons on target/year

Polarized Target System

Dynamic Nuclear Polarization (DNP)

- Transfer of spin polarization from electrons to nuclei using RF irradiation in an external magnetic field
- The $(\mu_e = 660\mu_P)$. Whereas the polarization at 5T and 1K of electrons is 98% and protons is 0.5%.
- Dipole-dipole interaction between electron and proton provides contact between spin species.
- By applying RF-field at 140 GHz very close to electron ESR frequency electron high polarization can be transferred to proton.
- One electron transition/millisecond
- One proton transition/minute
- The model is valid if the ESR spectrum is narrow.

Solid State Effect (SSE)

Microwave System

- 140 GHz RF signal is generated by Extended-Interaction Oscillator (EIO) through interaction between electron beam (produced from ~kV of cathode/anode) and resonant cavities
- The optimal frequency changes as we flip the spin direction
- The optimal frequency also changes as the target accumulates radiation damage from the beam
- The variation of the beam voltage allows up to 0.4% frequency tuning
- Cavity size adjustment using a stepper motor allows an additional 1.5%

Microwave System

Microwave System

Target Material

- A successful target material candidates for the DNP can be characterized by:
 - Maximum achievable polarization
 - Dilution factor \rightarrow total nuclear content
 - Resistance to ionization radiation
- Paramagnetic centers can be doped into bulk target material (chemical or by radiation doping)
- The target consists of an 8cm long PTFE target cells containing ammonia beads immersed in LHe
- Target material NH_3/ND_3 are doped with paramagnetic free-radical by being irradiated at NIST
- The polarization decays over time due to the radiation damage and restored by annealing process (target is heated at 70-100K)
- Also form color centers that correlates to the dose

Material	Butanol	Ammonia, NH ₃	Lithium Hydride, ⁷ LiH
Dopant	Chemical	Irradiation	Irradiation
Dil. Factor (%)	13.5	17.6	25.0
Polarization (%)	90-95	90-95	90
Material	D-Butanol	D -Ammonia, ND ₃	Lithium Deuteride, ⁶ LiH
Dil. Factor (%)	23.8	30.0	50.0
Polarization (%)	40	50	55
Resistance Comments	moderate Easy to produce and handle	high Works well at 5T/1K	very high Slow polarization, but long T ₁

Preparation of Solid Ammonia

• The following pictures and CAD model depict the preparation of Solid Ammonia at NIST.

- The superconducting magnet coils provide Magnetic Field (transverse to the beam): **B=5 T** with uniformity $dB/B < 10^{-4}$ over 8cm
- The magnet consist of NbTi coils which are impregnated in epoxy to prevent them from moving during when the magnet is energized; and the coils are held in place by stainless steel (type: 316)
- Originally used by LANL with axial field in a neutron beam, Oxford Instruments rebuild for transverse polarization, then commissioned and tested at UVA and finally send to FNAL and reassembled.

UVA target group and FNAL technicians installed

• The Thermal processes within the magnet is described by a general heat transfer equation:

$$c\frac{\partial T}{\partial t} = \nabla(\kappa \nabla T) + P_{ext} + P_{He}$$

 P_{ext} is the external-heat sources coming mainly from the beam-target interactions and P_{He} is the heat transferred to the liquid helium

25 20 15 10 10 0 avg_x [cm] 16 14 12 10 -5 -10E -15 -20 _____ -280 -275 -305-300-295 -290-285 avg_z [cm]

The heat deposited to the magnet (P_{ext}) is simulated using Geant4

Courtesy of Zulkaida Akbar

Nuclear Magnetic Resonance (NMR)

- Polarization of the proton is measured using Q-meter based NMR
- An RF field at the Larmor frequency of the proton (213 MHz at 5T) with absorption measured with constant current CW-NMR
- Series Q-meter connected to NMR coil with inductance L_c and resistance r_c that is embedded in target material
- The RF field is produced by three NMR coils inside the target cup
- An LCR Circuit is tuned to the Larmor frequency of the target material
- Due to high radiation very long cable (λ/2 ≥14 for proton) is required: 3 Different measurement techniques: UVA AI w/ Q-meter, cold NMR, and LANL Q-meter for systematic checks

Nuclear Magnetic Resonance (NMR)

Polarization growth, radiation damage, decay of material

Note: This polarization growth and decay with electron-beam.

1.5

One of the UVA NMR Setups

Evaporation Refrigerator

- Evaporated He from the target nose need to be pumped out by high powered Root pump to keep the temperature at 1 K at 0.12 torr
- The Root pump having 17,000 m^3/hr
- Critical components for high-cooling power refrigerator:
 - High-power pump
 - Sufficient supply of the LHe
 - Heat exchanger that being the He temperature down from 4.2 K to 1 K
 - Thermal shielding

Note: Please see Vibodha Bandara talk on Evaporation Refrigerator. https://indico.jlab.org/event/663/contribution s/13094/

Cryo-Platform

QT Compressors

Cold heads & cold box

Root Pumps

Target Cave

Beam Window

Target Cave

Target System Status

 Microwave System In-hall hardware Installed Software controls up and running Superconducting magnet 	 Target Insert Fully constructed and ready for tests Target Material
Boil-off low with E-7 torr vacuum	Practicing with CH2/CD2 with cryogenics (LN2)
 Passed all tests (fully operational) Tested at FNAL cooled down to 4K during cooldown 1K Refrigerator 	 NH3/ND3 use pending ES&H approval Online Monitoring System
 Passed all tests (fully operational) Multichannel NMR In-hall hardware Installed Software controls up and running Integrated system test 	 Fully operational All alarms and subsystems working
	 Boil-off low with E-7 torr vacuum Passed all tests (fully operational) Tested at FNAL cooled down to 4K during cooldown 1K Refrigerator Passed all tests (fully operational) Multichannel NMR In-hall hardware Installed Software controls up and running Integrated system test Performed at UVA (95%)

Summary

- SpinQuest can measure the transverse single spin asymmetry (TSSA) in Drell-Yan (DY) process and charmonium production
- This can provide information to the Sivers function for the quarks and gluons
- The polarized-target system for the SpinQuest experiment consist of a 5T superconducting-split magnet, 140 GHz EIO generator, 8 cm of solid NH_3/ND_3 target, evaporation refrigerator and Q-meter based NMR system.
- During cooldowns at University of Virginia (UVa), The SpinQuest Polarized Target achieved proton polarization of 95% using Dynamic Nuclear Polarization (DNP) technique.
- System is fully constructed and awaits approval from FNAL ES&H to use the target material in the system.
- First beam expected November 2023.
- After summer shutdown, SpinQuest will do beam-target commissioning, quench testing to study maximum possible proton intensity for production running.

Welcome /

Please join The Effort

- Dustin Keller (<u>dustin@virginia.edu</u>) [Spokeperson]
- Kun Liu (<u>liuk@fnal.gov</u>) [Spokeperson]

https://spinquest.fnal.gov Experiments (virginia.edu)

Thanks

This work was supported by DOE contract DE-FG02-96ER40950

Back-up Slides

SpinQuest/E1039 Experiment Setup @ FNAL

• LANL/UVA Polarized Target

- Solid NH_3 , ND_3
- 5T field, 1K fridge
- 140 GHz microwave source (with DNP technique)
- Helium Liquefier System (200L/day

Target Material (NH_3/ND_3)

The *figure of merit* (FOM) is crucial for target material:

 $FOM = P_T^2 \cdot f^2 \cdot \rho \cdot \kappa$

- The dilution factor and the target polarization have the largest impact on the FOM
- The filling factor κ is linked to the thermal conductivity and the shape of the target material

Material	Dens. (g/cm^3)	Length (cm)	Dilution Factor	Packing Fraction	$\langle P_z \rangle$
NH ₃	0.867	7.9	0.176	0.6	80%
ND ₃	1.007	7.9	0.3	0.6	32%

Basic Dilution factor: ratio of number of polarizable nucleons to total no. of nucleons in the target. • Nu Νn 3 6 f_N 3

$$f_{NH_3} = \frac{N_H}{N_H + NN_{14}} = \frac{3}{3+14} = 0.176$$
; $f_{ND_3} = \frac{N_D}{N_D + NN_{14}} = \frac{3}{3+17} = 0.33$

Kinematic Dilution factor: ratio of cross-section of polarizable nucleons to the cross-section of all ٠ the nucleons in the target.

$$f(x) = \frac{N_H \sigma_{pp\uparrow}^{DY(x)}}{N_H \sigma_{pp\uparrow}^{DY(x)} + NN_{14} \sigma_{pp\uparrow}^{DY(x)} + NHe \sigma_{pp\uparrow}^{DY(x)} + NAl \sigma_{pp\uparrow}^{DY(x)} + \cdots}$$

• Based on this study the maximum intensity of the beam is 2.7×10^{12} proton/sec (with pumping on the He reservoir at 2.5 K with the rate of 100 SLPM)

The simulation was done using COMSOL by applying Finite-Element Method The simulation was done using COMSOL by applying Finite-Element Method

Courtesy of Zulkaida Akbar

Predicted Uncertainties

- > Beam (~ 2.5%)
 - Relative luminosity (~ 1%)
 - Drifts (< 1%)
 - Scraping (~ 1%)
- Analysis sources (~ 3.5%)
 - Tracking efficiency (~ 1.5%)
 - Trigger & geometrical acceptance (< 2%)
 - Mixed background (~ 3%)
 - Shape of DY (~ 1%)
- Target (~ 6-7%)
 - TE calibration (proton ~ 2.5%; deuteron ~ 4.5%)
 - Polarization inhomogeneity (~ 2%)
 - Density of target (*NH*_{3(s)}) (~ 1%)
 - Uneven radiation damage (~ 3%)
 - Beam-Target misalignment (~ 0.5%)
 - Packing fraction (~ 2%)
 - Dilution factor (~ 3%)

Material	Density	Dilution factor	Packing fraction	Polarization	Interaction length
NH_3	$0.867~{ m g/cm}^3$	0.176	0.60	80%	5.3%
ND_3	$1.007~{ m g/cm}^3$	0.300	0.60	32%	5.7%

P&ID

37