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Physics Motivation 
• Spin crises: 70% of the nucleon spin is missing!

𝟏
𝟐

𝟏
𝟐∆∑= ∆𝑮+ 𝑳𝒒 + 𝑳"𝒒+ + 𝑳𝒈

K.F. Liu et al arXiv: 1203.6388

OAM from sea quarks could contribute 
up-to half of the proton’s spin

∆∑𝒒≈ 𝟐𝟓%

𝑳𝒖 ≈ −𝑳𝒅

𝟐𝑳𝒒 ≈ 𝟒𝟔% 𝟎% 𝒗𝒂𝒍𝒆𝒏𝒄𝒆 + 𝟒𝟔% 𝒔𝒆𝒂

𝑱𝒈 ≈ 𝟐𝟓%

https://arxiv.org/abs/1203.6388
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SpinQuest Goals
• Sivers function: The Sivers function describes 

the correlation between the momentum of the 
struck quark and the spin of its parent nucleon.

 
𝒇𝟏𝑻( 𝒙, 𝒌𝑻 =

• A non-vanishing Sivers function for the sea 
quarks is evidence there is sea quark orbital 
angular momentum (OAM).

• If sea-quark Sivers asymmetry is non-zero, 
then sea quarks have non-zero OAM.

• A non-zero Sivers asymmetry from SpinQuest is 
"smoking gun" evidence for sea quark OAM. 

• SpinQuest will measure the correlation between 
the angular distribution of the di-muons and the 
proton spin. If this is non-zero, then the 
antiquarks must have some orbital angular 
momentum.
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SpinQuest Goals 
• Separately measure the Sivers function for the sea quarks 
• Measure Sign and Magnitude 

𝒇𝟏𝑻# |𝑺𝑰𝑫𝑰𝑺 = −𝒇𝟏𝑻# |𝑫𝒀
• Measurement of Sivers function for gluons (𝐽/𝜓 SSA)
• Polarized (𝑢 to �̅� ratio
• Extensions: transversely, tensor charge, tensor polarized observables, dark sector, polarized proton beam, ….

𝑒 + 𝑝↑ → 𝑒)𝜋𝑋
• Polarized Semi-Inclusive DIS

𝑝 + 𝑝↑ → 𝜇*𝜇+𝑋
• Polarized Drell-Yan

• L-R asymmetry in hadron production 
• Quark to hadron fragmentation function 
• Valence-sea quark: mixed 

• L-R asymmetry in Drell-Yan production 
• No fragmentation function 
• Valence-sea quark: isolated 
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FERMILAB (E1039) EXPERIMENT
(Un)Polarized Drell-Yan Experiments 
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Cryoplatform at NM4 and Polarized Target in NM3 

Proton Beam 
direction

gHe tanks

LN2 tank

Shielding 
blocks

Cryoplatform

Target Cave

Model Courtesy of Don Mitchell (FNAL)
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Cryoplatform at NM4 and Polarized Target in NM3 

Model Courtesy of Don Mitchell (FNAL)
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SpinQuest/E1039 Experiment Setup @ FNAL
• FNAL 120 GeV proton beam 

• 𝑠 = 15.5	GeV
• 5×10,-  protons/spill with 4.4 sec/min
• 7.7×10,. protons on target/year 

NM4
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Polarized Target System

17,000 𝒎𝟑/𝒉 providing the highest cooling 
power for 1K system

Owned by LANL

UVA: Configure Fridge and Insert, Commission 
for Optimal running, Setup with Actuator 

Will use Liverpool cold NMR, 
UVA AI w/ Q-meter, and 

LANL Q-meter for systematic 
measurements of polarization

UVA: Design 

Owned by LANL and modified by Oxford
to be optimized for transverse polarization 

UVA: Target Insert with 
longest cell at 8 cm for 

5T 

UVA: Tune System and 
Automation

Assembled, 
Commissioned and 
Operated by UVA
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Dynamic Nuclear Polarization (DNP)
• Transfer of spin polarization from electrons 

to nuclei using RF irradiation in an external 
magnetic field

• The 𝜇! = 660𝜇" . Whereas the 
polarization at 5T and 1K of electrons is 
98% and protons is 0.5%.

• Dipole-dipole interaction between electron 
and proton provides contact between spin 
species. 

• By applying RF-field at 140 GHz very close 
to electron ESR frequency electron high 
polarization can be transferred to proton. 

• One electron transition/millisecond 
• One proton transition/minute 
• The model is valid if the ESR spectrum is 

narrow.  Solid State Effect (SSE)
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Microwave System 

• 140 GHz RF signal is generated by Extended-Interaction Oscillator (EIO) 
through interaction between electron beam (produced from ~kV of 
cathode/anode) and resonant cavities

• The optimal frequency changes as we flip the spin direction
• The optimal frequency also changes as the target accumulates radiation 

damage from the beam
• The variation of the beam voltage allows up to 0.4% frequency tuning 
• Cavity size adjustment using a stepper motor allows an additional 1.5% 



13

EIO Tube 

30 dB 
Coupler

10 dB 
Coupler

HP Power 
Meter

EIP 
Frequency 
Meter

Microwave Dump

Top of Target Insert

Microwave Horn

Target Cups

Waveguide 

Transition to 
Circular/Rectang
ular Waveguide

Microwave System 
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Microwave System 
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Target Material 
• A successful target material candidates for the DNP can be characterized by:

• Maximum achievable polarization 
• Dilution factor → total nuclear content
• Resistance to ionization radiation

• Paramagnetic centers can be doped into bulk target material (chemical or by radiation doping)
• The target consists of an 8cm long PTFE target cells containing ammonia beads immersed in LHe
• Target material 𝑁𝐻)/𝑁𝐷) are doped with paramagnetic free-radical by being irradiated at NIST
• The polarization decays over time due to the radiation damage and restored by annealing process 

(target is heated at 70-100K) 
• Also form color centers that correlates to 

the dose 
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Preparation of Solid Ammonia 
• The following pictures and CAD model depict the preparation of Solid Ammonia at NIST. 
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Superconducting Magnet 
• The superconducting magnet coils provide 

Magnetic Field (transverse to the beam): B=5 
T with uniformity 𝑑𝐵/𝐵 < 10AB over 8cm

• The magnet consist of NbTi coils which are 
impregnated in epoxy to prevent them from 
moving during when the magnet is energized; 
and the coils are held in place by stainless 
steel (type: 316)

• Originally used by LANL with axial field in a 
neutron beam,  Oxford Instruments rebuild for 
transverse polarization, then commissioned 
and tested at UVA and finally send to FNAL 
and reassembled.

Coil
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Superconducting Magnet 



Superconducting Magnet 
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UVA target group and FNAL technicians installed 
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Superconducting Magnet 
• The Thermal processes within the magnet 

is described by a general heat transfer 
equation: 

𝑐
𝜕𝑇
𝜕𝑡 = ∇ 𝜅∇𝑇 + 𝑃;<= + 𝑃>;

𝑃;<= is the external-heat sources coming 
mainly from the beam-target interactions and 
𝑃>; is the heat transferred to the liquid 
helium

The heat deposited to the magnet 𝑃*+,  is 
simulated using Geant4

Courtesy of Zulkaida Akbar

Beam Pathway
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Nuclear Magnetic Resonance (NMR)
• Polarization of the proton is measured using Q-meter based NMR 
• An RF field at the Larmor frequency of the proton (213 MHz at 5T) with absorption measured with 

constant current CW-NMR
• Series Q-meter connected to NMR coil with inductance 𝐿- and resistance 𝑟- that is embedded in 

target material 
• The RF field is produced by three NMR coils inside the target cup
• An LCR Circuit is tuned to the Larmor frequency of the target material
• Due to high radiation very long cable (𝜆/2 ≥14 for proton) is required: 3 Different measurement 

techniques: UVA AI w/ Q-meter, cold NMR, and LANL Q-meter for systematic checks

Courtesy of James MaxwellNote: PSD= phase sensitive detector
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Nuclear Magnetic Resonance (NMR)

Polarization growth, radiation damage, decay of material

Note: This polarization growth and decay with electron-beam. 

Proton NMR in 𝑁𝐻/
Deuteron NMR in d-Butanol 

One of the UVA NMR Setups
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Evaporation Refrigerator 
• Evaporated He from the target nose need 

to be pumped out by high powered Root 
pump to keep the temperature at 1 K at 
0.12 torr

• The Root pump having 17,000 𝑚#/ℎ𝑟 
• Critical components for high-cooling 

power refrigerator:
§ High-power pump
§ Sufficient supply of the LHe
§ Heat exchanger that being the He 

temperature down from 4.2 K to 1 K 
§ Thermal shielding 

Note: Please see Vibodha Bandara talk on 
Evaporation Refrigerator. 
https://indico.jlab.org/event/663/contribution
s/13094/ 

https://indico.jlab.org/event/663/contributions/13094/
https://indico.jlab.org/event/663/contributions/13094/
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Cryo-Platform
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QT Compressors Cold heads & cold box
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Root Pumps
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Target Cave Beam Window
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Target Cave 
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Target System Status 

• Expected Transfer Efficiency ~68%
• Max measured so far 71%
• Averaging 69%

• Expected magnet boil-off < 15 slm
• Measured boil-off ~5 slm

• Expected QT production rate 
~200L/day
• Producing 195L/day 

• Helium Budget at Cave 
=0.69*195L/day ~135L/day
• Standby mode < 25L/day (no 

fridge operation)
• Low flow production !60L/day 

(minimum heat load)
• Standard production ~95L/day 

(expected intensity)

• Microwave System
• In-hall hardware Installed
• Software controls up and 

running
• Superconducting magnet

• Boil-off low with E-7 torr 
vacuum

• Passed all tests (fully 
operational)

• Tested at FNAL cooled down to 
4K during cooldown

• 1K Refrigerator 
• Passed all tests (fully 

operational)
• Multichannel NMR

• In-hall hardware Installed
• Software controls up and 

running
• Integrated system test

• Performed at UVA (95%)

• Target Insert
• Fully constructed 

and ready for tests
• Target Material

• Practicing with 
CH2/CD2 with 
cryogenics (LN2)

• NH3/ND3 use 
pending ES&H 
approval

• Online Monitoring 
System
• Fully operational
•  All alarms and 

subsystems working

Helium Supply Target Infrastructure
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Summary 
• SpinQuest can measure the transverse single spin asymmetry (TSSA) in Drell-Yan 

(DY) process and charmonium production 
• This can provide information to the Sivers function for the quarks and gluons 
• The polarized-target system for the SpinQuest experiment consist of a 5T 

superconducting-split magnet, 140 GHz EIO generator, 8 cm of solid 𝑁𝐻I/𝑁𝐷I 
target, evaporation refrigerator and Q-meter based NMR system. 

• During cooldowns at University of Virginia (UVa), The SpinQuest Polarized Target 
achieved proton polarization of 95% using Dynamic Nuclear Polarization (DNP) 
technique. 

• System is fully constructed and awaits approval from FNAL ES&H to use the 
target material in the system. 

• First beam expected November 2023.
• After summer shutdown, SpinQuest will do beam-target commissioning, quench 

testing to study maximum possible proton intensity for production running. 
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Welcome !
Please join The Effort 
• Dustin Keller (dustin@virginia.edu) [Spokeperson]
• Kun Liu (liuk@fnal.gov) [Spokeperson]
 
https://spinquest.fnal.gov 
Experiments (virginia.edu) 

This work was supported by DOE contract DE-FG02-96ER40950

Thanks 

mailto:dustin@virginia.edu
mailto:liuk@fnal.gov
https://spinquest.fnal.gov/
http://twist.phys.virginia.edu/E1039/
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Back-up Slides
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SpinQuest/E1039 Experiment Setup @ FNAL
• LANL/UVA Polarized Target

• Solid 𝑁𝐻/, 𝑁𝐷/
• 5T field, 1K fridge 
• 140 GHz microwave source (with DNP technique)
•  Helium Liquefier System (200L/day
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Target Material (𝑵𝑯𝟑/𝑵𝑫𝟑) 
• The figure of merit (FOM) is crucial for target material:

𝐹𝑂𝑀 = 𝑃./. 𝑓/. 𝜌. 𝜅
• The dilution factor and the target polarization have the largest impact on the FOM
• The filling factor 𝜿 is linked to the thermal conductivity and the shape of the target material 

Material Dens. 
𝒈/𝒄𝒎𝟑

Length (cm) Dilution Factor Packing 
Fraction 

𝑷𝒛

𝑁𝐻# 0.867 7.9 0.176 0.6 80%

𝑁𝐷# 1.007 7.9 0.3 0.6 32%

• Basic Dilution factor: ratio of number of polarizable nucleons to total no. of nucleons in the target. 
𝑓01! =

0"
0"200#$

= )
)234

= 0.176 ; 𝑓05! =
0%

0%200#$
= 6

)237
= 0.3 

• Kinematic Dilution factor: ratio of cross-section of polarizable nucleons to the cross-section of all 
the nucleons in the target. 

𝑓 𝑥 =
𝑁1𝜎88↑

59 +

𝑁1𝜎88↑
59 + + 𝑁𝑁34𝜎88↑

59 + + 𝑁𝐻𝑒𝜎88↑
59 + + 𝑁𝐴𝑙𝜎88↑

59 + +⋯
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Superconducting Magnet 
• Based on this study the maximum intensity of the beam is 2.7×10CD proton/sec (with 

pumping on the He reservoir at 2.5 K with the rate of 100 SLPM)

The simulation was done 
using COMSOL by 
applying Finite-Element 
Method 

The simulation was done 
using COMSOL by 
applying Finite-Element 
Method 

The hot spot spread uniformly due to the 
thermal conductivity of the copper matrix

Magnet coil 

Stainless-
steel former

Courtesy of Zulkaida Akbar
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Predicted Uncertainties
Ø Beam (~ 2.5%)

• Relative luminosity (~ 1%)
• Drifts (< 1%)
• Scraping (~ 1%)

Ø Analysis sources (~ 3.5%)
• Tracking efficiency (~ 1.5%)
• Trigger & geometrical acceptance (< 2%)
• Mixed background (~ 3%)
• Shape of DY (~ 1%)

Ø Target (~ 6-7%)
• TE calibration (proton ~ 2.5%; deuteron ~ 4.5%)
• Polarization inhomogeneity (~ 2%)
• Density of target (𝑁𝐻)(;)) (~ 1%)
• Uneven radiation damage (~ 3%)
• Beam-Target misalignment (~ 0.5%)
• Packing fraction (~ 2%)
• Dilution factor (~ 3%)
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