GPU-based Online Reconstruction for J/ψ TSSA at the SpinQuest Experiment

Eric Fuchey

Mississippi State University

(now at College of William and Mary)

25th International Symposium on Spin Physics

September 26th, 2023

MISSISSIPPI STATE

Outline

- Motivation:
 - The Nucleon Spin Puzzle and the Sivers Function
 - The SpinQuest Experiment
- SpinQuest Online Reconstruction (OR) with GPUs
 - Motivations and Challenges
 - Features and Performances
- Summary and Outlook

Nucleon Spin Puzzle

Spin Sum Rule:

- $\Delta\Sigma$: spin of quarks and antiquarks ΔG : spin of gluons
- L_a : angular momentum of
 - quarks and antiquarks;
- L_a : angular momentum of gluons

Measurements of $\Delta\Sigma$:

- EMC: Nucl. Phys. B328, 1 (1989): $\Delta\Sigma = 0.12 \pm 0.09 \pm 0.14$,
- COMPASS: Phys. Lett. B753, 18 (2016):
 0.26 < ΔΣ < 0.36

 $\Delta G + L_q + L_g$ contributes to more than half of the nucleon spin

Sivers Function

The Sivers function $f_T^{\perp_q}$ provides information on the angular momentum of partons. The Sivers function can be accessed with Transverse Single Spin Asymmetries (TSSA) measurements on polarized Drell-Yan (DY).

09/26/2023

More details in I. Fernando's talk earlier in this session

The E1039/SpinQuest Experiment: Spectrometer

The E1039/SpinQuest Experiment: Polarized Target

Polarized targets:

- NH₃: Ammonia;
- ND₃: Deuterated Ammonia;
- NH₃ polarization: average 78% (maximum 97%)
- ND₃ polarization: average 30% (maximum 50%)
- Polarization flip every 8 hours.

More details in M. Farooq's talk, 9/26, 14:30; Polarized Ion and Lepton Sources and Targets

The SpinQuest Experiment: DY Measurement

Measurement of the antiquark Sivers function $f_T^{\perp_q}$ on proton (NH₃) and neutron (ND₃). Contributions of the quark Sivers function suppressed by acceptance.

The SpinQuest Experiment: J/ψ Measurement

 J/ψ TSSA is dominated by gluon fusion in the SpinQuest kinematical coverage:

- gluon Sivers function;
- gluon angular momentum (L_a) .

The SpinQuest Experiment: J/ψ Measurement

 J/ψ TSSA is dominated by gluon fusion in the SpinQuest kinematical coverage:

- gluon Sivers function;
- gluon angular momentum (L_a) .

TSSA statistical uncertainties for one week of J/ψ data for the first SpinQuest publication.

GPU-based Online Reconstruction Program

Scope of the project: monitor SpinQuest data *in real-time* with an ultra-fast analysis program using Graphics Processing Units (GPU) instead of Computer Processing Units (CPU).

GPU Programming Challenges

Memory management much more "rigid" on GPU than on CPU:

- Memory *must be pre-allocated* on GPU (input+output);
- Input data copied from CPU to GPU;
- Data processed on GPUs;
- Output data can be copied back to the CPU and stored in a file.

GPUs Speed Optimization: Per-Event Multithreading

Multithreading is pivotal to achieve the required processing speed:

- Search of tracks candidates on a definite portion of the acceptance for each thread (32 threads in total);
- Track candidates spread evenly over the existing threads to optimize GPU resources.

Track Reconstruction for E1039/SpinQuest

Main steps:

- Reconstruct straight tracks in from station 2 Drift Chambers (D2) to station 3 DC top/bottom (D3p/D3m);
- Associate hits with station 1 DC (D0) to straight tracks;
- Combining D2-D3p/m 3 tracks and D0 track segments => momentum.

X: vertical wires

- U: wires at +14 degrees with respect to X wires
- V: wires at -14 degrees with respect to X wires

Track Reconstruction for E1039/SpinQuest (2)

D2-D3p/m tracking

- 2D track using the hits in XX' in station 2 and station 3 => x slope (t_x) , position (x_0) ;
- Evaluate Y from U/V hits from intersection of 2D track with U,V wires
 => y slope (t_v), position (y₀);

Tracking Results GPU OR vs CPU Ktracker

• Single tracks parameters, E906/SeaQuest data (run 12525)

Green: Ktracker (reference) Red: GPU OR (this work) D0 multiplicity <= 210; D2 multiplicity <= 120; D3p multiplicity <= 90; D3m multiplicity <= 90; ~55% of the total statistics

GPU Vertex Reconstruction on E1039/SpinQuest experiment

Main steps:

- Propagate the track through the FMAG (focusing magnet);
- Extrapolate the track to the target;
- Distance of closest approach (DOCA) from beam line => vertex.

Vertexing Results GPU OR vs. CPU Ktracker

- Single tracks vertex and momentum, E906/SeaQuest data (run 12525)
- Wider transverse vertex distributions, due to the GPU approach compared to the Ktracker Kalman filter fitting.

Dimuon Reconstruction

- Implemented the dimuons reconstruction in the GPU OR program by
 - pairing tracks of different charge;
 - evaluating the vertex as the DOCA between the two muons tracks;
 - reconstructing the momentum of each track as the momentum at the position of the dimuon vertex, not at the single-track original vertex.

Dimuons GPU OR vs. CPU Ktracker

• **Dimuon** variables, E906/SeaQuest data (run 12525)

Dimuons GPU OR vs CPU Ktracker

• **Dimuon** vertex and momentum, E906/SeaQuest data (run 12525)

GPU Online Reconstruction Performance

- Installed the GPU OR program on a top-end GPU tower for processing the incoming E1039/SpinQuest data;
- Processes the equivalent of a spill of E906/SeaQuest data within a fraction of the time between two spills (below 50 seconds);
- Full deployment is underway with the necessary packages to process the E1039/SpinQuest data format.

Summary and Outlook

The SpinQuest experiment will provide great insight into the quest of the nucleon spin puzzle:

- Study DY on the proton and the neutron => antiquark Sivers function;
- Probe $J/\psi =>$ Gluon Sivers function!

GPU online reconstruction program is being finalized:

- GPU offers significant performance improvement compared to CPU;
- Its reconstruction algorithms are ready and results compare reasonably well with Ktracker;
- GPU OR program is being deployed on GPU machine for upcoming E1039 processing
- Logic for its display interface is still under development

THANK YOU!

J/ψ asymmetry x_2 bin migration

Asymmetric x_2 bin migration (reconstructed x_2 on average larger than generated x_2). This causes the error bars to be smaller for reconstructed dimuons than for generated ("true") dimuons at higher x_2 .

Cause: dimuon energy loss due to the muons multiple scattering in FMAG. (Variation of measured x_2 correlated with the variation of relativistic boost γ of the dimuon)

Track Reconstruction for E1039/SpinQuest (3)

Sagitta calculation for D0 hit selection:

- Expected position (and window) of hits in station 1 chambers using the positions of the hits from station 2 and station 3 + origin;
- Two possible origins: target or dump: hit selection window calculated for each origin (both windows combined).

Momentum Calculation:

- Point of intersection $X_{_{i\scriptscriptstyle D}}$ between back partial track and the station 1 track segment to be built;
- XX' hits in station 1 fitted with $X_{ip} =>$ station 1 track segment
- Calculation of momentum with the slopes of the back partial track and of the station 1 track segment
- Update of y_0 , t_v with D0 UV hits and D0 track segment

Tracking results GPU OR vs CPU Ktracker

Single track parameters, E906 data (run 12525)

Vertexing results GPU OR vs CPU Ktracker

Single track vertex and momentum, E906 data (run 12525)

Vertexing results GPU OR vs CPU Ktracker

Single track vertex and momentum, pure Monte Carlo dimuons

Ktracker tracking algorithm

Dimuon selection

- Implemented the dimuons reconstruction in the GPU OR program based on these criteria
 - Mass selection $M_{dim} < 10 (GeV/c)^2$;
 - □ |X_F| < 1;
 - $\quad \ \ 0 < x_1 < 1, \ 0 < x_2 < 1;$
 - $\ \ \, |\cos\,\theta_{dim}|<1;$
 - \square 30 GeV/c < p_z^{dim} < 120 GeV/c
 - $|p_x^{dim}| < 3 \text{ GeV/c and } |p_y^{dim}| < 3 \text{ GeV/c};$
 - $|v_x^{\text{dim}}| < 15 \text{cm and } |v_y^{\text{dim}}| < 15 \text{cm}$

Dimuons GPU OR vs CPU Ktracker

• Dimuon parameters, E906 data (run 12525)

Dimuons GPU OR vs CPU Ktracker

• Dimuon vertex and momentum, E906 data (run 12525)

09/26/2023