Physics with a Positron Beam at Jefferson Lab

Axel Schmidt

25th International Spin Symposium

September 25, 2023

THE GEORGE WASHINGTON UNIVERSITY WASHINGTON, DC "Spin" reveals a discrepancy in the proton's form factors.

"Spin" reveals a discrepancy in the proton's form factors.

Positrons can reveal interference terms.

Positrons can reveal interference terms.

Positrons can reveal interference terms.

Positrons can provide information that just electrons cannot.

- Interference Physics
 - Two-photon exchange
 - DVCS / Bethe-Heitler
 - Coulomb effects

Positrons can provide information that just electrons cannot.

- Interference Physics
 - Two-photon exchange
 - DVCS / Bethe-Heitler
 - Coulomb effects
- Charged-current Physics
 - Dark photon searches
 - Axial-form factors
 - Strangeness

Jefferson Lab Positron Wc

Collaboration Meeting University of Virginia, March 2023

Join our mailing list pwg-request@jlab.org El Issue: <u>An Experimental Program with Positron</u> <u>Beams at Jefferson Lab</u>

Steering positrons to the halls

- Takes advantage of existing infrastructure, minimal civil construction.
- Pre-cursor to possible 22 GeV upgrade

Timeline

	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41
Moller (funded)																		
SoLID (science rev)																		
Positron Source Dev																		
PreProject/Project Dev																		
Upgrade Phase 1																		
Transport comm/e+																		
Upgrade Phase 2																		
CEBAF Up																		

- FY23 \$\$
- Phase 1: tie LERF to CEBAF & injector for e+ \$101M (\$78M \$152M)
- Phase 2: High Energy Upgrade (includes FFAs) \$244M (\$188M \$366M)
- Total cost (Class 4 estimate)
- Pre-R&D (FY25 FY27)

\$345M (\$265M – \$517M)

\$3.0M/year (+\$0.5M/year in LDRD)

Source: Thia Keppel, March 2023

Positron Experiments/Concepts at JLab

Multi-photon exchange

PR12+23-003:Coulomb Effects in DISPR12+23-008:Two-photon Exchange at CLAS12PR12+23-012:Two-photon Exchange in Hall CLOI12+23-008:Two-photon Exchange in Pol. Trans.LOI12+23-015:Coulomb Effects in Inclusive eAWhite paper:Electroweak couplings at SOLID
Two-photon in elastic eA

Imaginary part of TPE amplitude

Dark Photon Searches

PR12+23-005: Annihilation Search LOI12+23-005: Bhabha Search

Charged-Current

LOI12+23-002: Axial Form Factor White paper: Strangeness via Charm Tag

Virtual Compton Scatt.

PR12+23-002: DVCS asymmetries at CLAS12 PR12+23-006: DVCS cross section in Hall C LOI12+23-001: Generalized Polarizabilities White papers: DVCS on neutrons, He-4 DDVCS at SOLID

Other BSM

White paper: charged-lepton flavor violation search

Positron Experiments/Concepts at JLab

Multi-photon exchange

PR12+23-003:Coulomb Effects in DISPR12+23-008:Two-photon Exchange at CLAS12PR12+23-012:Two-photon Exchange in Hall CLOI12+23-008:Two-photon Exchange in Pol. Trans.LOI12+23-015:Coulomb Effects in Inclusive eAWhite paper:Electroweak couplings at SOLID
Two-photon in elastic eA

Imaginary part of TPE amplitude

Dark Photon Searches

PR12+23-005: Annihilation Search LOI12+23-005: Bhabha Search

Charged-Current

LOI12+23-002: Axial Form Factor White paper: Strangeness via Charm Tag

Virtual Compton Scatt.

PR12+23-002: DVCS asymmetries at CLAS12 PR12+23-006: DVCS cross section in Hall C

LOI12+23-001: Generalized Polarizabilities White papers: DVCS on neutrons, He-4 DDVCS at SOLID

Other BSM

White paper: charged-lepton flavor violation search

Positrons for Deeply Virtual Compton Scattering

Bi-linear combination of GPDs

QED: Known to ≈1%

Linear Combination of GPDs Beam charge-dependent

 $\left|\mathcal{T}^{DVCS}\right|^2 \propto 1/y^2 = (k/\nu)^2$

ovides 5 independent observables:

-1, $\sim \cos \varphi$, $\sim \sin \varphi$, $\sim \cos(2\varphi)$, $\sim \sin(2\varphi)$

 $\left|\mathcal{T}^{DVCS}\right|^2 \propto 1/y^2 = (k/\nu)^2$

ovides 5 independent observables:

-1,
$$\sim \cos arphi, \sim \sin arphi$$
, $\sim \cos(2arphi), \sim \sin(2arphi)$

M. Duferne et al., PRC 92, 055202 (2015)

Proposed DVCS Experiments

- Precision Measurements in Select Kinematics (Hall C)
 - PR12+23-006
 - High Momentum Spectrometer (HMS) + Neutral Particle Spec. (NPS)
- Survey Measurements over a Wide Phase Space (Hall B)
 - PR12+23-002
 - CLAS12

E12+23-006 in Hall C

Goal: high-precision cross sections overlapping electron data

- Same kinematics as E12-13-010
 - 17 settings, 3 beam energies
- **Neutral Particle** • 135 days, 1 μA of unpolarized e+ Spectrometer High Momentum Spectrometer Spokespeople: C. Munoz-Camacho, M. Mazouz

Neutral Particle Spectrometer

E12+23-006: Coverage and Reach

Systematic Estimates: 2% point-to-point, 3.5% scale

Hall C positron measurement will greatly improve CFF extraction.

E12+23-002 in Hall B

 Goal: determination of ty and charge asymmetries over a wide phase space.

Magnetic field reversals are critical for suppressing systematics.

Magnetic field reversals are critical for suppressing systematics.

Charge and helicity asymmetries

Four combinations for $\sigma^{Beam \ charge}_{Helicity}$

$$\sigma^+_+, \sigma^+_-, \sigma^-_+, \sigma^-_-$$

Unpolarized BCA

$$A_{UU}^{C} = \frac{(\sigma_{+}^{+} + \sigma_{-}^{+}) - (\sigma_{+}^{-} + \sigma_{-}^{-})}{(\sigma_{+}^{+} + \sigma_{-}^{+}) + (\sigma_{+}^{-} + \sigma_{-}^{-})}$$

Avg. Helicity Asymmetry $A_{LU}^0 = \frac{(\sigma_+^+ - \sigma_-^+) + (\sigma_+^- - \sigma_-^-)}{(\sigma_+^+ + \sigma_-^+) + (\sigma_-^- + \sigma_-^-)}$

$$A_{LU}^{C} = \frac{(\sigma_{+}^{+} - \sigma_{-}^{+}) - (\sigma_{+}^{-} - \sigma_{-}^{-})}{(\sigma_{+}^{+} + \sigma_{-}^{+}) + (\sigma_{+}^{-} + \sigma_{-}^{-})}$$

Polarized BCA

Significant improvements in constraints on GPDs

H. Dutrieux, V. Bertone, H. Moutarde, P. Sznajder, EPJ A 57:250 (2021)

Positron Experiments/Concepts at JLab

Multi-photon exchange

PR12+23-003:Coulomb Effects in DISPR12+23-008:Two-photon Exchange at CLAS12PR12+23-012:Two-photon Exchange in Hall CLOI12+23-008:Two-photon Exchange in Pol. Trans.LOI12+23-015:Coulomb Effects in Inclusive eAWhite paper:Electroweak couplings at SOLIDTwo-photon in elastic eAImaginary part of TPE amplitude

Dark Photon Searches

PR12+23-005: Annihilation Search LOI12+23-005: Bhabha Search

Charged-Current

LOI12+23-002: Axial Form Factor White paper: Strangeness via Charm Tag

Virtual Compton Scatt.

PR12+23-002: DVCS asymmetries at CLAS12 PR12+23-006: DVCS cross section in Hall C LOI12+23-001: Generalized Polarizabilities White papers: DVCS on neutrons, He-4 DDVCS at SOLID

Other BSM

White paper: charged-lepton flavor violation search

For decades, proton form factors were observed to "scale."

- Hadronic Approaches
 - Treat propagator as a sum of on-shell states.
 - e.g. Ahmed et al., PRC 2020, Blunden PRC 2017

- Hadronic Approaches
 - Treat propagator as a sum of on-shell states.
 - e.g. Ahmed et al., PRC 2020, Blunden PRC 2017
- Partonic Approaches
 - Treat interaction of $\gamma\gamma$ with quarks, distributed by GPDs
 - e.g. <u>Afanasev et al., PRD 2005</u>, <u>Kivel and Vanderhaeghen PRL 2009</u>

- Hadronic Approaches
 - Treat propagator as a sum of on-shell states.
 - e.g. Ahmed et al., PRC 2020, Blunden PRC 2017
- Partonic Approaches
 - Treat interaction of $\gamma\gamma$ with quarks, distributed by GPDs
 - e.g. <u>Afanasev et al., PRD 2005</u>, <u>Kivel and Vanderhaeghen PRL 2009</u>
- Phenomenology
 - How much TPE is needed to resolve the FF discrepancy
 - e.g. <u>Bernauer et al., PRC 2014</u>, <u>Schmidt JPG 2020</u>

- Hadronic Approaches
 - Treat propagator as a sum of on-shell states.
 - e.g. Ahmed et al., PRC 2020, Blunden PRC 2017
- Partonic Approaches
 - Treat interaction of $\gamma\gamma$ with quarks, distributed by GPDs
 - e.g. <u>Afanasev et al., PRD 2005</u>, <u>Kivel and Vanderhaeghen PRL 2009</u>
- Phenomenology
 - How much TPE is needed to resolve the FF discrepancy
 - e.g. Bernauer et al., PRC 2014, Schmidt JPG 2020
- Dissenting opinions
 - e.g. <u>Kuraev PRC 2008</u>

Predictions for $R_{2\gamma} \equiv \sigma_{e^+p}/\sigma_{e^-p}$

Predictions for $R_{2\gamma} \equiv \sigma_{e^+p}/\sigma_{e^-p}$

Predictions for $R_{2\gamma} \equiv \sigma_{e^+p} / \sigma_{e^-p}$

Predictions for $R_{2\gamma} \equiv \sigma_{e^+p} / \sigma_{e^-p}$

Existing data on $R_{2\gamma}$

OLYMPUS measured a small TPE effect.

Henderson et al., PRL 2017

Recent experiments lacked the kinematic reach.

Recent experiments lacked the kinematic reach.

CLAS12 can do a way better job than OLYMPUS

Performance	OLYMPUS	CLAS12
Azimuthal Acceptance	$\pi/4$	2π
Luminosity	$2 \cdot 10^{33}$	10 ³⁵
Beam Energy	2 GeV	6.6 GeV

Our proposed experiment

Spokespeople:

A. Schmidt, J. Bernauer, N. Santiesteban,

T. Kutz, I. Korover, E. Cline, V. Burkert

Our proposed experiment

Spokespeople:

A. Schmidt, J. Bernauer, N. Santiesteban,

T. Kutz, I. Korover, E. Cline, V. Burkert

Elastic scattering is easy to identify.

CLAS12 covers a huge amount of new phase space.

CLAS12 covers a huge amount of new phase space.

Projected stat. uncertainties

Projected stat. uncertainties

Projected stat. uncertainties

E12+23-012: Complimentary Approach

M. Nycz, J. Arrington, N. Santiesteban, M. Yurov

E12+23-012: Complimentary Approach

- Super-Rosenbluth Technique
 - Only detect recoiling proton
 - Fixed $Q^2 \rightarrow$ fixed field setting

Spokespeople: M. Nycz, J. Arrington, N. Santiesteban, M. Yurov

Positron Experiments/Concepts at JLab

Multi-photon exchange

PR12+23-003:Coulomb Effects in DISPR12+23-008:Two-photon Exchange at CLAS12PR12+23-012:Two-photon Exchange in Hall CLOI12+23-008:Two-photon Exchange in Pol. Trans.LOI12+23-015:Coulomb Effects in Inclusive eAWhite paper:Electroweak couplings at SOLID
Two-photon in elastic eAImaginary part of TPE amplitude

Dark Photon Searches

PR12+23-005: Annihilation Search LOI12+23-005: Bhabha Search

Charged-Current

LOI12+23-002: Axial Form Factor White paper: Strangeness via Charm Tag

Virtual Compton Scatt.

PR12+23-002: DVCS asymmetries at CLAS12 PR12+23-006: DVCS cross section in Hall C LOI12+23-001: Generalized Polarizabilities White papers: DVCS on neutrons, He-4 DDVCS at SOLID

Other BSM

White paper: charged-lepton flavor violation search

PR12+23-005: Dark Matter Search

• PRAD set-up to search for $e^+e^- \rightarrow \gamma(A')$

 10^{-7} VEPP-3 2.2GeV 4.4GeV 10^{-8} 11GeV 11GeV 10^{-9} 10^{-2} 10^{-1} 10^{-1} 10^{-2} 10^{-1} 10^{-1} 10^{-1}

Spokespersons:

A. Gasparian, N. Liyanage, B. Raydo, B. Wojtsekhowski

Positron Experiments/Concepts at JLab

Multi-photon exchange

PR12+23-003:Coulomb Effects in DISPR12+23-008:Two-photon Exchange at CLAS12PR12+23-012:Two-photon Exchange in Hall CLOI12+23-008:Two-photon Exchange in Pol. Trans.LOI12+23-015:Coulomb Effects in Inclusive eAWhite paper:Electroweak couplings at SOLIDTwo-photon in elastic eAImaginary part of TPE amplitude

Dark Photon Searches

PR12+23-005: Annihilation Search LOI12+23-005: Bhabha Search

Charged-Current

LOI12+23-002: Axial Form Factor White paper: Strangeness via Charm Tag

Virtual Compton Scatt.

PR12+23-002: DVCS asymmetries at CLAS12 PR12+23-006: DVCS cross section in Hall C LOI12+23-001: Generalized Polarizabilities White papers: DVCS on neutrons, He-4 DDVCS at SOLID

Other BSM

White paper: charged-lepton flavor violation search

E12+23-003: Coulomb Effects in DIS

9-day measurement of DIS on Au, d for positrons and electrons

Spokespersons:

Bill Henry, Dave Gaskell, Nadia Fomin

To Recap:

- Positrons are useful for a wide range of
 - Interference physics
 - Charge-current physics

To Recap:

- Positrons are useful for a wide range of
 - Interference physics
 - Charge-current physics

To Recap:

- Positrons are useful for a wide range of
 - Interference physics
 - Charge-current physics
- JLab is planning positron upgrade
- 5 newly approved proposals at this years' PAC.

Jefferson Lab Positron Wc

Collaboration Meeting University of Virginia, March 2023

Join our mailing list pwg-request@jlab.org El Issue: <u>An Experimental Program with Positron</u> <u>Beams at Jefferson Lab</u>

BACK-UP

Positron experiments at PAC51

	NUMBER	CONTACT PERSON	TITLE		DAYS REQ'D	DAYS AWARDED	SCIENTIFIC RATING	PAC DECISION	TOPIC
	PR12-23-001	Nikos Sparveris	Measurement of the Generalized Polarizabilities of the Proton in Virtual Compton Scattering	С	62	62	A-	Approved	2
DVCS	PR12+23-002	Eric Voutier	Beam Charge Asymmetries for Deeply Virtual Compton Scattering on the Proton at CLAS12	В	100	100	A-	C1	4
Coulomb	PR12+23-003	Dave Gaskell	Measurement of Deep Inelastic Scattering from Nuclei with Electron and Positron Beams to Constrain the Impact of Coulomb Corrections in DIS	С	9.3	9.3	A-	C1	5
	PR12-23-004	Bogdan Wojtsekhowski	A Search for a Nonzero Strange Form Factor of the Proton at 2.5 (GeV/c)^2	С	45	45	A-	Approved	2
Dark Matter	PR12+23-005	Bogdan Wojtsekhowski	A Dark Photon Search with a JLab positron beam	В	60			Deferred	6
DVCS	PR12+23-006	Carlos Munoz Camacho	Deeply Virtual Compton Scattering using a positron beam in Hall C	С	137	137	A-	C1	4
	PR12-23-007	David Ruth	A Measurement of the Proton g2 Structure Function at Intermediate Q2	С	33			Deferred	2
TPE	PR12+23-008	Axel Schmidt	A Direct Measurement of Hard Two-Photon Exchange with Electrons and Positrons at CLAS12	В	55	55	A	C1	2
	PR12-23-009	Or Hen	Nuclear Charm Production and Short-Range Correlations in Hall D	D	100			C2	5
	PR12-23-010	Holly Szumila- Vance	Color Transparency in Maximal Rescattering Kinematics	С	95	40	B+	Approved	5
	PR12-23-011	Dipangkar Dutta	Precision Deuteron Charge Radius Measurement with Elastic Electron-Deuteron Scattering	В	40			Deferred	3
TPE	PR12+23-012	Michael Nycz	A measurement of two-photon exchange in unpolarized elastic positron–proton and electron–proton scattering	С	56	56	A-	C1	2

Polarized Electrons for Polarized Positrons

Polarized electrons will tend to pair-produce polarized positrons.

E.A. Kuraev, Y.M. Bystritskiy, M. Shatnev, E.Tomasi-Gustafsson, PRC 81 (2010) 055208

Polarized Electrons for Polarized Positrons

CEBAF Positron Source Concept

- Pair production from 120 MeV e^- beam
- Capture positrons from 20–60 MeV
- Inject into CEBAF at 123 MeV

