Hyperon polarization measurements in heavy-ion collisions

Image from https://www.bnl.gov/newsroom/news.php?a=112068

Takafumi Niida

25th International Symposium on Spin Physics Durham, Sep. 24-29/2023

Heavy-ion collision experiment

Relativistic heavy-ion collisions at RHIC and the LHC

- Understand properties of quark-gluon plasma
- Explore the QCD phase structure: signatures of QCD critical point and 1st-order phase transition
- Connection to neutron star physics in the high baryon density

Orbital angular momentum / Strong magnetic field

In the initial state of non-central HIC:

Large orbital angular momentum $\mathbf{L} = \mathbf{r} \times \mathbf{p}$

 $\sim bA\sqrt{s_{_{NN}}} \sim 10^6\hbar$

Z.-T. Liang and X.-N. Wang, PRL94, 102301 (2005)

Strong magnetic field

 $B \sim m_\pi^2/e$ $\sim 10^{14} \mathrm{T}$

D. Kharzeev et al., Nucl. Phys. A803, 227 (2008) L. McLerran and V. Skokov, Nucl. Phys. A929, 184 (2014)

typical magnet $B \sim 0.1 - 0.5 \text{ T}$

magnetar $B \sim 10^{11} \mathrm{T}$

Orbital angular momentum / Strong magnetic field

T. Niida, SPIN2023

Rotating system under strong B-field produces:

- Particles "globally" polarized along *L or B* via spin-orbit/spin-magnetic coupling

Z.-T. Liang and X.-N. Wang, PRL94, 102301 (2005)

S. Voloshin, nucl-th/0410089 (2004)

F. Becattini, F. Piccinini, and J. Rizzo, PRC77, 024906 (2008)

- In case of the magnetic coupling, particles and antiparticles are oppositely aligned along **B**

Relativistic version of "Barnett effect"

S. Barnett, Phys. Rev. 6, 239 (1915)

i.e. magnetization of spinning matter (ferromagnet)

Polarization measurement

Parity-violating weak decay of hyperons

Daughter baryon is preferentially emitted in the direction of hyperon's spin (opposite for anti-particle)

$$\frac{dN}{d\Omega^*} = \frac{1}{4\pi} \left(1 + \alpha_H \mathbf{P}_H^* \cdot \hat{\mathbf{p}}_B^* \right)$$

 \mathbf{P}_{H} : hyperon polarization $\hat{\mathbf{P}}_{B}$: unit vector of daughter baryon momentum α_{H} : hyperon decay parameter Asterisk* denotes "in hyperon rest frame"

Any hyperons can be used but the sensitivity is different, depending on $\alpha_{H_{-}}$

Nuclear Theory Global polarization, measurement Hanzo Secondary Particles in unpolarized high energy hadr hadron collisions?

T. Niida, SPIN2023

2 of 2

Observation of A global polarization

T. Niida, SPIN2023

- Increasing trend toward lower energies, described well by various theoretical models
 - I. Karpenko and F. Becattini, EPJC(2017)77:213, UrQMD+vHLLE H. Li et al., PRC96, 054908 (2017), AMPT Y. Sun and C.-M. Ko, PRC96, 024906 (2017), CKE Y. Xie et al., PRC95, 031901(R) (2017), PICR Y. B. Ivanov et al., PRC100, 014908 (2019), 3FD model
- Indication of thermal vorticity

 $P_{\Lambda(\bar{\Lambda})} \simeq \frac{1}{2} \frac{\omega}{T} \pm \frac{\mu_{\Lambda}B}{T}$ F. Becattini et al., PRC95, 054902 (2017) $\omega = (P_{\Lambda} + P_{\bar{\Lambda}})k_B T/\hbar \sim 10^{22} \,\mathrm{s}^{-1}$ μ_{Λ} : Λ magnetic moment T: temperature at thermal equilibrium

• Possible difference between Λ and anti- Λ

7

A global polarization at lower energies

STAR, PRC104, L061901 (2021) HADES, PLB835(2022)137506

New data from STAR/HADES at lower energies Continuous increase down to $\sqrt{s_{NN}} \sim 2.5$ GeV

A global polarization at lower energies

STAR, PRC104, L061901 (2021) HADES, PLB835(2022)137506

- New data from STAR/HADES at lower energies Continuous increase down to $\sqrt{s_{NN}}$ ~2.5 GeV
 - Predicted to have the maximum around $\sqrt{s_{NN}} = 3 \text{ GeV}$ - Initial L & "stopping" to "transparency" at midrapidity

- Lifetime of B-field would be very short (<0.5 fm/c) but could be sustained by QGP depending on its electric conductivity
- Polarization splitting provides an upper limit of the late-stage B-field

F. Becattini et al., PRC95.054902 (2017) B. Müller and A. Schäfer, PRD98, 071902(R) (2018) Y. Guo et al., PLB798(2019)134929

T. Niida, SPIN2023

- by QGP depending on its electric conductivity

B. Müller and A. Schäfer, PRD98, 071902(R) (2018) Y. Guo et al., PLB798(2019)134929

T. Niida, SPIN2023

- by QGP depending on its electric conductivity

F. Becattini et al., PRC95.054902 (2017) B. Müller and A. Schäfer, PRD98, 071902(R) (2018) Y. Guo et al., PLB798(2019)134929

T. Niida, SPIN2023

STAR, PRC108, 014910 (2023)

No significant difference in new STAR BES-II results. An upper limit of the late-stage B-field is $B \le 10^{13} \text{ T}$

• Lifetime of B-field would be very short (<0.5 fm/c) but could be sustained by QGP depending on its electric conductivity.

Polarizat Caveat: There are other mechanisms to create the polarization difference...

- different emission time/position of Λ and Λ bar Vitiuk et al., PLB803(2020)135298 F. Becatti
- B. Müller Y. Guo et
- spin interaction with meson field Csernai et al., PRC99.021901(R) (2019)
- chemical potential Fang et al.,, PRC94, 024904 (2016)

Global polarization in isobar collisions

- Smaller system, larger polarization?

$$P_{\Lambda}^{\mathrm{Au}} < P_{\Lambda}^{\mathrm{Ru}} \approx P_{\Lambda}^{\mathrm{Zr}} < P_{\Lambda}^{\mathrm{Cu}} < P_{\Lambda}^{\mathrm{O}} ?$$

S. Shi et al., PLB788(2019)409 S. Alzhrani et al., PRC106, 014905 (2022)

- Larger B-field, larger polarization splitting?

$$\frac{|B^{\mathrm{Ru}}|^2}{|B^{\mathrm{Zr}}|^2} \approx 15\%$$

T. Niida, SPIN2023

No significant splitting nor system size dependence

See Xingrui Gou's talk

Global polarization of multistrangeness

- Ξ and Ω hyperons
 - ✓ Different spin, decay parameter
 - ✓ Less feed-down
 - ✓ Likely different freeze-out in time
- Challenges: small α_H and low production rate

hyperon	decay mode	aн	magnetic moment µн	spin
∧ (uds)	Λ→ρπ- (BR: 63.9%)	0.732	-0.613	1/2
∃- (dss)	Ξ-→Λπ- (BR: 99.9%)	-0.401	-0.6507	1/2
Ω- (sss)	Ω-→ΛK- (BR: 67.8%)	0.0157	-2.02	3/2

* γ_{Ω} is unknown $\alpha_{\Omega}, \beta_{\Omega} \ll 1 \rightarrow \gamma_{\Omega} \sim \pm 1$ Polarization transfer factor: $C_{\Omega\Lambda} \approx +1 \text{ or } -0.6$

Example 1 Example 1 Example 3 Example 3 Constant of a set and a global polarizations at \sqrt{s_{NN}} = 200 GeV

Confirmation of global vorticity picture!

T. Niida, SPIN2023

Hint of hierarchy in P_H but not significant yet

 $\langle P_{\Lambda} \rangle = 0.24 \pm 0.03 \text{ (stat)} \pm 0.03 \text{ (syst)} \%$ $\langle P_{\Xi} \rangle = 0.47 \pm 0.10 \text{ (stat)} \pm 0.23 \text{ (syst)} \%$

 $\langle P_{\Omega} \rangle = 1.11 \pm 0.87 \text{ (stat)} \pm 1.97 \text{ (syst)} \%$

Example 1 Example 1 Example 3 Example 3 Constant of a set and a global polarizations at \sqrt{s_{NN}} = 200 GeV

Confirmation of global vorticity picture!

T. Niida, SPIN2023

Hint of hierarchy in P_H but not significant yet

 $\langle P_{\Lambda} \rangle = 0.24 \pm 0.03 \text{ (stat)} \pm 0.03 \text{ (syst)} \%$ $\langle P_{\Xi} \rangle = 0.47 \pm 0.10 \text{ (stat)} \pm 0.23 \text{ (syst)} \%$ $\langle P_{\Omega} \rangle = 1.11 \pm 0.87 \text{ (stat)} \pm 1.97 \text{ (syst)} \%$

Thermal model: $P_{\Lambda}=P_{\Xi}=3/5^*P_{\Omega}$

$$\mathbf{P} = rac{\langle \mathbf{s} \rangle}{s} pprox rac{(s+1)}{3} rac{\omega}{T}$$
 F. Becattini et al., PRC95.054902

Example 1 Example 1 Example 3 Example 3 Constant of a set and a set and a set of a

Confirmation of global vorticity picture!

T. Niida, SPIN2023

Hint of hierarchy in P_H but not significant yet

 $\langle P_{\Lambda} \rangle = 0.24 \pm 0.03 \text{ (stat)} \pm 0.03 \text{ (syst)} \%$ $\langle P_{\Xi} \rangle = 0.47 \pm 0.10 \text{ (stat)} \pm 0.23 \text{ (syst)} \%$ $\langle P_{\Omega} \rangle = 1.11 \pm 0.87 \text{ (stat)} \pm 1.97 \text{ (syst)} \%$

• Thermal model: $P_{\Lambda}=P_{\Xi}=3/5^*P_{\Omega}$

 $\mathbf{P} = \frac{\langle \mathbf{s} \rangle}{\mathbf{s}} \approx \frac{(s+1)}{2} \frac{\boldsymbol{\omega}}{T}$ F. Becattini et al., PRC95.054902 (2017)

- Earlier freeze-out leads to larger PH O.Vitiuk, L.V.Bravina, and E.E.Zabrodin, PLB803(2020)135298
- Feed-down contribution
 - 10-15% reduction of primary ΛP_H F. Becattini, PRC95, 054902 (2017)
 - ~25% increase of primary ΞP_H H. Li et al., PLB827(2022)136971

Example 1 Example 1 Example 3 Example 3 Constant of a set and a set and a set of a

Confirmation of global vorticity picture!

T. Niida, SPIN2023

Hint of hierarchy in P_H but not significant yet

 $\langle P_{\Lambda} \rangle = 0.24 \pm 0.03 \text{ (stat)} \pm 0.03 \text{ (syst)} \%$ $\langle P_{\Xi} \rangle = 0.47 \pm 0.10 \text{ (stat)} \pm 0.23 \text{ (syst)} \%$ $\langle P_{\Omega} \rangle = 1.11 \pm 0.87 \text{ (stat)} \pm 1.97 \text{ (syst)} \%$

• Thermal model: $P_{\Lambda}=P_{\Xi}=3/5^*P_{\Omega}$

 $\mathbf{P} = \frac{\langle \mathbf{s} \rangle}{\mathbf{s}} \approx \frac{(s+1)}{2} \frac{\boldsymbol{\omega}}{T}$ F. Becattini et al., PRC95.054902 (2017)

- Earlier freeze-out leads to larger PH O.Vitiuk, L.V.Bravina, and E.E.Zabrodin, PLB803(2020)135298
- Feed-down contribution
 - 10-15% reduction of primary ΛP_H F. Becattini, PRC95, 054902 (2017)
 - ~25% increase of primary ΞP_H H. Li et al., PLB827(2022)136971
- Explore Ω /anti Ω difference in the coming data for B-field effect $\mu_{\Omega} \approx 3\mu_{\Lambda}$

Local vorticity

Vortex induced by jet or in asymmetric collisions

 S. Voloshin, EPJ Web Conf. 171, 07002 (2018)

 Y. Tachibana and Ind Trading, NRA904:9954 (20513) 1302333 1023 M.026 Serenone et al., PLB820 (2021) 136500

 B. Betz et al., PRC76.044901 (2007)

 M. Lisa et al., PRC104, L011901 (2021)

Local vorticity induced by collective expansion with density fluctuations

L.-G. Pang et al., PRL117, 192301 (2016) X.-L. Xia et al., PRC98.024905 (2018)

Complex vortical structures might be created

Polarization along the beam direction: P_z

- Polarization along the beam direction expected from the "elliptic flow" F. Becattini and I. Karpenko, PRL120.012302 (2018) S. Voloshin, EPJ Web Conf.171, 07002 (2018)

Polarization along the beam direction: P_z

- Polarization along the beam direction expected from the "elliptic flow" F. Becattini and I. Karpenko, PRL120.012302 (2018) S. Voloshin, EPJ Web Conf.171, 07002 (2018)
- Data indeed show a quadrupole pattern; the sign of P_z depends on azimuthal angle (~sine function)

Anisotropic-flow-driven polarization!

Even due to higher harmonic flow

STAR, arXiv:2303.09074

- plane (Ψ_3) dependence of the polarization

*Not accounted for EP resolution and decay parameter

Recent isobar data (Ru+Ru&Zr+Zr) even show triangular flow

Indicating triangular-flow-driven sextupole pattern of vorticity

See Xingrui Gou's talk

P_z sine modulation

- - Hydrodynamic model with shear-induced polarization shows a bit different trend
- No significant collision system nor energy dependence
 - Scaling better with N_{part}, suggesting the importance of system size in addition to the geometry?
- Sensitivity to specific shear and bulk viscosities, and the initial state

STAR, arXiv:2303.09074

Similar p_T dependence as v_n , further supporting flow-driven polarization

S. Alzharani et al., PRC106.014905 (2022)

A. Palermo et al., EPJ Web Conf. 276 (2023) 01026

Spin sign puzzle still remains?

vorticity:
$$\omega_{\rho\sigma} = \frac{1}{2} \left(\partial_{\sigma} u_{\rho} - \partial_{\rho} u_{\sigma} \right)$$

shear: $\Xi_{\rho\sigma} = \frac{1}{2} \left(\partial_{\sigma} u_{\rho} + \partial_{\rho} u_{\sigma} \right)$

S. Liu, Y. Yin, JHEP07(2021)188 B. Fu et al., PRL127, 142301 (2021) F. Becattini et al., PLB820(2021)136519 F. Becattini et al., PRL127, 272302 (2021)

- "Shear tensor" seems to be needed to explain the data but the sign changes depending on the implementation detail
 - Large cancellation of the thermal vorticity and shear contributions

T. Niida, SPIN2023

The sign of P_z is not reproduced by models based on thermal vorticity, referred to as "spin sign puzzle"

Spin may not be in equilibrium?

Outlook

- Global polarization
 - Complete the energy dependence filling in $\sqrt{s_{NN}} = 3-7.7$ GeV
 - Any chance to see P_H splitting? lower energy or Ω hyperon?
 - \triangleright More precise measurements of Ξ and Ω polarization needed
 - Measurement at forward/backward rapidity where models predict differently
- Local polarization
 - \blacktriangleright ϕ -polarization (toroidal vortex)
 - due to jet or in p+A, Cu+Au, O+Pb(?) collisions
 - Spin Hall Effect?

S. Voloshin, EPJ Web Conf. 171, 07002 (2018) X.-L. Xia et al., PRC98, 024905 (2018) W. M. Serenone et al., PLB820 (2021) 136500 M. Lisa et al., PRC104, L011901 (2021)

 $\mathbf{P} = \frac{\langle \mathbf{s} \rangle}{\mathbf{s}} \approx \frac{(s+1)}{2} \frac{\boldsymbol{\omega}}{T}$

Summary

- QCD matter and spin dynamics in heavy-ion collisions
- - measurements, multi-strangeness hyperons
 - shear term to explain the data but how to implement it?

Observation of the hyperon polarization open new directions in the study of

 A lot of progress in the measurements but still some open questions remain Global polarization: energy dependence from a few GeV to TeV, differential

Polarization along the beam direction: extended to 3rd-order, importance of the

Other predicted phenomena to be explored: vortex ring and spin Hall effect

Backup

T. Niida, SPIN2023

Spin Hall effect

S. Liu and Y. Yin, PRD104, 054043 (2021) B. Fu et al., arXiv:2201.12970

Phase diagram of rotating nuclear matter

Y. Jiang and J. Liao, PRL117.192302(2016)

 Vorticity ω acts like baryon cher transition temperature

Y. Fujimoto, K. Fukushima, Y. Hidaka, PLB816(2021)136184

• Vorticity ω acts like baryon chemical potential μ_B and lower deconfinement

Energy dependence of global polarization

STAR, Nature 548, 62 (2017) STAR, PRC90, 014910 (2018)

I.Karpenko, F. Becattini, EPJ(2017)77.213 Y. Xie, D. Wang, L. P. Csernai, PRC95, 031901(R) (2017)

Feed-down effect

- $\square \sim 60\%$ of measured \land are feed-down from $\Sigma^* \rightarrow \land \pi$, $\Sigma^0 \rightarrow \land \gamma$, $\Xi \rightarrow \land \pi$
- \Box Polarization of parent particle R is transferred to its daughter A (Polarization transfer could be negative!)

$$\mathbf{S}_{\Lambda}^{*} = C\mathbf{S}_{R}^{*} \qquad \langle S_{y} \rangle \propto \frac{S(S+1)}{3} (\omega + \frac{\mu}{S}B) \qquad \begin{array}{l} \text{f}_{\Lambda R} : \text{fraction of } \Lambda \text{ originating from particle } R\\ \mu_{R} : \text{magnetic moment of particle } R \end{array}$$

$$\begin{pmatrix} \varpi_{c} \\ B_{c}/T \end{pmatrix} = \begin{bmatrix} \frac{2}{3} \sum_{R} \left(f_{\Lambda R} C_{\Lambda R} - \frac{1}{3} f_{\Sigma^{0} R} C_{\Sigma^{0} R} \right) S_{R}(S_{R}+1) & \frac{2}{3} \sum_{R} \left(f_{\Lambda R} C_{\Lambda R} - \frac{1}{3} f_{\Sigma^{0} R} C_{\Sigma^{0} R} \right) (S_{R}+1) \mu_{R} \\ \frac{2}{3} \sum_{R} \left(f_{\overline{\Lambda R}} C_{\overline{\Lambda R}} - \frac{1}{3} f_{\overline{\Sigma}^{0} \overline{R}} C_{\overline{\Sigma}^{0} \overline{R}} \right) S_{\overline{R}}(S_{\overline{R}}+1) & \frac{2}{3} \sum_{\overline{R}} \left(f_{\overline{\Lambda R}} C_{\overline{\Lambda R}} - \frac{1}{3} f_{\overline{\Sigma}^{0} \overline{R}} C_{\overline{\Sigma}^{0} \overline{R}} \right) (S_{\overline{R}}+1) \mu_{\overline{R}} \end{bmatrix}^{-1} \begin{pmatrix} P_{\Lambda}^{\text{meas}} \\ P_{\overline{\Lambda}}^{\text{meas}} \end{pmatrix}$$

Decay	С
Parity conserving: $1/2^+ \rightarrow 1/2^+ 0^-$	-1/3
Parity conserving: $1/2^- \rightarrow 1/2^+ 0^-$	1
Parity conserving: $3/2^+ \rightarrow 1/2^+ 0^-$	1/3
Parity-conserving: $3/2^- \rightarrow 1/2^+ 0^-$	-1/5
$\Xi^0 ightarrow \Lambda + \pi^0$	+0.900
$\Xi^- ightarrow \Lambda + \pi^-$	+0.927
$\Sigma^0 ightarrow \Lambda + \gamma$	-1/3

T. Niida, SPIN2023

 $C_{\Lambda R}$: coefficient of spin transfer from parent R to Λ

S_R : parent particle's spin

Becattini, Karpenko, Lisa, Upsal, and Voloshin, PRC95.054902 (2017)

Primary Λ polarization will be diluted by 15%-20% (model-dependent)

This also suggests that the polarization of daughter particles can be used to measure their parent polarization! e.g. Ξ , Ω

Polarization along the beam direction

F. Becattini and I. Karpenko, PRL120.012302 (2018) S. Voloshin, SQM2017

Stronger flow in in-plane than in out-of-plane, known as elliptic flow, makes local vorticity (thus polarization) along beam axis.

