Spin polarization in heavy-ion collisions

Matteo Buzzegoli
[OWA STATE UNIVERSITY

OF SCIENCE AND TECHNOLOGY

25" International Spin symposium f"ff%"’?g
20 September 2023 ? e

Outline

« Global and Local Spin polarization (sign puzzle)

« QFT derivation of vorticity induced and shear induced polarization
« Spin hydrodynamics and pseudo-gauges

« Spin polarization and in-medium form factors



Discovery of global A polarization
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Puzzles: sign of
local spin polarization

Spin polarization in the direction of the angular momentum
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Theory prediction




Theory

The spin polarization vector for spin % particles:
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Wigner function is an expectation value of an integrated two
point function of the Dirac field

Wi(x, k) = tr (ﬁ/W(x, k))

One needs to know the statistical operator to calculate mean values

(X) = tr (ﬁfc)



The statistical operator
from thermalization

In the covariant Zubarev theory, this is
the LTE at some initial “time”:
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With the Gauss theorem: NOTE: T, stands for the symmetrized
Belinfante stress-energy tensor
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To evaluate the spin polarization we neglect the dissipative part. 4



Hydrodynamic limit: Taylor
expansion

Expand the B and ( fields from the point x where the Wigner operator is to be evaluated

Bu(y) = By () + OBy (z)(y — x)* + - -
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Non-equilibrium

At global equilibrium the thermal shear vanishes because of the Killing equation



Spin polarization at local
thermal equilibrium

Linear response theory mmmp SH (p) = SH + Sg B

Vorticity: qH (p) o —LEM'OJTp fZ dX-p nF(l y np)wpa
e 8m i fz dX-png
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Same (not precisely the same) formula obtained by Liu and Yin with a different method:



Solution of the puzzle

Isothermal local equilibrium (ILE)
At high energy, X, expected to be Tro= constant! ‘ Improved approximation

Kinematic vorticity
1
Wpo = 2 (Osup — Opus)
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Comparison between different
calculations
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Polarization has a great potential to pin down the initial conditions and the
QGP evolution which is yet unexploited to a large extent.




Spin hydrodynamics

Spin hydrodynamics is

necessary if the spin relaxation
time scale is much longer than
the time scale of e.g. kinetic

equilibration

Spin tensor SHhHv

Spin potential Q*”

(This is not thermal vorticity)

lw(k)| = frequency scale

fast modes

Non-hydro regime T
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Spin hydro regime '

Pure hydro regime ()

What spin tensor should one use?

Pseudo-gauge transformations
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Arbitrary pseudo-gauge

Spin polarization predictions are pseudo-gauge dependent
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where K is an arbitrary real parameter.
You can tune the shear contribution by choosing K!
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Spin rotation coupling and
gravitomagnetic moment

Spin polarization along rotation is ultimately a consequence of the coupling
between total angular momentum (spin) and rotation (similar to Zeeman coupling)

H=Hy—J-Q

The form factor related to this coupling is known as

gravitomagnetic moment 9
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The Einstein Equivalence Principle (EEP) forbids the appearance of an
anomalous spin-rotation coupling.
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INn medium form factors

We can relate the spin polarization to form factors. § x go Q’
Radiative corrections beyond weakly interacting fields

EEP premises do not hold in the presence of a medium

The presence of a thermal bath breaks the Lorentz invariance of the vacuum
= Breaking of EEP is possible at finite temperature

= Gravitomagnetic moment can receive radiative corrections
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Summary and outlook

Spin polarization open a new chapter in spin physic

Spin-thermal shear coupling: new unexpected, non-dissipative
phenomenon.

Polarization has a great potential to pin down the initial conditions and
the QGP evolution which is yet unexploited to a large extent.

Spin hydrodynamics
What is the role of pseudo-gauge transformations?

Relation to hydrodynamics and form factors
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Applications
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What is this new term?”?

Does it have a non-relativistic limit? Let us decompose it
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All terms are relativistic (they vanish in the infinite c limit)
EXCEPT grad T terms, which give rise to
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There is an equal contribution in the NR limit from thermal vorticity



Why do we have a dependence
on X?

The thermal shear term depends on
the correlator
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The divergence of the integrand of J* vanishes, therefore it does not depend on the
integration hypersurface (it is a constant of motion) and
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The divergence of the integrand of Q" does not vanish, therefore it does depend on the
integration hypersurface and
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Is it the best Approximation?

The formulas we have derived are based on a Taylor expansion of the density operator

Wia)es = gt (exp |~ [ 4%, (T 08.0) - ) 7W) | Tiob)
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This is generally correct, but it is an approximation after all.

Can we find a better approximation for our specific case?

Experimental data for local polarization:

STAR, Au+Au at 200 GeV
Alice, Pb+Pb at 5 TeV S.



Different descriptions

Consider a fluid temporarily at rest with a constant temperature T, hence B=(1/T)(1,0,0,0),
wherein both particles and anti-particles are polarized in the same direction.

a) Zero thermal vorticity.
Impossible with Belinfante decomposition
Possible with spin tensor

b) With thermal vorticity.
Possible with Belinfante decomposition

SA v £0 Shuv _

“Slow” evolution of spin “Fast” evolution of spin
Weak spin-rotation coupling Strong spin-rotation coupling




Renormalization at finite
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(d)Electromagnetic Vertex ‘ontact (f)Photon Polarizatio

The spin polarization induced by vorticity is given by the foIIowing correlator:
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