## Exact Polarization in Relativistic Fluids at Global Equilibrium

Based on Eur.Phys.J.Plus 138 (2023) 6 In collaboration with F. Becattini


## SPIN 2023

Audrea Palernno
Stony Brook University

## Motivation

The global polarization of the Lambda particle is well described by the thermal vorticity Becattini, Chandra, Del Zanna, Grossi, Annals Phys. 338 (2013) 32-49

$$
S^{\mu}(p)=-\frac{1}{8 m} \epsilon^{\mu \rho \sigma \tau} p_{\tau} \frac{\int \mathrm{d} \Sigma \cdot p n_{F}\left(1-n_{F}\right) \varpi_{\rho \sigma}(x)}{\int \mathrm{d} \Sigma \cdot p n_{F}}
$$

$\varpi_{\mu \nu}=-\frac{1}{2}\left(\partial_{\mu} \beta_{\nu}-\partial_{\nu} \beta_{\mu}\right)$
Thermal vorticity

$$
\beta^{\mu}=\frac{u^{\mu}}{T}
$$

Four-temperature

The formula is only a first order approximation. Higher order corrections in vorticity are unknown, even in thermal equilibrium.

T. Niida, Nucl.phys.A,2019

## Main results

Exact spin density matrix for spin-S particles at general global equilibrium:

$$
\Theta(p)=\frac{\left[(-1)^{2 S} \mathbb{I}-e^{-b \cdot p+\boldsymbol{\theta}_{\mathbf{0}} \cdot D^{S}(\mathbf{J})}\right]^{-1}-(-1)^{2 S} \mathbb{I}}{\sum_{k=-S}^{S}\left(e^{b \cdot p-k \sqrt{-\theta^{2}}}-(-1)^{2 S}\right)^{-1}}
$$

Exact spin vector for Dirac field at global equilibrium

$$
\theta^{\mu}=-\frac{1}{2 m} \epsilon^{\mu \nu \rho \sigma} \varpi_{\nu \rho} p_{\sigma} \quad S^{\mu}(p)=\frac{1}{2} \frac{\theta^{\mu}}{\sqrt{-\theta^{2}}} \frac{\sinh \left(\frac{\sqrt{-\theta^{2}}}{2}\right)}{\cosh \left(\frac{\sqrt{-\theta^{2}}}{2}\right)+e^{-b \cdot p+\zeta}}
$$

Including all quantum corrections in vorticity

## Expectation values

To compute mean values we need the spin density matrix:

$$
\Theta_{s r}(p)=\frac{\operatorname{Tr}\left(\widehat{\rho} \widehat{a}_{r}^{\dagger}(p) \widehat{a}_{s}(p)\right)}{\sum_{l} \operatorname{Tr}\left(\hat{\rho} \widehat{a}_{l}^{\dagger}(p) \widehat{a}_{l}(p)\right)}=\frac{\left\langle\widehat{a}_{r}^{\dagger}(p) \widehat{a}_{s}(p)\right\rangle}{\sum_{l}\left\langle\widehat{a}_{l}^{\dagger}(p) \widehat{a}_{l}(p)\right\rangle}
$$

Once we are given a spin density matrix, the expectation value of the PauliLubanski operator is:
[F. Becattini, Lect.Notes Phys. 987 (2021) 15-52, AP, F. Becattini Eur.Phys.J.Plus 138 (2023) 6, 547]

$$
S^{\mu}(p)=\sum_{i=1}^{3}[p]_{i}^{\mu} \operatorname{tr}\left(\Theta(p) D^{S}\left(J^{i}\right)\right), \quad m \neq 0
$$

Other methods to compute polarization rely on the Wigner function.

## Global equilibrium

Density operator at global equilibrium:

$$
\widehat{\rho}=\frac{1}{Z} \exp \left[-b_{\mu} \widehat{P}^{\mu}+\frac{1}{2} \varpi_{\mu \nu} \widehat{J}^{\mu \nu}\right] \quad\langle\widehat{O}\rangle=\operatorname{Tr}(\widehat{\rho} \widehat{O})
$$

The vector $b$ is constant and the thermal vorticity $\varpi$ is a constant antisymmetric tensor. The four-temperature $\beta$ vector is a Killing vector:

$$
\beta^{\mu}(x)=b^{\mu}+\varpi^{\mu \nu} x_{\nu} \equiv \frac{u^{\mu}}{T}
$$

At global equilibrium:

$$
\begin{array}{ll}
\frac{A^{\mu}}{T}=\varpi^{\mu \nu} u_{\nu} & \frac{\omega^{\mu}}{T}=-\frac{1}{2} \epsilon^{\mu \nu \rho \sigma} \varpi_{\nu \rho} u_{\sigma} \\
\text { Acceleration } & \text { Angular velocity }
\end{array}
$$

The generators of the Poincaré group appear in the density operator.
Analytic continuation of the thermal vorticity: $\varpi \mapsto-i \phi$

$$
\widehat{\rho}=\frac{1}{Z} \exp \left[-b_{\mu} \widehat{P}^{\mu}-\frac{i}{2} \phi_{\mu \nu} \widehat{J}^{\mu \nu}\right]
$$

Factorization of the density operator:

$$
\begin{gathered}
\widehat{\rho}=\frac{1}{Z} \exp \left[-\widetilde{b}_{\mu}(\phi) \widehat{P}^{\mu}\right] \exp \left[-i \frac{\phi_{\mu \nu}}{2} \widehat{J}^{\mu \nu}\right] \equiv \frac{1}{Z} \exp \left[-\widetilde{b}_{\mu}(\phi) \widehat{P}^{\mu}\right] \widehat{\Lambda} \\
\widetilde{b}^{\mu}(\phi)=\sum_{k=0}^{\infty} \frac{1}{(k+1)!}(\underbrace{\phi_{\alpha_{1}}^{\mu} \phi_{\alpha_{2}}^{\alpha_{1}} \ldots \phi_{\alpha_{k}}^{\alpha_{k-1}}}_{k \text { times }}) b^{\alpha_{k}} \quad \widehat{\Lambda} \equiv \mathrm{e}^{-i \frac{\phi_{\mu \nu}^{2}}{2} \widehat{J}^{\mu \nu}}
\end{gathered}
$$

We can use group theory to calculate thermal expectation values.

The number operator at (imaginary) global equilibrium:

$$
\left\langle\widehat{a}_{s}^{\dagger}(p) \widehat{a}_{t}\left(p^{\prime}\right)\right\rangle=2 \varepsilon^{\prime} \sum_{n=1}^{\infty}(-1)^{2 S(n+1)} \delta^{3}\left(\Lambda^{n} \boldsymbol{p}-\boldsymbol{p}^{\prime}\right) D^{S}\left(W\left(\Lambda^{n}, p\right)\right)_{t s} \mathrm{e}^{-\widetilde{b} \cdot \sum_{k=1}^{n} \Lambda^{k} p}
$$

$D(W)=[\Lambda p]^{-1} \Lambda[p]$ is the Wigner rotation in the spin-S representation of the rotation group.

For vanishing vorticity (i.e. $\Lambda=$ I) we recover Bose and Fermi statistics:

$$
\left\langle\widehat{a}_{s}^{\dagger}(p) \widehat{a}_{t}\left(p^{\prime}\right)\right\rangle=2 \varepsilon^{\prime} \sum_{n=1}^{\infty}(-1)^{2 S(n+1)} \delta^{3}\left(\boldsymbol{p}-\boldsymbol{p}^{\prime}\right) \delta_{t s} \mathrm{e}^{-n b \cdot p}=\frac{2 \varepsilon \delta^{3}\left(\boldsymbol{p}-\boldsymbol{p}^{\prime}\right) \delta_{t s}}{\mathrm{e}^{b \cdot p}+(-1)^{2 S+1}}
$$

We want to use this result to compute the spin density matrix:

$$
\Theta(p)_{r s}=\frac{\left\langle\widehat{a}_{s}^{\dagger}(p) \widehat{a}_{r}(p)\right\rangle}{\sum_{t}\left\langle\widehat{a}_{t}^{\dagger}(p) \widehat{a}_{t}(p)\right\rangle}
$$

From the analytic continuation of the density operator:

$$
\left\langle\widehat{a}_{s}^{\dagger}(p) \widehat{a}_{t}(p)\right\rangle=2 \varepsilon \sum_{n=1}^{\infty}(-1)^{2 S(n+1)} \delta^{3}\left(\Lambda^{n} \boldsymbol{p}-\boldsymbol{p}\right) D^{S}\left(W\left(\Lambda^{n}, p\right)\right)_{t s} \mathrm{e}^{-\widetilde{b} \cdot \sum_{k=1}^{n} \Lambda^{k} p}
$$

The spin density matrix is singular unless $\Lambda \mathrm{p}=\mathrm{p}$. The analytic continuation of the density operator is forced to be in the little group of $p$.

## Exact spin physics

The constraint equation:

$$
\begin{array}{rlrl}
\Lambda p=p \Longrightarrow \phi^{\mu \nu} p_{\nu} & =0 \\
\phi^{\mu \nu}=\epsilon^{\mu \nu \rho \sigma} \xi_{\rho} \frac{p_{\sigma}}{m} & \xi^{\rho} & =-\frac{1}{2 m} \epsilon^{\rho \mu \nu \sigma} \phi_{\mu \nu} p_{\sigma}
\end{array}
$$

Thanks to the constraint, it is possible to compute the spin density matrix for any spin

$$
\begin{array}{r}
\xi^{\mu} \mapsto \theta^{\mu}=-\frac{1}{2 m} \epsilon^{\mu \nu \rho \sigma} \varpi_{\nu \rho} p_{\sigma} \quad \theta_{0}^{\mu}=[p]_{\nu}^{-1{ }_{\nu}^{\mu}} \theta^{\nu} \\
\Theta(p)=\frac{\left[(-1)^{2 S} \mathbb{I}-e^{-b \cdot p+\boldsymbol{\theta}_{0} \cdot D^{S}(\mathbf{J})}\right]^{-1}-(-1)^{2 S} \mathbb{I}}{\sum_{k=-S}^{S}\left(e^{b \cdot p-k \sqrt{-\theta^{2}}}-(-1)^{2 S}\right)^{-1}}
\end{array}
$$

We can compute the spin vector for Dirac fermions:

$$
S^{\mu}(p)=\frac{1}{2} \frac{\theta^{\mu}}{\sqrt{-\theta^{2}}} \frac{\sinh \left(\frac{\sqrt{-\theta^{2}}}{2}\right)}{\cosh \left(\frac{\sqrt{-\theta^{2}}}{2}\right)+e^{-b \cdot p+\zeta}}
$$

And for generic spin-S particles:

$$
S^{\mu}(p)=\frac{\theta^{\mu}}{\sqrt{-\theta^{2}}} \frac{\sum_{k=-S}^{S} k\left[\mathrm{e}^{b \cdot p-\zeta-k \sqrt{-\theta^{2}}}-(-1)^{2 S}\right]^{-1}}{\sum_{k=-S}^{S}\left[\mathrm{e}^{b \cdot p-\zeta-k \sqrt{-\theta^{2}}}-(-1)^{2 S}\right]^{-1}}
$$

These formulae account for corrections to all orders in vorticity

The formula:

- Reproduces linear results

$$
S^{\mu}(p)_{\theta \rightarrow 0} \sim \theta^{\mu} \frac{S(S+1)}{3}\left(1+(-1)^{2 S} n_{F / B}(b \cdot p-\zeta)\right)
$$

- Exact calculation with Boltzmann statistics

$$
S_{B}^{\mu}=\frac{\theta^{\mu}}{\sqrt{-\theta^{2}}} \frac{\chi^{\prime}\left(\sqrt{-\theta^{2}}\right)}{\chi\left(\sqrt{-\theta^{2}}\right)} \quad \chi\left(\sqrt{-\theta^{2}}\right)=\sum_{k=-S}^{S} e^{k \sqrt{-\theta^{2}}}
$$

- Is unitary

$$
S^{\mu}(p)_{\theta \rightarrow \infty} \sim S \frac{\theta^{\mu}}{\sqrt{-\theta^{2}}}
$$

## Exact polarization in heavy-ion collisions

Consider the $\Lambda$ polarization in relativistic heavy ion collisions $\omega \sim 10^{22} \mathrm{~s}^{-1}$ and $\omega / \mathrm{T} \sim 0.04$.

$$
\Delta=\left|\frac{S_{E}-S_{L}}{S_{E}}\right|
$$




The difference is very small in most physical cases.

## Extending the formula to local equilibrium with $\varpi(\mathrm{x})$

$$
S^{\mu}(p)=-\frac{1}{4 m} \epsilon^{\mu \nu \rho \sigma} p_{\sigma} \frac{\int \mathrm{d} \Sigma \cdot p n_{F} \frac{\varpi_{\nu \rho}}{\sqrt{-\theta^{2}}} \frac{\sinh \left(\sqrt{-\theta^{2}} / 2\right)}{\cosh \left(\sqrt{-\theta^{2}} / 2\right)+\mathrm{e}^{-b \cdot p+\zeta}}}{\int \mathrm{d} \Sigma \cdot p n_{F}}
$$




## Conclusions

Exact expectation values can be computed using the analytic continuation of the density operator.

Exact spin polarization vector and spin density matrix for particles at global equilibrium.

Higher order corrections in vorticity are negligible, at least in high energy collisions...

## Thank you for the attention!

## Backup

## Pauli-Lubanski Vector

The Hilbert space of relativistic particles is built using the four-momentum and the Pauli-Lubanski vector

$$
\widehat{\Pi}^{\mu}=-\frac{1}{2} \epsilon^{\mu \nu \rho \sigma} \widehat{J}_{\nu \rho} \widehat{P}_{\sigma} \quad\left[\widehat{\Pi}^{\mu}, \widehat{P}^{\nu}\right]=0
$$

For states with definite momentum $p$

$$
\widehat{\Pi}^{\mu}|p\rangle=\widehat{\Pi}^{\mu}(p)|p\rangle \quad \widehat{\Pi}^{\mu}(p)=-\frac{1}{2} \epsilon^{\mu \nu \rho \sigma} \widehat{J}_{\nu \rho} p_{\sigma}
$$

One has

$$
p_{\mu} \widehat{\Pi}^{\mu}(p)=0
$$

If we consider massive particles the Pauli-Lubanski vector is connected to the generators of rotations

$$
\begin{gathered}
\widehat{S}^{\mu}(p)=\frac{\widehat{\Pi}^{\mu}(p)}{m}=-\frac{1}{2 m} \epsilon^{\mu \nu \rho \sigma} \widehat{J}_{\nu \rho} p_{\sigma} \\
\widehat{S}^{\mu}(p)=\sum_{i=1}^{3} \widehat{S}_{i}(p) n_{i}^{\mu}(p) \quad\left[\widehat{S}_{i}(p), \widehat{S}_{j}(p)\right]=i \epsilon_{i j k} \widehat{S}_{k}(p)
\end{gathered}
$$

In the massless case:

$$
\begin{gathered}
\widehat{\Pi}^{\mu}(p)=\widehat{h}(p) p^{\mu}+\widehat{\Pi}_{1}(p) n_{1}^{\mu}(p)+\widehat{\Pi}_{2}(p) n_{2}^{\mu}(p) \quad \widehat{\Pi}_{1,2}(p)|p, h\rangle=0 \\
\widehat{h}(p)=\frac{\widehat{\Pi}(p) \cdot q}{p \cdot q}=-\frac{1}{2 p \cdot q} \epsilon^{\mu \nu \rho \sigma} \widehat{J}_{\nu \rho} p_{\sigma} q_{\mu} \\
q \cdot p \neq 0, \quad q^{2}=0, \quad q \cdot n_{i}(p)=0
\end{gathered}
$$

Helicity is the only physical degree of freedom

## Polarization and the Wigner function

To compute expectation values it is useful to use the Wigner function.

$$
W(x, k)_{a b}=-\frac{1}{(2 \pi)^{4}} \int \mathrm{~d}^{4} y e^{-i k \cdot y}\left\langle: \bar{\Psi}_{b}(x+y / 2) \Psi_{a}(x-y / 2):\right\rangle
$$

Massive Dirac fermions [F. Becattini, Lect.Notes Phys. 987 (2021) 15-52]:

$$
S^{\mu}(p)=\frac{1}{2} \frac{\int \mathrm{~d} \Sigma \cdot p \operatorname{tr}\left(\gamma^{\mu} \gamma_{5} W_{+}(x, p)\right)}{\int \mathrm{d} \Sigma \cdot p \operatorname{tr}\left(W_{+}(x, p)\right)}
$$

Massless Dirac fermions

$$
\Pi^{\mu}(p)=p^{\mu} \sum_{h= \pm S} h \Theta_{h h}(p) \quad \Pi^{\mu}(p)=\frac{p^{\mu}}{2} \frac{\int \mathrm{~d} \Sigma \cdot p \operatorname{tr}\left(q \gamma^{5} W_{+}(x, p)\right)}{\int \mathrm{d} \Sigma \cdot p \operatorname{tr}\left(W_{+}(x, p) q\right)^{\prime}}
$$

In the massless case the mean spin always points in the direction of momentum.
See also [Y.-C. Liu, K. Mameda, X.-G. Huang, Chin. Phys. C 44(9), 094101]

Exact Wigner function for free fermions at global equilibrium:

$$
\begin{aligned}
W(x, k)= & \frac{1}{(2 \pi)^{3}} \int \frac{\mathrm{~d}^{3} p}{2 \varepsilon} \sum_{n=1}^{\infty}(-1)^{n+1} \mathrm{e}^{-n \tilde{\beta}(i n \phi) \cdot p} \times \\
& {\left[\mathrm{e}^{-i n \frac{\phi \cdot \Sigma}{2}}(m+\not p) \delta^{4}\left(k-\left(\Lambda^{n} p+p\right) / 2\right)+(m-\not p) \mathrm{e}^{i n \frac{\phi \cdot \Sigma}{2}} \delta^{4}\left(k+\left(\Lambda^{n} p+p\right) / 2\right)\right] }
\end{aligned}
$$

Where $\Lambda=\mathrm{e}^{-i \frac{\phi}{2}: J}$ is in the four-vector representation.
Solves the Wigner equation! Full summation of the " $\hbar$ expansion".
Can be used to compute expectation values:

$$
\left\langle:\left\{\bar{\Psi} \Psi, j^{\mu}, T^{\mu \nu}\right\}:\right\rangle=\int \mathrm{d}^{4} k\left\{\operatorname{tr}(W), \operatorname{tr}\left(\gamma^{\mu} W\right), k^{\mu} \operatorname{tr}\left(\gamma^{\nu} W\right)\right\}
$$

The Dirac delta is integrated out and results are expressed as series of functions that can be regularized using the analytic distillation.

## Spin vector

Spin vector of massive Dirac fermions:

$$
S^{\mu}(p)=\frac{1}{2} \frac{\int \mathrm{~d} \Sigma \cdot p \operatorname{tr}\left(\gamma^{\mu} \gamma_{5} W_{+}(x, p)\right)}{\int \mathrm{d} \Sigma \cdot p \operatorname{tr}\left(W_{+}(x, p)\right)}
$$

Exact spin vector at global equilibrium:

$$
S^{\mu}(p)=\frac{1}{2 m} \frac{\sum_{n=1}^{\infty}(-1)^{n+1} \mathrm{e}^{-n \widetilde{b}(i n \phi) \cdot p} \operatorname{tr}\left(\gamma^{\mu} \gamma_{5} \mathrm{e}^{-i n \frac{\phi \cdot \Sigma}{2}} \not p\right) \delta^{3}\left(\Lambda^{n} p-p\right)}{\sum_{n=1}^{\infty}(-1)^{n+1} \mathrm{e}^{-n \widetilde{b}(i n \phi) \cdot p} \operatorname{tr}\left(\mathrm{e}^{-i n \frac{\phi \cdot \Sigma}{2}}\right) \delta^{3}\left(\Lambda^{n} p-p\right)}
$$

How to handle a ratio of series of $\delta$-functions? Where does it come from?

Any thermal expectation value in a free quantum field theory is obtained from:

$$
\begin{gathered}
\left\langle\widehat{a}_{s}^{\dagger}(p) \widehat{a}_{t}\left(p^{\prime}\right)\right\rangle=\frac{1}{Z} \operatorname{Tr}\left(\exp \left[-\tilde{b}_{\mu}(\phi) \widehat{P}^{\mu}\right] \widehat{\Lambda} \widehat{a}_{s}^{\dagger}(p) \widehat{a}_{t}\left(p^{\prime}\right)\right) \\
{\left[\widehat{a}_{s}^{\dagger}(p), \widehat{a}_{t}\left(p^{\prime}\right)\right]_{ \pm}=2 \varepsilon \delta^{3}\left(\boldsymbol{p}-\boldsymbol{p}^{\prime}\right) \delta_{s t}}
\end{gathered}
$$

Using Poincaré transformation rules and (anti)commutation relations (particle with spin S):

$$
\begin{aligned}
\left\langle\widehat{a}_{s}^{\dagger}(p) \widehat{a}_{t}\left(p^{\prime}\right)\right\rangle= & (-1)^{2 S} \sum_{r} D^{S}(W(\Lambda, p))_{r s} \mathrm{e}^{-\widetilde{b} \cdot \Lambda p}\left\langle\widehat{a}_{r}^{\dagger}(\Lambda p) \widehat{a}_{t}\left(p^{\prime}\right)\right\rangle+ \\
& +2 \varepsilon \mathrm{e}^{-\widetilde{b} \cdot \Lambda p} D^{S}(W(\Lambda, p))_{t s} \delta^{3}\left(\Lambda \boldsymbol{p}-\boldsymbol{p}^{\prime}\right)
\end{aligned}
$$

$D(W)=[\Lambda p]^{-1} \Lambda[p]$ is the "Wigner rotation" in the S-spin representation.

We find a solution by iteration:
(I) $\left\langle\widehat{a}_{s}^{\dagger}(p) \widehat{a}_{t}\left(p^{\prime}\right)\right\rangle \sim 2 \varepsilon \mathrm{e}^{-\widetilde{b} \cdot \Lambda p} D^{S}(W(\Lambda, p))_{t s} \delta^{3}\left(\Lambda \boldsymbol{p}-\boldsymbol{p}^{\prime}\right)$

II $\left\langle\widehat{a}_{s}^{\dagger}(p) \widehat{a}_{t}\left(p^{\prime}\right)\right\rangle \sim 2 \varepsilon(-1)^{2 S} D^{S}\left(W\left(\Lambda^{2}, p\right)\right)_{t s} \mathrm{e}^{-\widetilde{b} \cdot\left(\Lambda p+\Lambda^{2} p\right)} \delta^{3}\left(\Lambda^{2} \boldsymbol{p}-\boldsymbol{p}^{\prime}\right)+$

$$
+2 \varepsilon \mathrm{e}^{-\widetilde{b} \cdot \Lambda p} D^{S}(W(\Lambda, p))_{t s} \delta^{3}\left(\Lambda \boldsymbol{p}-\boldsymbol{p}^{\prime}\right)
$$

$$
\left\langle\widehat{a}_{s}^{\dagger}(p) \widehat{a}_{t}\left(p^{\prime}\right)\right\rangle=2 \varepsilon^{\prime} \sum_{n=1}^{\infty}(-1)^{2 S(n+1)} \delta^{3}\left(\Lambda^{n} \boldsymbol{p}-\boldsymbol{p}^{\prime}\right) D^{S}\left(W\left(\Lambda^{n}, p\right)\right)_{t s} \mathrm{e}^{-\widetilde{b} \cdot \sum_{k=1}^{n} \Lambda^{k} p}
$$

Energy density for massless fermions, equilibrium with acceleration ( $\phi=i a / T$ )

$$
\rho=\frac{3 T^{4}}{8 \pi^{2}} \sum_{n=1}^{\infty}(-1)^{n+1} \phi^{4} \frac{\sinh n \phi}{\sinh ^{5}(n \phi / 2)}
$$

The series is finite as long as $\phi$ is real. For real thermal vorticity it diverges!
The series includes terms which are non analytic at $\phi=0$.
Analytic distillation:


The series boils down to polynomials: $\quad \alpha^{\mu}=\frac{A^{\mu}}{T} \quad w^{\mu}=\frac{\omega^{\mu}}{T}$

$$
\rho=\frac{7 \pi^{2}}{60 \beta^{4}}-\frac{\alpha^{2}}{24 \beta^{4}}-\frac{17 \alpha^{4}}{960 \pi^{2} \beta^{4}}
$$

Expectation values vanish at the Unruh temperature $T_{U}=\sqrt{-A \cdot A} / 2 \pi$ [G.Prokhorov, O. Teryaev, V. Zakharov, JHEP03(2020)137]
Axial current under rotation: [V. Ambrus, E. Winstanley, 1908.10244]

$$
j_{A}^{\mu}=T^{2}\left(\frac{1}{6}-\frac{w^{2}}{24 \pi^{2}}-\frac{\alpha^{2}}{8 \pi^{2}}\right) \frac{w^{\mu}}{\sqrt{\beta^{2}}}
$$

First exact results at equilibrium with both rotation and acceleration. [V. Ambrus, E. Winstanley Symmetry 2021, 13(11)]

$$
\rho=T^{4}\left(\frac{7 \pi^{2}}{60}-\frac{\alpha^{2}}{24}-\frac{w^{2}}{8}-\frac{17 \alpha^{4}}{960 \pi^{2}}+\frac{w^{4}}{64 \pi^{2}}+\frac{23 \alpha^{2} w^{2}}{1440 \pi^{2}}+\frac{11(\alpha \cdot w)^{2}}{720 \pi^{2}}\right)
$$

## Massless Dirac field

$$
\Pi^{\mu}=\frac{p^{\mu}}{2} \frac{\sum_{n=1}^{\infty}(-1)^{n+1} \mathrm{e}^{-\tilde{b}(\phi) \cdot \sum_{k=1}^{n} \Lambda^{k} p} \operatorname{tr}\left(\not q \gamma_{5} \exp [-i n \phi: \Sigma / 2] \not p\right) \delta^{3}\left(\Lambda^{n} p-p\right)}{\sum_{n=1}^{\infty}(-1)^{n+1} \mathrm{e}^{-\tilde{b}(\phi) \cdot \sum_{k=1}^{n} \Lambda^{k} p} \operatorname{tr}(\not q \exp [-i n \phi: \Sigma / 2] \not p) \delta^{3}\left(\Lambda^{n} p-p\right)}
$$

We can deal with the series as we did before

$$
\phi^{\mu \nu}=\epsilon^{\mu \nu \rho \sigma} \frac{h_{\rho} p_{\sigma}}{p \cdot q} \quad h^{\mu}=-\frac{1}{2} \epsilon^{\mu \nu \rho \sigma} \phi_{\nu \rho} q_{\sigma}
$$

The series reduces to

$$
\begin{gathered}
\eta=\frac{h \cdot p}{q \cdot p}=\frac{1}{2(p \cdot q)} \epsilon^{\mu \nu \alpha \beta} \phi_{\alpha \beta} p_{\nu} q_{\mu} \\
\Pi^{\mu}(p)=\frac{p^{\mu}}{2} \frac{i \sin (\eta / 2)}{\cos (\eta / 2)+e^{-b \cdot p}}
\end{gathered}
$$

Dirac fermions:

$$
\begin{gathered}
\Pi^{\mu}(p)=-\frac{p^{\mu}}{2} \frac{\sinh (H / 2)}{\cosh (H / 2)+\mathrm{e}^{-b \cdot p}} \\
H=\frac{1}{2(p \cdot q)} \epsilon^{\mu \nu \alpha \beta} \varpi_{\alpha \beta} p_{\nu} q_{\mu}=-\frac{1}{2 \varepsilon} \epsilon^{0 \nu \alpha \beta} \varpi_{\alpha \beta} p_{\nu}
\end{gathered}
$$

The mean Pauli-Lubanski vector depends on the orientation of the momentum

$$
\varphi^{\nu}=-\frac{1}{2} \epsilon^{\nu \alpha \beta 0} \varpi_{\alpha \beta} \quad \hat{\mathbf{p}}=\frac{\mathbf{p}}{\varepsilon}
$$

## Massless particles

For massless particles of arbitrary helicity S :

$$
\begin{gathered}
\Theta_{h k}(p)=\frac{\sum_{n=1}^{\infty}(-1)^{2 S(n+1)} \mathrm{e}^{-n b \cdot p} \mathrm{e}^{n \eta h} \delta_{h k}}{\sum_{n=1}^{\infty}(-1)^{2 S(n+1)} \mathrm{e}^{-n b \cdot p} 2 \cos n \eta} \\
\Pi^{\mu}(p)=-p^{\mu} S \frac{\sinh (S H)}{\cosh (S H)-(-1)^{2 S} \mathrm{e}^{-b \cdot p}} \\
H=\frac{1}{2(p \cdot q)} \epsilon^{\mu \nu \alpha \beta} \varpi_{\alpha \beta} p_{\nu} q_{\mu}=-\frac{1}{2 \varepsilon} \epsilon^{0 \nu \alpha \beta} \varpi_{\alpha \beta} p_{\nu}
\end{gathered}
$$

The reason for this simplified structure is that massless particles only have $+S$ and -S helicity and that

$$
D^{S}\left(W\left(\Lambda^{n}, p\right)\right)_{t s}=\mathrm{e}^{i \eta r} \delta_{h k} \quad \widehat{\Pi}_{1,2}(p)|p, h\rangle=0
$$

