Prospects of transverse hyperon polarization measurements at LHCb

Cynthia Nuñez On behalf of the LHCb Collaboration SPIN 2023

September 26, 2023

Λ (uds) polarization

- Transverse Λ polarization was confirmed in 1976 at Fermilab in pBe using a 300 GeV beam and followed by various pA and pp experiments with polarization values to be up to 30%
- Leading order perturbative QCD calculations predicted very small polarization for light quarks and go to zero for increasing momentum transfer
- Must account for polarization due to nonperturbative QCD effects

<u>G. Bunce, et al. PRL36, 1113 (1976)</u>

<u>K. Heller, et al. PLB68, 480 (1977)</u>

Cynthia Nuñez

<u>G. L. Kane, J. Pumplin, and W. Repko PRL 41, 1689 (1978)</u>

*sign convention different when compared to later measurements

Λ (uds) polarization

ATLAS Collaboration, PRD91, 032004 (2015)

- In 2015, ATLAS measured Λ and $\overline{\Lambda}$ polarization at low x_F $x_F \ = \ 2p_z/\sqrt{s}$
- Common features observed for $\boldsymbol{\Lambda}$ polarization
 - Transverse polarization of prompt Λ is found to be negative
 - Approximately independent of the beam energy
 - Increases with increasing $|x_F|$ and increasing p_T up to a few GeV range
- Polarization has been observed for beams other than proton including: e^{\pm} on various target nuclei, π^{\pm} , K^{\pm} , Σ^{-} , νN , n

Λ and $\overline{\Lambda}$ polarization in e^+e^-

• In 2019, Λ and $\overline{\Lambda}$ polarization was observed in e^+e^- annihilation from Belle

- The polarization was observed to increase with the momentum fraction of the outgoing quark (anti-quark) carried by the hyperon, z
- Since there is no initial state hadron in e⁺e⁻, there must be a hadronization effect

Ξ^0 (uss), Ξ^- (dss), Σ^- (dds), and Σ^+ (uus), Σ^0 (uds) polarization

K. Heller, Proceedings, 12th International Symposium on Spin Physics, Amsterdam, 1996

- Negative polarization for Λ , Ξ^0 , and Ξ^-
- Positive polarization for Σ^+ and Σ^-
- Σ^0 seems to have the same polarization as Σ^+ and Σ^- , and opposite polarization than Λ even though they have the same valence quarks (uds)

Cynthia Nuñez

University of Michigan

$\overline{\Lambda}$ ($\overline{u}\overline{d}\overline{s}$), Ω (sss) polarization

• No observed $\overline{\Lambda}$ or Ω polarization

$\overline{\Sigma}^+$ ($\overline{d}\overline{s}\overline{s}$) and $\overline{\Xi}^-$ ($\overline{u}\overline{s}\overline{s}$) polarization

- $\overline{\Sigma}^+$ and Σ^+ both have positive non-zero polarization
- $\overline{\Xi}^-$ and Ξ^- both have negative non-zero polarization

K. Heller, Proceedings, 12th International Symposium on Spin Physics, Amsterdam, 1996

Why are some hyperons polarized while others are not?

Frameworks to explain Λ polarization

Phenomenological approach in explaining transverse Λ polarization in unpolarized collisions has focused on:

- Polarizing transverse-momentum dependent (TMD) fragmentation functions (FF): $D_{1T}^{\perp \Lambda/q}(z, k_{\perp}^2)$
 - Fragmentation counterpart of the Sivers TMD PDF
 - Polarization from convolution of a twist-2 TMD
 PDF with a twist-2 TMD FF
- Higher twist multiparton correlators
 - Higher twist effects alternatively provide sensitivity to spin-momentum correlations in hadron structure and formation

<u>M. Anselmino, D. Boer, U. D'Alesio, and F. Murgia PRD 63, 054029 (2001)</u> <u>Yuji Koike, et al. PRD 95, 114013 (2017)</u>

Transverse Λ polarization

- A hyperon: $m_{\Lambda} = 1115.683 \pm 0.006 \text{ MeV}/c^2$ and $c\tau = 7.89 \text{ cm}$
- $\Lambda \rightarrow p\pi^-$ self analyzing decay
- Transverse polarization measured in the direction normal to the Λ hyperon and beam momentum: $\vec{n} = \vec{p}_{beam} \times \vec{p}_{\Lambda}$
- The distribution of θ^* for polarized Λ :

$$\frac{dN}{d\cos\theta^*} = \frac{N}{2}(1 + \alpha_{\Lambda}P\cos\theta^*)\varepsilon_{tot}(\cos\theta^*)$$

 $\alpha_{\Lambda} = 0.732 \pm 0.014 \text{ [PDG 2022]}$

Large Hadron Collider beauty (LHCb) Experiment

- Forward spectrometer with precision tracking and particle identification
- Designed to search for CP violation and rare decays of *b* and *c* hadrons
- Pseudorapidity coverage $2 < \eta < 5$

2008 JINST 3 S08005

OPEN-PHO-ACCEL-2017-005-1

- Particle identification optimal for μ , π , K, and p
- Various data sets available at different energies for pp

Collider data: *p*Pb and Pb*p*

Proton-lead data taken in two different collision configurations with

different rapidity coverages

Forward:	$1.5 < y^* < 4.0$
Backward:	$-5.0 < y^* < -2.5$
2013 Data:	$\sqrt{s_{NN}} = 5.02 \text{ TeV}$
2016 Data:	$\sqrt{s_{NN}}=8.2~{ m TeV}$

$$x_F = \frac{p_L^*}{|\max(p_L^*)|} \sim \frac{2}{\sqrt{s_{NN}}} \sqrt{M^2 + p_T^2} \sinh(y^*)$$

Cynthia Nuñez

Kinematic Reach: pp, pPb data

LHCb x_F kinematic reach overlap with HERA-B pC and pW collisions

Cynthia Nuñez

Fixed Target: System for Measuring the Overlap with Gas (SMOG)

- Unique to LHCb is the ability to collect fixed-target data
- Originally for luminosity calibration of colliding proton beams
- Injection of noble gas (He, Ne, Ar) into the Vertex Locator while one of the circulating beams produces beam-gas collisions

SMOG Kinematic Coverage

- For $E_{beam} = 0.9 6.5 \text{ TeV}$
 - Center of mass energy per nucleon-nucleon collision: $\sqrt{s_{NN}} \sim \sqrt{2E_N M_N} \sim 41 110 \text{ GeV}$
 - Central and backward rapidity : $y^* \sim \operatorname{arcsinh} \sqrt{E_N/2(M_N)} \sim 3.8 4.8$

SMOG Kinematic Coverage

LHCb Collaboration, arXiV: 2205.09009

Run 3 upgrade: SMOG2

- Addition of target storage cell installed for Run 3, which allows for an increased gas pressure
- Higher luminosity measurements than SMOG
- Located before the Vertex Locator with well-defined separation from the *pp* interaction point
- Wider variety of target species: He, Ne, Ar, + New: Kr, Xe, H₂ D₂, N₂, O₂

Cynthia Nuñez

University of Michigan

Run 3 upgrade: SMOG2

- Run 3 preliminary data shows a good separation between SMOG2 (pAr) and pp vertices
- The pseudorapidity distribution shows reconstructed tracks in the Vertex Locator being more symmetric for *pp* collisions and more forward for *p*Ar collisions

Run 3 data

LHCSpin Project

- Supported R&D to add a transversely polarized target by 2029
- Polarized physics at the LHC by installing a polarized target in the target storage cell
 - Polarized quark and gluon distribution at high xand intermediate Q^2
 - Test process dependence of quark and gluon TMDs
 - Complementary measurements to existing and future SIDIS

LHCb Collaboration, arXiv:1901.08002

Pasquale Di Nezza Friday, Sep 29 3PM

Cynthia Nuñez

Measurement of other hyperons

Particle	Makeup	Common Decay Mode	Branching Ratio
Λ ⁰	uds	$p + \pi^-$	$63.9 \pm 0.5\%$
		$n + \pi^0$	$35.8 \pm 0.5\%$
Σ^+	uus	$p + \pi^0$	$51.57 \pm 0.3\%$
		$n + \pi^+$	$48.31 \pm 0.3\%$
Σ^0	uds	$\Lambda^0 + \gamma$	100%
Σ^{-}	dds	$n + \pi^{-}$	99.848 ± 0.005%
Ξ ⁰	uss	$\Lambda^0 + \pi^0$	99.522 ± 0.032%
E_	dss	$\Lambda^0 + \pi^-$	99.887 \pm 0.035%
Ω-	SSS	$\Lambda^0 + K^-$	$67.8 \pm 0.7\%$
		$\Xi^0 + \pi^-$	$23.6 \pm 0.7\%$
		$\Xi^- + \pi^0$	$8.6 \pm 0.7\%$

<u>PDG 2022</u>

Cynthia Nuñez

Summary

- Transverse Λ polarization was first observed over 40 years ago with values up to 30% and has been linked to the process of hadronization
- The high energy from the LHC and coverage from LHCb's forward geometry will be interesting to study transverse hyperon polarization at different energies and collision configurations
- Ability to perform comprehensive measurements of the polarization of Λ and $\overline{\Lambda}$ as a function of p_T and x_F using the LHCb detector in a kinematic area that has been poorly explored
- LHCb measurements, along with e^+e^- and SIDIS measurements, can put us in a better position to understand transverse hyperon polarization

Backup: Λ Polarization with other beams

Inclusive Λ production and polarization in 16-GeV/c π – p interactions

1.50

 $x_{r} = 0.25$

 $x_{F} = 0.65$

0

 $x_{r} = 0.35$

 $x_{\rm F} = 0.75$

0

 $p_t (GeV/c^2)$

 $x_{F} = 0.45$

x_r = 0.85

0 1

• : this paper.

• : Lomanno et al..

▲ : Bayachauduri et al.

- SIDIS: Polarization positive in both forward and backward direction.
- For K^- and Σ^- beams the polarization was positive at positive x_F
- π^{-} beams the polarization was positive at negative x_F

Other not shown:

- The same polarization sign and general x_F dependence has been observed for neutron beams
- The polarization was • measured to be consistent with zero for π^+ and K^+ beams
- Polarization measured in $v_{\mu}N$ consistent with unpolarized pp experiments for both Λ and $\overline{\Lambda}$

EPJC 32, 221(2004)

University of Michigan

Kinematic Reach: pp, pPb data

Cynthia Nuñez

LHCb ions and fixed-target data

PbNe

| 2018

pNe

- LHCb upgrade simulation shows a good separation between p-gas and pp vertices
- The pseudorapidity distribution shows events being more symmetric for pp collisions and more forward for pHe collisions

LHCb-FIGURE-2022-002

Cynthia Nuñez

University of Michigan

- To measure non-zero polarization, one needs to have both nonzero α and *P*
- For $\overline{\Lambda}$ use $\alpha_{\overline{\Lambda}} = -\alpha_{\Lambda}$ considering CP conservation
- For the decay $\Sigma^+ \rightarrow p\pi^0$ has $\alpha = -0.98 \pm 0.017$, which makes it easy to measure the Σ^+ polarization through its decay mode
- $\Sigma^- \rightarrow n\pi^-$ has small $\alpha = -0.068 \pm 0.008$ making it necessary to have a large data sample and good control of systematic errors to get its polarization
- $\Xi^- \to \Lambda \pi^-$ and $\Omega^- \to \Lambda K^-$ information about the spin direction of hyperon is contained in the Λ decay, so to extract the polarization one needs the information from the Λ decay to determine the parent polarization