Measurement of flavor asymmetry of light-quark sea in the proton at FNAL-SeaQuest

SPIN 2023 @ Durham Convention Center 2023/September/26

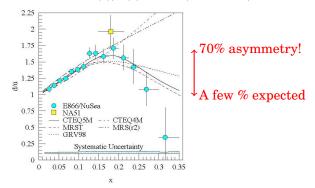
> Kenichi Nakano for the SeaQuest Collaboration

> > University of Virginia

Outline

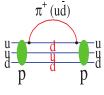
1. Aim & method of experiment

- $\circ~\bar{d}(x)/\bar{u}(x)$ = Flavor asymmetry of light-quark sea in the proton
- Method of measuring $\bar{d}(x)/\bar{u}(x)$ via Drell-Yan process


2. SeaQuest experiment

- Beam, target & spectrometer
- Data taking & analysis
- 3. Measurement of $\bar{d}(x)/\bar{u}(x)$
 - $^{\circ}~$ Two methods of extracting cross-section ratio $(\sigma^{pd}/2\sigma^{pp})$
 - o Result of cross-section ratio: Phys. Rev. C 108, 035202 (2023)
 - \circ Results of $\bar{d}(x)/\bar{u}(x)$ & $\bar{d}(x)-\bar{u}(x)$

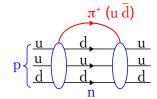
4. Summary


Anti-Quark Flavor Asymmetry: $ar{d}/ar{u}$

- ullet Symmetric in gluon splitting: g o uar u or dar d
- CERN NMC ('90): deep inelastic muon scattering
 - \circ Gottfried Sum: $S_G = 0.235 \pm 0.026 < 1/3$
 - $\int_0^1 \bar{d}(x)dx \int_0^1 \bar{u}(x)dx = 0.147 \pm 0.039$ Asymmetry!
- Measurement of x dependence of $\bar{d}(x)/\bar{u}(x)$: Drell-Yan process
 - CERN NA51 ('94): $\bar{d} > \bar{u}$ at $x \sim 0.18$
 - FNAL E866/NuSea ('98): $\bar{d}(x)/\bar{u}(x)$ for $x \in (0.015, 0.35)$

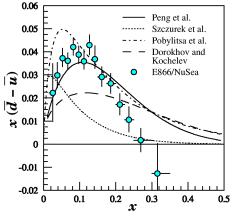
Theories of \bar{d}/\bar{u} Asymmetry (1)

- Mass difference between $u \ \& \ d \ ({\sim} 2 \ \& \ 5 \ {
 m MeV}) \ {
 m in} \ g
 ightarrow q ar q$
 - \circ Very small and even results in $ar{d} < ar{u}$
- Pauli blocking ... PRD15, 2590 (1977)
 - $\circ \ Prob(g \to u\bar{u}) < Prob(g \to d\bar{d}) \ \text{since} \ p = uud$
 - Cannot explain the measured size ... NPB149, 497 (1979)
- time ->
 - Even $\bar{d} < \bar{u}$ via connected sea (at high x)? ... *PLB736*, 411 (2014)
- Chiral quark model ... PRD59, 034024 (1999)
 - Effective interaction between Goldstone boson (π) & constituent quark
 - $\circ \; |q_{
 m constituent}
 angle = \left(1-rac{3a}{2}
 ight)|q
 angle + rac{3a}{2}\;|q\pi
 angle$



Theories of \bar{d}/\bar{u} Asymmetry (2)

- Meson cloud model ... PRD58, 092004 (1998)
 - $|p\rangle = (1-a-b)|p_0\rangle + a|N\pi\rangle + b|\Delta\pi\rangle$
 - \circ More \bar{d} in π^+ as $|n\pi^+\rangle$ etc.
 - \circ Less \bar{u} in π^- as $|\Delta^{++}\pi^-\rangle$ etc.
 - $^{\circ}$ Predict non-zero $L_{q,ar{q}}$ like "meson tornado" (need L=1 of π to make $J^P=1/2^+$ of proton, as parity of π is $J^P=0^-$)


- Based on the Fermi & Bose statistics
- Predict $\bar{d}(x) \bar{u}(x) = -\left[\Delta \bar{d}(x) \Delta \bar{u}(x)\right]$

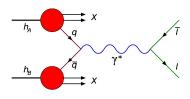
• Global understandings together with $\Delta ar{q}(x)$ & $L_{ar{q}}$ are anticipated

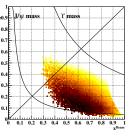
Comparison of Theories to Measurements

Meson cloud model: PRD58, 092004 Chiral quark model: NPA596, 397 Chiral quark model: PRD59, 034024 Instanton model: PLB304, 167 (Updated calculations exist)

- The x dependence of $\bar{d}(x)/\bar{u}(x)$ is the key to develope/examine models
 - Sharp drop at $x \sim 0.3$. Even go down to $\bar{d} < \bar{u}$?
- Reveal what QCD mechanism generates the asymmetric sea!

Measurement of $\bar{d}(x)/\bar{u}(x)$ with Drell-Yan Process


- Drell-Yan process: $p + p \rightarrow \gamma^* \rightarrow \mu^+ + \mu^-$
 - Virtual photon
 - •• Invariant mass: $M^2 = x_1x_2s$
 - •• Rapidity: $\exp Y = \sqrt{x_1/x_2}$
 - Beam $x_1 = \frac{M}{\sqrt{s}}e^Y$, Target $x_2 = \frac{M}{\sqrt{s}}e^{-Y}$
 - Cross section at LO:


$$\frac{d^2\sigma}{dx_1dx_2} = \frac{4\pi\alpha^2}{9x_1x_2} \frac{1}{s} \sum_{q=u,d} e_q^2 \left\{ q_{beam}(x_1) \bar{q}_{target}(x_2) + \bar{q}_{beam}(x_1) q_{target}(x_2) \right\}$$

- Only " $q_{beam}(x_1) \bar{q}_{target}(x_2)$ " survives @ forward rapidity, i.e. quark in beam & anti-quark in target
- Ratio of cross sections with LH2 & LD2 targets

$$rac{\sigma_{pd}(x_2)}{2\sigma_{pp}(x_2)}pprox rac{1}{2}\left(1+rac{ar{d}(x_2)}{ar{u}(x_2)}
ight)$$

• SeaQuest measures the x dependence of $\bar{d}(x)/\bar{u}(x)$ particularly at high x (0.15 $\lesssim x \lesssim 0.45$)

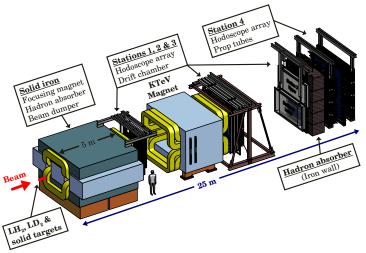
Fermilab Proton Beam

- Energy E = 120 GeV($\sqrt{s} = 15 \text{ GeV}$)
- Duty cycle
 - 5 sec for E906
 - 55 sec for ν exp.
- Bunch
 - Length: 1 nsec
 - Interval: 19 nsec (53 MHz)
 - 10¹³ protons in 5 sec
 in spot size

FNAL-SeaQuest Collaboration

- Institutes
- Abilene Christian Univ.
- Argonne National Lab
- Fermi National Accelerator Lab
- KEK _{Jp}
- Los Alamos National Lab
- o Univ. of Michigan

Yamagata Univ. Januari


- National Kaohsiung Normal Univ.
- Rutgers Univ.

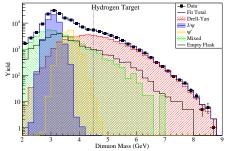
- Academia Sinica Tw
- Univ. of Colorado
- Univ. of IllinoisLing-Tung Univ. Tw
- Univ. of Maryland
- Mississippi State Univ.
- RIKEN Jp.
- Tokyo Tech Jp

E906/SeaQuest Spectrometer

- Targets: LH₂, LD₂, C, Fe, W
- Focusing magnet (FMag) & Tracking magnet (KMag)
- Iron inside FMag, as hadron absorber & beam dump

SeaQuest Targets

- LH₂, LD₂
 - $^{\circ}~50.8~cm \sim 0.1~interaction~lengths$
- Iron, Carbon, Tungsten



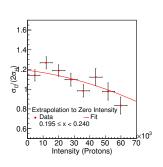
SeaQuest Hall — 2015-July-27

Reconstruction & Identification of Drell-Yan Events

- Physics data were taken in 2013-2017
 - Unlike-sign muon pairs were triggered and reconstructed
 - The 1st half was used for this study
- Distribution of dimuon mass

- Drell-Yan, $J/\psi \& \psi'$ events from simulation
- Events on non-target materials from empty-target data
- Random-coincidence BGs from real data via event mixing
- Origins of measured dimuons well understood
- Dominated by Drell-Yan at M > 4.5 GeV

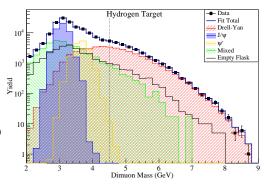
Two Methods of Extracting Cross-Section Ratio $rac{\sigma_{pd}(x_2)}{2\sigma_{pp}(x_2)}pprox rac{1}{2}\left(1+rac{ar{d}(x_2)}{ar{u}(x_2)} ight)$


- To crosscheck the extracted result
- Dimuon rates in p+p & p+d at M > 4.5 GeV

$$Y_{H,D}(x_2,I) = rac{N_{H,D}(x_2,I)}{L_{H,D}} - rac{N_{Empty}(x_2,I)}{L_{Empty}}$$

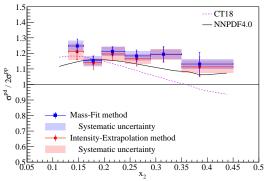
- Normalized by relative luminosity (*L*)
- Corrected for non-target-material events
- 1. Intensity extrapolation (IE) method Nature 590, 561
 - Random BG & reco. inefficiency $\rightarrow 0$ when beam intensity $(I) \rightarrow 0$

$$\frac{Y_D(x_2,I)}{2Y_H(x_2,I)} = \frac{\sigma_{pd}(x_2)}{2\sigma_{pp}(x_2)} + a\,I + b\,I^2$$

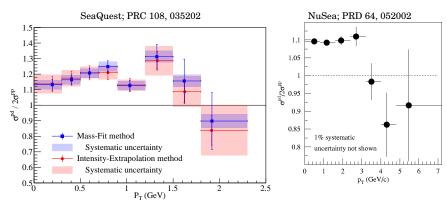

Data-driven correction

2. Mass fit (MF) method — PRC 108, 035202

Random BG


- Mixed events normalized via the mass fit
- Reconstruction inefficiency
 - •• Embedding of detector hits into MC dimuon events
 - •• As function of detector occupancy (= rate dependence)
- Optimization of simulation & analysis cut
 - ⇒ Reasonable agreement between real data & simulation

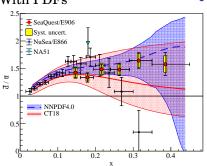
Cross-Section Ratio: $\sigma_{pd}/2\sigma_{pp}$


Versus *x*² with two extraction methods

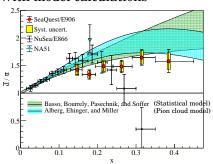
PRC 108, 035202

- The data set is common to the two methods
- Systematic error of the MF method
 - oo Beam flux normalization
 - oo Efficiency correction
 - oo Simulation-parameter dependence
- oo Mostly uncorrelated with the IE method
- Excellent agreement between the two methods
 Measurement of flavor asymmetry of light-quark sea in the proton at FNAL-SeaQuest

• Versus p_T


- Smaller errors by the MF method
- Little p_T dependence. Possible drop at high p_T like E866/NuSea?

Anti-Quark Flavor Asymmetry: $ar{d}(x)/ar{u}(x)_{ ext{PRC 108, 035202}}$


Derived from the cross-section ratio extracted with the IE method

$$rac{\sigma_{pd}(x_2)}{2\sigma_{pp}(x_2)}pprox rac{1}{2}\left(1+rac{ar{d}(x_2)}{ar{u}(x_2)}
ight)$$

With PDFs

With model calculations

- Good agreement with calculations
- The cause of the drop in the E866 data above x = 0.2 remains unexplained

Asymmetry in Difference: $\bar{d}(x) - \bar{u}(x)$

PRC 108, 035202

- Direct measure of contribution from nonperturbative processes
 - Determined from $\bar{d}(x)/\bar{u}(x)$ measured in SeaQuest
 - $\circ \ \bar{d}(x) + \bar{u}(x)$ was taken from CT18 PDF
- With PDFs
 - 0.4

 0.3

 SeaQuest
 Systematic uncertainty
 NuSea/E866 (Q² = 54 GeV²)
 HERMES (Q² = 2.3 GeV²)

 Q² = 25.5 GeV²

 NNPDF4.0

 CT18

 0.1

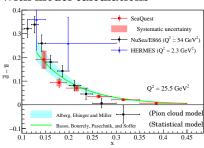
 0.1

 0.15

 0.2

 0.25

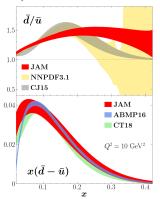
 0.3

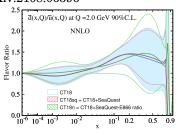

 0.3

 0.35

 0.4

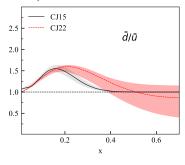
 0.45


With model calculations

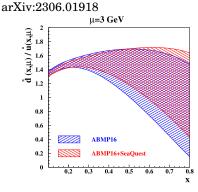

- Good agreement with calculations
- Better agreement with calculations $an ar{d}(x)/ar{u}(x)$

Theoretical Calculations about $ar{d}/ar{u}$

- The SeaQuest data have been analyzed, together with the RHIC-STAR W^\pm data, including but not limited to
- JAM PRD 104, 074031



 CT18sq arXiv:2108.06596



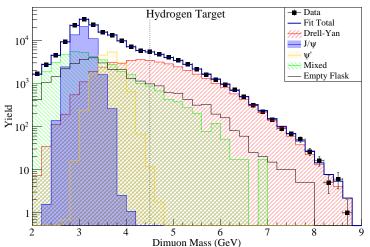
• CJ22

PRD 107, 113005

• ABMP16+SeaQuest

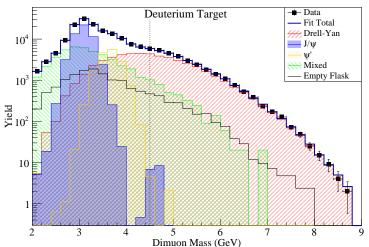
Conclusions

- Flavor asymmetry of light-quark sea; $\bar{d}(x)/\bar{u}(x)$
 - \circ As large as 70% at $x \sim 0.2$
 - What QCD mechanism generates the asymmetric sea?
 - $\circ~$ Global understandings together with $\Delta \bar{q}(x)~\&~L_{\bar{q}}$ are anticipated
- SeaQuest experiment
 - \circ Use of the Drell-Yan process in p + p & p + d at forward rapidity

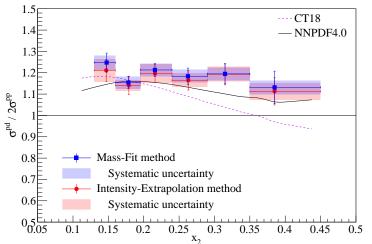

$$rac{\sigma_{pd}(x_2)}{2\sigma_{pp}(x_2)}pprox rac{1}{2}\left(1+rac{ar{d}(x_2)}{ar{u}(x_2)}
ight)$$

- With the first half of recorded data
- Measurement of flavor asymmetry PRC 108, 035202
 - $^{\circ}~$ Two methods of extracting $\sigma_{pd}(x_2)/2\sigma_{pp}(x_2)$ resulted in excellent agreement
 - $\circ \ ar{d}(x)/ar{u}(x)$ & $ar{d}(x)-ar{u}(x)$ were derived and compared to theory calculations
- Improved analyses are ongoing
 - Better statistics with full dataset & looser cut

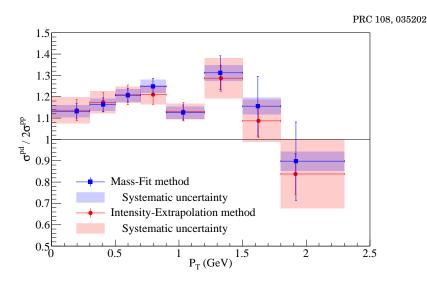
Backup Slides


Mass Distribution — LH2

PRC 108, 035202

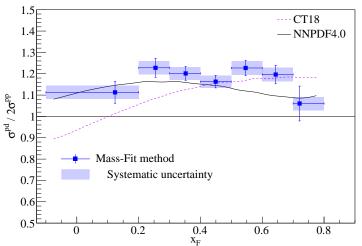

Mass Distribution — LD2

PRC 108, 035202



Cross-Section Ratio $(\sigma_{pd}/2\sigma_{pp})$ vs x_2

Cross-Section Ratio $(\sigma_{pd}/2\sigma_{pp})$ vs Dimuon p_T


Cross-Section Ratio $(\sigma_{pd}/2\sigma_{pp})$ vs x_1

Cross-Section Ratio $(\sigma_{pd}/2\sigma_{pp})$ vs x_F

PRC 108, 035202

