PDFs and qPDFs in the Covariant Parton Model

Fatma Aslan (speaker), Asli Tandogan, and Peter Schweitzer

SPIN September 2023

Outline

- Factorization
- Feynman's parton model
- Covariant parton model (CPM)
- ➢ History of the CPM
- Current formulation of CPM
- Success of the model
- Quasi parton distribution functions (qPDFs)
- qPDFs in quark models
- qPDFs in CPM

□ Summary and outlook

Factorization

Related to the target (intrinsic properties) Soft part: The PDF

- Process independent
- > Non-perturbative

$$F(x_{bj},Q) = \int_{x_{bj}}^{1} \frac{d\xi}{\xi} \hat{H}\left(\frac{x_{bj}}{\xi},\frac{\mu}{Q}\right) f(\xi,\mu) + \mathcal{O}\left(\frac{m}{Q}\right)$$

<u>The physical observable:</u>
Structure Function
➢ Expansion over Q

Related to the parton (collision) Hard part: Partonic coefficient function

Process dependent

Perturbative

Covariant Parton Model

Zavada, 1996 Phys. Rev. D 55 4290

QCD Structure

Valence quarks, sea quarks, sea antiquarks and gluons all of which are spinning and also orbiting each other, bounded in the nucleon *No QCD interactions* in the hard part ng $\hat{k}^2 =$

PDF

Covariant Parton Model

Non-interacting quarks are on mass shell $k^2 = m^2$. Spherical phase space in the rest frame $\sqrt{k_z^2 + k_T^2} \le k_m$

Covariant Parton Model

Now we can define a polarization

 $w_{\nu} w_{\nu} e^{i \omega_{\mu} u e^{i \omega_{\mu} e^{i \omega$

Zavada, 1996 Phys. Rev. D 55 4290

QCD Structure

Valence quarks, sea quarks, sea antiquarks and gluons all of which are spinning and also orbiting each other, bounded in the nucleon

Covariant Parton Model

Non-interacting quarks are on mass shell $-k^2 = m^2$. Spherical phase space in the rest frame $\sqrt{k_z^2 + k_T^2} \le k_m$

Covariant Parton Model

Zavada, 1996 Phys. Rev. D 55 4290

shell

QCD Structure

Valence quarks, sea Non-interacting quarks, sea quarks are on mass antiquarks and gluons all of which are $-k^2 = m^2$. spinning and also Spherical phase space orbiting each other, in the rest frame bounded in the $\sqrt{k_z^2 + k_T^2} \le k_m$ nucleon Now we can define a polarization $0 \leq k_T^2 \leq M^2 \setminus \frac{1}{2}$ $\omega \mu = A P \mu^+ B S \mu^+ C k \mu$

Covariant Parton Model

Covariant Parton Model - History

Description of the hadronic tensor

P. Zavada, Phys. Rev. D 55, 4290 (1997) [hep-ph/9609372]
P. Zavada, Phys. Rev. D 65, 054040 (2002) [hep-ph/0106215]
P. Zavada, Phys. Rev. D 67, 014019 (2003) [hep-ph/0210141]

 $- f_1(x), g_1(x), g_T(x)$

□ Auxiliary polarized process due to the interference of vector and scalar currents

V. Efremov, O. V. Teryaev and P. Zavada, Phys. Rev. D 70, 054018 (2004) [hep-ph/0405225].

 $- ... + h_1(x)$

□ Unintegrated structure functions," to describe twist-2 T-even TMDs.

A. V. Efremov, P. Schweitzer, O. V. Teryaev and P. Zavada, Phys. Rev. D 80, 014021 (2009) [arXiv:0903.3490 [hep-ph]].

 $= \dots + f_1(x, k_T), g_1(x, k_T), h_1(x, k_T), g_{1T}^{\perp}(x, k_T)$ $, h_{1L}^{\perp}(x, k_T), h_{1T}^{\perp}(x, k_T)$

Still no access to the twist-3 TMDs !

Covariant Parton Model - The correlator

There are 32 amplitudes in this most general case

no gauge field + on mass shell quarks + pure spin states

$$\Phi(k, P, S) = (k + m)A_3 + \frac{(k + m)}{M^2} \Big[(P \cdot k) + mM \Big] A_{11} \psi \gamma_5$$

Drops down to 2 amplitudes after applying model's constraints

CPM correlator

 $\Phi(k, P, S)_{ij} = 2P^0 \Theta(k^0) \delta(k^2 - m^2) \bar{u}_j(k) u_i(k) \times \begin{cases} \mathcal{G}(kP) & \text{unpolarized partons} \\ \mathcal{H}(kP) & \text{polarized partons.} \end{cases}$

$$\begin{aligned} \mathcal{G}^q(P \cdot k) &= -\frac{1}{\pi M^3} \left[\frac{d}{dx} \frac{f_1^a(x)}{x} \right] \\ \mathcal{H}^q(P \cdot k) &= \frac{1}{\pi x^2 M^3} \left[3g_1^a(x) + 2\int_x^1 \frac{dy}{y} g_1^a(y) - x \frac{dg_1^a(x)}{dx} \right] \end{aligned}$$

Bastami, Efremov, Schweitzer, Teryaev, Zavada Phys.Rev.D 103 (2021)

What can be calculated with the Covariant Parton Model? T-even Twist-2 and 3 distributions

T-even TMDs (in blue color) can be computed in models based on quark degrees of freedom only. T-odd TMDs (in red color) require explicit gauge field degrees of freedom, and cannot be modeled in the approach used in this model.

$$\begin{split} \phi^{[1]} &= \frac{M}{P^+} \Big[e - \frac{\varepsilon^{jk} k_T^j S_T^k}{M} e_T^{\perp} \Big], \\ \phi^{[i\gamma^5]} &= \frac{M}{P^+} \Big[S_L e_L + \frac{\mathbf{k_T} \cdot \mathbf{S_T}}{M} e_T \Big], \\ \phi^{[\gamma^j]} &= \frac{M}{P^+} \Big[\frac{k_T^j}{M} f^{\perp} + \varepsilon^{jk} S_T^k f_T + S_L \frac{\varepsilon^{jk} k_T^k}{M} f_L^{\perp} - \frac{\kappa^{jk} \varepsilon^{kl} S_T^l}{M^2} f_T^{\perp} \Big], \\ \phi^{[\gamma^j \gamma^5]} &= \frac{M}{P^+} \Big[S_T^j g_T + S_L \frac{k_T^j}{M} g_L^{\perp} + \frac{\kappa^{jk} S_T^k}{M^2} g_T^{\perp} + \frac{\varepsilon^{jk} k_T^k}{M} g^{\perp} \Big], \\ \phi^{[i\sigma^{jk}\gamma^5]} &= \frac{M}{P^+} \Big[\frac{S_T^j k_T^k - S_T^k k_t^j}{M} h_T^{\perp} - \varepsilon^{jk} h \Big], \\ \phi^{[\gamma^j]} &= \frac{M}{P^+} \Big[S_L h_L + \frac{\mathbf{k_T} \cdot \mathbf{S_T}}{M} h_T \Big]. \end{split}$$

 $e_T^{\perp}, e_L, e_T, f_T, f_L^{\perp}, f_T^{\perp}, g_T$, and h cannot be calculated in CPM because they are T-odd

Consistency of the covariant parton model – Lorentz invariance relations

Lorentz invariance relations (LIRs) **connect** the twist-2 and twist-3 parton distribution functions (PDFs) and weighted moments of transverse momentum dependent (TMD) correlation functions

LIRs <u>are satisfied</u> in the covariant parton model.

$$\begin{split} g_T^q(x) &\stackrel{\text{LIR}}{=} g_1^q(x) + \frac{\mathrm{d}}{\mathrm{d}x} g_{1T}^{\perp(1)q}(x) \,, \\ h_L^q(x) &\stackrel{\text{LIR}}{=} h_1^q(x) - \frac{\mathrm{d}}{\mathrm{d}x} h_{1L}^{\perp(1)q}(x) \,, \\ h_T^q(x) &\stackrel{\text{LIR}}{=} - \frac{\mathrm{d}}{\mathrm{d}x} h_{1T}^{\perp(1)q}(x) \,, \\ g_L^{\perp q}(x) + \frac{\mathrm{d}}{\mathrm{d}x} g_T^{\perp(1)q}(x) &\stackrel{\text{LIR}}{=} 0 \,, \\ h_T^q(x, p_T) - h_T^{\perp q}(x, p_T) &\stackrel{\text{LIR}}{=} h_{1L}^{\perp q}(x, p_T) \,, \end{split}$$

$$g_{1T}^{(1)}(x) = \int d^2 \mathbf{k}_T \frac{\mathbf{k}_T^2}{2M^2} g_{1T}(x, \mathbf{k}_T^2), \quad \text{etc.}$$

P.J. Mulders and R.D. Tangerman, Nucl. Phys. B 461, 197-237 (1996). D. Boer and P.J. Mulders, Phys. Rev. D 57, 5780 (1998).

Consistency of the covariant parton model – Equation of motion relations

Twist-3 TMDs = Contribution from (Genuine twist 3 TMDs + Twist-2 TMDs + Mass terms)

Equation of motion relations <u>are satisfied</u> in the covariant parton model when genuine twist-3 terms are set to zero.

$$xe = x\tilde{e} + rac{m}{M}f_1$$

 $xf^{\perp} = x\tilde{f}^{\perp} + f_1$
 $xg_L^{\perp} = x\tilde{g}_L^{\perp} + g_1 + rac{m}{M}h_{1L}^{\perp}$
 $xg_T = \tilde{g}_T + g_{1T}^{\perp(1)} + rac{m}{M}h_1$
 $xg_T^{\perp} = x\tilde{g}_T^{\perp} + g_{1T}^{\perp} + rac{m}{M}h_{1T}^{\perp}$
 $xh_L = x\tilde{h}_L - 2h_{1L}^{\perp(1)} + rac{m}{M}g_1$
 $xh_T = x\tilde{h}_T - h_1 - h_{1T}^{\perp(1)} + rac{m}{M}g_{1T}^{\perp}$
 $xh_T^{\perp} = x\tilde{h}_T^{\perp} + h_1 - h_{1T}^{\perp(1)}$

Consistency of the covariant parton model – WW relations

$$g_T^q(x) \stackrel{\text{WW}}{=} \int_x^1 \frac{\mathrm{d}y}{y} g_1^q(y) + \frac{m}{M} \left[-\frac{h_1^q(x)}{x} + \int_x^1 \frac{\mathrm{d}y}{y^2} h_1^q(y) \right],$$

$$h_L^q(x) \stackrel{\text{WW}}{=} 2x \int_x^1 \frac{\mathrm{d}y}{y^2} h_1^q(y) + \frac{m}{M} \left[\frac{g_1^q(x)}{x} - 2x \int_x^1 \frac{\mathrm{d}y}{y^3} g_1^q(y) \right].$$

Quark model relations in Covariant Parton Model

$$egin{aligned} g_{1T}^{\perp q}(x,p_T) &= -h_{1L}^{\perp q}(x,p_T), \ g_T^{\perp q}(x,p_T) &= -h_{1T}^{\perp q}(x,p_T), \ g_L^{\perp q}(x,p_T) &= -h_T^q(x,p_T), \ g_L^{\perp q}(x,p_T) &= -h_T^q(x,p_T), \ g_1^q(x,p_T) - h_1^q(x,p_T) &= h_{1T}^{\perp (1)q}(x,p_T), \ g_T^q(x,p_T) - h_L^q(x,p_T) &= h_{1T}^{\perp (1)q}(x,p_T), \ h_T^q(x,p_T) - h_T^{\perp q}(x,p_T) &= h_{1L}^{\perp q}(x,p_T). \end{aligned}$$

These relations are valid in a large class of quark models, including spectator models, bag model, lightfront constituent quark model

Antiquark correlator

Independent amplitudes in the quark and antiquark correlators and TMDs in the covariant parton model. Aslan, Bastami, Schweitzer (2020)

I. In models without gauge field degrees of freedom <u>T-odd</u> amplitudes, \bar{A}_4 , \bar{A}_5 , \bar{A}_{12} and all the \bar{B}_i amplitudes are absent

II. Assuming the partons are on-shell, $Tr[\Phi\Gamma(\gamma, k - m)] = 0$, leads to the relations between some amplitudes

III. Assuming pure spin states,
$$\omega^2 = -1$$
, leads to $\bar{A}_8 = \mp \bar{A}_{11}$ $\bar{\Phi}(k, P, S) = (\not k - m)\bar{A}_3 + \frac{(\not k - m)}{M^2} \Big[(P \cdot k) - mM \Big] \bar{A}_{11} \bar{\psi} \gamma_5 - mM \Big] \bar{A}_{1$

$$\bar{\phi}(k,P,S)_{ij} = 2M\delta(k^2 - m^2)\Theta(-k^0)\Theta[(P+k)^2]v_i(k)\bar{v}_j(k) \times \begin{cases} \bar{\mathcal{G}}(kP) & \text{unpolarized partons} \\ \\ \bar{\mathcal{H}}(kP) & \text{polarized partons.} \end{cases}$$

Quasi PDFs

qPDFs in quark models

--> Point splitting in + direction

Twist 2 PDF:
$$f_1^q(x) = \frac{1}{2P^+} \int d^4k \operatorname{tr} \left[\Phi^q(k, P, S) \gamma^+ \right] \delta\left(x - \frac{k^+}{P^+}\right),$$

Its quasi counterpart: $D^q(x_v, \Gamma, v) = \frac{1}{2P^3} \int d^4k \operatorname{tr} \left[\Phi^q(k, P, S) \Gamma \right] \delta\left(x - \frac{k^3}{P^3}\right).$
Point splitting in z direction
 $\Gamma = \gamma^0 \text{ or } \gamma^3$

Quark models- no gauge field degrees of freedom- T-odd amplitudes, \bar{A}_4 , \bar{A}_5 , \bar{A}_{12} and all the \bar{B}_i amplitudes are absent

$$\begin{split} f_1^q(x) &= 2 \int d^4k \, \left(A_2^q + x \, A_3^q \right) \delta \left(x - \frac{k^+}{P^+} \right), \\ D^q(x_v, \gamma^\mu, v) &= 2 \int d^4k \, \left(\frac{P^\mu}{P^3} \, A_2^q + \frac{k^\mu}{P^3} \, A_3^q \right) \delta \left(x - \frac{k^3}{P^3} \right), \quad \mu = 0, \; 3. \end{split}$$

Sum rules

Number of valence quarks of flavor q

momentum transfer

$$\begin{aligned} \mathsf{Flavor sum rule:} & \int_{0}^{1} dx \left(f_{1}^{q}(x) - f_{1}^{\bar{q}}(x) \right) \equiv \int_{-1}^{1} dx f_{1}^{q}(x) = N^{q} , \\ \mathsf{Momentum sum rule:} & \int_{0}^{1} dx x \left(f_{1}^{q}(x) + f_{1}^{\bar{q}}(x) \right) \equiv \int_{-1}^{1} dx x f_{1}^{q}(x) = A^{q}(0) , \\ \mathsf{A form factor of the energy momentum tensor at zero momentum tensor at zero momentum transfer \\ & \Sigma_{a} A^{a}(0) = 1 \end{aligned}$$

$$\begin{aligned} \mathsf{Flavor sum rules:} & - \left\{ \begin{array}{c} \int_{0}^{\infty} dx \left(D^{q}(x_{v}, \gamma^{0}, v) - D^{\bar{q}}(x_{v}, \gamma^{0}, v) \right) = \int_{-\infty}^{\infty} dx D^{q}(x_{v}, \gamma^{0}, v) = \frac{N^{q}}{v} , \\ \int_{0}^{\infty} dx \left(D^{q}(x_{v}, \gamma^{0}, v) - D^{\bar{q}}(x_{v}, \gamma^{3}, v) \right) = \int_{-\infty}^{\infty} dx D^{q}(x_{v}, \gamma^{0}, v) = N^{q} , \\ \int_{0}^{\infty} dx \left(D^{q}(x_{v}, \gamma^{0}, v) + D^{\bar{q}}(x_{v}, \gamma^{0}, v) \right) = \int_{-\infty}^{\infty} dx x D^{q}(x_{v}, \gamma^{0}, v) = \frac{A^{q}(0)}{v} , \\ \end{aligned} \end{aligned}$$

$$\begin{aligned} \mathsf{Momentum sum rule:} & = \left\{ \begin{array}{c} \int_{0}^{\infty} dx \left(D^{q}(x_{v}, \gamma^{3}, v) + D^{\bar{q}}(x_{v}, \gamma^{3}, v) \right) = \int_{-\infty}^{\infty} dx x D^{q}(x_{v}, \gamma^{3}, v) = N^{q} , \\ \int_{0}^{\infty} dx x \left(D^{q}(x_{v}, \gamma^{3}, v) + D^{\bar{q}}(x_{v}, \gamma^{3}, v) \right) = \int_{-\infty}^{\infty} dx x D^{q}(x_{v}, \gamma^{3}, v) = A^{q}(0) - \frac{1 - v^{2}}{v^{2}} \bar{c}^{q}(0) , \\ \mathsf{A form factor of the energy momentum tensor at zero } \sum_{a} \bar{c}^{a}(t) = 0 \end{aligned} \end{aligned}$$

Bhattacharya, Cocuzza, Metz, Phys.Rev.D 102 (2020) 5, 054021

qPDFs in the Covariant Parton Model

$$\frac{\ln CPM}{PDFs} : \frac{m_q^2}{M_N^2} \le x \le 1$$

$$\Rightarrow qPDFs: x_{min} < x < x_{max}$$

$$\tilde{x}_{max} = \frac{1}{2}\left(1 + \frac{m_q^2}{M^2}\right) + \frac{1}{2}\sqrt{\left(1 + \frac{m_q^2}{M^2}\right)^2 - 4\frac{m_q^2}{M^2}\left(1 + \frac{M^2}{P_z^2}\right) + \frac{M^2}{P_z^2}\left(1 + \frac{m_q^2}{M^2}\right)^2}$$
$$\tilde{x}_{min} = \frac{1}{2}\left(1 + \frac{m_q^2}{M^2}\right) - \frac{1}{2}\sqrt{\left(1 + \frac{m_q^2}{M^2}\right)^2 - 4\frac{m_q^2}{M^2}\left(1 + \frac{M^2}{P_z^2}\right) + \frac{M^2}{P_z^2}\left(1 + \frac{m_q^2}{M^2}\right)^2}$$

As
$$P^z \to 0$$
 $\tilde{x}_{max} = \frac{M}{2P^z} \left(1 - \frac{m_q^2}{M^2}\right) \to \infty$
 $\tilde{x}_{min} = -\frac{M}{2P^z} \left(1 - \frac{m_q^2}{M^2}\right) \to -\infty$

As $P^z \to \infty$ $\tilde{x}_{max} = 1$ $\tilde{x}_{min} = \frac{m_q^2}{M^2}$

qPDFs in the Covariant Parton Model

Quark distribution leaks to anti-quark distribution and vice versa

qPDFs in the Covariant Parton Model

 $\succ D^q(x_v, \gamma^0, v)$ and $D^q(x_v, \gamma^3, v)$ are related

$$D^q(x_v, \gamma^0, v) = v D^q(x_v, \gamma^3, v) + (1 - v^2) 2 \pi M \int_{L(v)}^{\frac{1}{2}M} dk \ k \mathcal{G}^q(Mk) \, .$$

- EMT Form factors are calculated and found that
 - 1) Sum rules are satisfied

$$\begin{split} &\int_{0}^{\infty} dx \left(D^{q}(x_{v}, \gamma^{0}, v) - D^{\bar{q}}(x_{v}, \gamma^{0}, v) \right) = \int_{-\infty}^{\infty} dx \, D^{q}(x_{v}, \gamma^{0}, v) = \frac{N^{q}}{v} \,, \\ &\int_{0}^{\infty} dx \left(D^{q}(x_{v}, \gamma^{3}, v) - D^{\bar{q}}(x_{v}, \gamma^{3}, v) \right) = \int_{-\infty}^{\infty} dx \, D^{q}(x_{v}, \gamma^{3}, v) = N^{q} \,, \\ &\int_{0}^{\infty} dx \, x \left(D^{q}(x_{v}, \gamma^{0}, v) + D^{\bar{q}}(x_{v}, \gamma^{0}, v) \right) = \int_{-\infty}^{\infty} dx \, x \, D^{q}(x_{v}, \gamma^{0}, v) = \frac{A^{q}(0)}{v} \,, \\ &\int_{0}^{\infty} dx \, x \left(D^{q}(x_{v}, \gamma^{3}, v) + D^{\bar{q}}(x_{v}, \gamma^{3}, v) \right) = \int_{-\infty}^{\infty} dx \, x \, D^{q}(x_{v}, \gamma^{3}, v) = A^{q}(0) - \frac{1 - v^{2}}{v^{2}} \, \bar{c}^{q}(0) \,, \end{split}$$

2)

$$\bar{c}^{q}(0) = -\frac{1}{4} A^{q}(0), \quad \text{CPM}$$

 $\bar{c}^{q}(0) = -\frac{1}{4} A^{q}(0), \quad \text{bag model}$

This might a consequence of the fact that the quarks inside the bag obey the free Dirac equation as they do in the CPM.

Summary

> On mass shell quarks

Covariant parton model > Spherical phase space in the rest frame

On-shell partons in pure spin states

Table 1: The quark and antiquark correlators, polarization vectors and amplitudes for $A_8 = -A_{11}$ and $\bar{A}_8 = -\bar{A}_{11}$

- > All polarized and unpolarized T-even TMDs are systematically obtained for quarks and antiquarks,
- TMD relations supported by other quark models are satisfied
- Quark distribution leaks to anti-quark distribution and vice versa
- > $D^q(x_v, \gamma^0, v)$ and $D^q(x_v, \gamma^3, v)$ are related

Outlook

- $\circ~$ Polarized qPDFs to be completed
- $\circ~$ Making the model more realistic by including off-shell-ness effects
- $\circ~$ Wish to access T-odd TMDs
- Calculating other distributions and quasi distributions: GTMDs, GPDs, etc..
- ο.
- ο.
- ο.

Quark correlator – no gauge field + on mass shell + pure spin states

Assuming pure spin states, $\omega^2 = -1$, leads to $A_8 = \mp A_{11}$

ω^2	
Mixed spin state	$-1 \le \omega^2 \le 0$
Pure spin state	$\omega^2 = -1$

Amplitudes : A_3, A_{11}

Choosing $A_8 = -A_{11}$

$$\Phi(k, P, S) = (\not\!\!k + m)A_3 + \frac{(\not\!\!k + m)}{M^2} \Big[(P \cdot k) + mM \Big] A_{11} \psi \gamma_5$$
$$\omega^{\mu}(k, P, S) = \left\{ S^{\mu} - \frac{(k.S)}{\left[(P \cdot k) + mM \right]} P^{\mu} - \frac{M}{m} \frac{(k \cdot S)}{\left[(P \cdot k) + mM \right]} k^{\mu} \right\}$$

Covariant Parton Model - The amplitudes for quarks

> Model

$$Tr[\Phi(P,k,S)\Gamma] = P^0\Theta(k^0)\delta(k^2 - m^2)Tr\Big[(\not k + m)(\mathcal{G}(kP) + \mathcal{H}(kP)\gamma^5 \not \omega)\Gamma\Big]$$

Quark correlator with no gauge field + on mass shell + pure spin states

> Amplitudes obtained in terms of the covariant distribution functions

$$A_{3}(k.P) = P^{0}\delta_{+}(k^{2} - m^{2})\mathcal{G}(k.P)$$
$$A_{11}(k.P) = P^{0}\delta_{+}(k^{2} - m^{2})\mathcal{H}(k.P)\left(-\frac{M^{2}}{k.P + mM}\right)$$