

Constraining the Quark and Gluon Helicity at STAR

Ting Lin (林挺), for the STAR Collaboration Shandong University (山东大学)

25th International Symposium on Spin Physics (SPIN 2023)

Outline

- Motivation
- RHIC Facility and STAR Detector
- Quark Polarization
- Gluon Polarization
- Summary

Spin of the Proton

 $f_g(x,Q^2)$

• For helicity distributions (collinear terms) in 'canonical' approach, the proton's spin can be decomposed into:

$$\langle S_z^p \rangle = \frac{1}{2} = \frac{1}{2} \Delta \Sigma + \Delta G + \langle L_z^q \rangle + \langle L_z^g \rangle$$

R. L. Jaffe and A. Manohar, NPB 337, 509 (1990)

•
$$\Delta \Sigma = \int (\Delta u + \Delta d + \Delta s + \Delta \bar{u} + \Delta \bar{d} + \Delta \bar{s}) dx$$

• $\Delta G = \int \Delta g(x) dx$

 $d\sigma_{pp \to jet+X} = \sum_{ab} \int f_a(x_1, Q^2) f_b(x_2, Q^2) d\hat{\sigma}_{a+b \to jet+X}(x_1, x_2, Q^2) dx_1 dx_2$

• Helicity PDF, $\Delta f(x) =$

• Unpolarized PDF, f(x) =

RHIC Facility and STAR Detector

Relativistic Heavy Ion Collider (RHIC)

- Spin pattern changes from fill to fill with little depolarization;
- Siberian snakes preserve the polarization;
- Spin rotators select spin orientation;
- proton-Carbon (pC) polarimeters and hydrogen gas jet (H-Jet) measure the polarization.

The Solenoidal Tracker At RHIC (STAR)

STAR Longitudinal Polarization Data

Year	2009	2009	2011	2012	2013	2015	<u> </u>
\sqrt{s} (GeV)	200	500	500	510	510	200	[pb ⁻¹
$L_{int} (pb^{-1})$	25	10	12	82	300	52	sity L
Polarization	55%	39%	48%	53%	55%	58%	sonim e

- RHIC has concluded the longitudinal polarized data taking in 2015;
- Most STAR key measurements using the longitudinal polarized data have been published in the last few years, with few to be published soon.

Quark Polarization

Quark Polarization

0.2

0.3

0.4

Alberg & Miller

CT18, NLO, SeaQuest kinematics CTEQ6m, SeaQuest kinematics

0.1

SPIN 2023

$$\Delta \Sigma = \int \left(\Delta u + \Delta d + \Delta s + \Delta \overline{u} + \Delta \overline{d} + \Delta \overline{s} \right) dx$$

- Polarized inclusive DIS data measure $\Delta u + \Delta \bar{u}$ and $\Delta d + \Delta \bar{d}$;
 - HERMES: $\Delta\Sigma(Q^2 = 3 \text{GeV}) = 0.330 \pm 0.011 \text{ (theo)} \pm 0.025 \text{ (exp)} \pm 0.028 \text{ (evol)}$
 - COMPASS: $\Delta\Sigma(Q^2 = 5 \text{GeV}) = 0.32 \pm 0.02 \text{ (stat)} \pm 0.04 \text{ (syst)} \pm 0.05 \text{ (evol)}$
- Polarized SIDIS data provide flavor separation, but with large uncertainties;
- Surprising results were found in the unpolarized anti-quark distributions;
- Might the polarized anti-quark distributions also contain surprises?

HERMES, PRD 75, 012007 (2007) COMPASS, PLB 769 (2017) 34–41

Anti-Quark Polarization via W^{\pm} Bosson

Α

A

$$A_L = \frac{\sigma^+ - \sigma^-}{\sigma^+ + \sigma^-}$$

$${}^{W^+}_{L} \propto \frac{-\Delta u(x_1)\bar{d}(x_2) + \Delta \bar{d}(x_1)u(x_2)}{u(x_1)\bar{d}(x_2) + \bar{d}(x_1)u(x_2)} \simeq \begin{cases} -\frac{\Delta u(x_1)}{u(x_1)}, & y_W \gg 0 \ (x_1 \gg x_2) \\ \frac{\Delta \bar{d}(x_1)}{\bar{d}(x_1)}, & y_W \ll 0 \ (x_1 \ll x_2) \end{cases}$$

$${}^{W^-}_{L} \propto \frac{-\Delta d(x_1)\bar{u}(x_2) + \Delta \bar{u}(x_1)d(x_2)}{d(x_1)\bar{u}(x_2) + \bar{u}(x_1)d(x_2)} \simeq \begin{cases} -\frac{\Delta d(x_1)}{d(x_1)}, & y_W \gg 0 \ (x_1 \gg x_2) \\ \frac{\Delta \bar{u}(x_1)}{\bar{u}(x_1)}, & y_W \gg 0 \ (x_1 \gg x_2) \end{cases}$$

- Only left-handed quarks and right-handed anti-quarks participate;
- No fragmentation function uncertainties;
- W^{\pm} measurement at RHIC provides a unique way to delineate the flavor structure of proton spin.

Anti-Quark Polarization from STAR

- Clearly demonstrate that $\Delta \bar{u} > \Delta \bar{d}$;
- This is opposite from the unpolarized distributions, which has $\bar{d} > \bar{u}$. SPIN 2023 Ting Lin - Shandong University

- These results provide insights into the strange quark and anti-quark helicity distributions in the proton;
- The first measurement of the D_{LL} vs. z directly probes the polarized fragmentation functions. • **SPIN 2023** Ting Lin - Shandong University

See Qinghua Xu's talk

Sep. 26, 2023, 10:00 AM

Gluon Polarization

Probing the Gluon Helicity at RHIC

0.05

0.1

0.15

0.2

- At the parton level, helicity correlations are very large in leading-order QCD;
- For most RHIC kinematics, gg and qg dominate, making A_{LL} sensitive to gluon polarization.

SPIN 2023

0.4

0.45

0.25

Jet x_{T} (= 2 $p_{/}$ /s)

0.3

0.35

0.5

Jet Reconstruction at STAR

Anti- k_T Algorithm:

- Radius = 0.6 for pp 200 GeV
- Radius = 0.5 for pp 510 GeV

Jet Levels MC Jets Detector GEANT Particle ΡΥΤΗΙΑ Parton

Simulation:

- PYTHIA 6.4 Perugia0
- PYTHIA 6.4 Perugia2012, PARP(90) = 0.213

Evidence of Positive ΔG

- Both DSSV and NNPDF have performed new polarized PDF fits;
- Both find the 2009 RHIC results provide significantly tighter constraints on gluon polarization;
- Both find **evidence for positive gluon polarization** in the region *x* > 0.05:

• NNPDF:
$$\Delta G = \int_{0.05}^{0.5} \Delta g(x) dx = 0.23 \pm 0.06$$

• DSSV:
$$\Delta G = \int_{0.05}^{1} \Delta g(x) dx = 0.20 \pm 0.06$$

Gluon Polarization with RHIC Data

 The low x behavior and shape of Δg(x) are still poorly constrained:

•
$$\Delta G = \int_{0.05}^{1} \Delta g(x) dx = 0.20 \pm 0.06$$

•
$$\Delta G = \int_{0.001}^{0.05} \Delta g(x) dx = 0.15 \pm 0.50$$

- STAR's strategies to explore low-x regime:
 - 1. Extend to dijet measurement;
 - 2. Reconstruct jet at higher η ;
 - 3. Increase the integrated luminosity of data;
 - 4. Take data with higher collision energy.

Mid-Rapidity Dijet A_{LL}

- Dijet measurements capture more information from the hard scattering and provide a more direct link to the initial parton level kinematics than inclusive measurements;
- Mid-rapidity di-jet A_{LL} presented for two topologies as a function of di-jet invariant mass corrected to parton level;
- Data compared to expectations from DSSV14 and NNPDFpol1.1 polarized PDFs, both contain 2009 inclusive jet results.
 SPIN 2023 Ting Lin Shandong University 20

Intermediate Rapidity Dijet A_{LL}

- Adding the Endcap opens up several new dijet topologies;
- Forward jets probe lower values of gluon momentum fraction while selecting more asymmetric collisions.
 SPIN 2023 Ting Lin Shandong University

Impact of the Dijet Results:

- Gluon polarization in the region **x** > **0.1**:
 - before: $\Delta G = \int_{0.1}^{1} \Delta g(x) dx = 0.133 \pm 0.035$
 - after: $\Delta G = \int_{0.1}^{1} \Delta g(x) dx = 0.126 \pm 0.023$

- In the region **x** > **0.01**:
 - before: $\Delta G = \int_{0.01}^{1} \Delta g(x) dx = 0.309 \pm 0.109$
 - after: $\Delta G = \int_{0.01}^{1} \Delta g(x) dx = 0.296 \pm 0.108$

Х

New A_{LL} Results at 200 GeV

- Consistent with 2009 data, which provided first evidence for positive ΔG for x > 0.05;
- Improved statistical and systematic uncertainties;
- Will significantly reduce uncertainty on gluon polarization for x > 0.05 once included in global fits.

SPIN 2023

- Plotted vs x_T, overall consistency seen among STAR data sets;
- Well described by global fits that previously gave a good description of the 200 GeV results.

100

60 80 Parton Dijet M_{inv} (GeV/c²) 120

-0.02

Impact of the RHIC Results

- New results from RHIC shows significant impact when constraining the gluon helicity distribution;
- STAR dijet data disfavor distributions with large and negative gluon polarization.

DSSV14 + RHIC (≤2022):

•
$$\Delta G = \int_{0.05}^{1} \Delta g(x) dx = 0.22 \pm 0.03$$

The RHIC Cold QCD Program, arXiv:2302.00605

•
$$\Delta G = \int_{0.001}^{0.05} \Delta g(x) dx = 0.17 \pm 0.20$$

New Dijet A_{LL} at Intermediate Pseudorapidity

- Final longitudinal data acquired by STAR at 2012, 2013 and 2015;
- Preliminary results for 510 GeV and 200 GeV are well described by global fits. SPIN 2023 Ting Lin - Shandong University

New Dijet A_{LL} at Intermediate Pseudorapidity

- Preliminary results for for 510 GeV and 200 GeV are in good agreement with M/\sqrt{s} dependence;
- 510 GeV are dominated by gg process while 200 has more qg interactions;
- Different dijet topologies provide sensitivity to different kinematics: different sub-process fractions and sample x₁ and x₂ simultaneously in different ranges;
- Intermediate pseudorapidity results push to lowest possible gluon x values and high x quarks.

Ting Lin - Shandong University

New Dijet A_{LL} at Intermediate Pseudorapidity

SPIN 2023

Ting Lin - Shandong University

Jet A_{LL} Results with Charged Pion Tagging

- Different subprocess fractions for π^+ and π^- tagging jet A_{LL} ;
- Complementary constraint to gluon polarization with inclusive jet measurement.

Ting Lin - Shandong University

Summary

- RHIC has concluded the longitudinal polarized data taking;
- For almost two decades, the longitudinal polarization measurements contribute significantly to our understanding of the proton's spin structure;
 - Found an asymmetry in the polarized anti-quark sea;
 - Found evidence for positive gluon polarization in the region x > 0.05;
- Several new results will soon to be published, which will provide constraints to both low-*x* gluons and high-*x* quarks.