SHEDDING LIGHT ON SHADOW GENERALIZED PARTON DISTRIBUTIONS (GPDS)

Phys.Rev.D 108 (2023) 3, 036027

SPIN 9-25-23

PRESENTER: ERIC MOFFAT COLLABORATORS: IAN CLOET THOMAS DONOHOE ADAM FREESE LEONARD GAMBERG

WALLY MELNITCHOUK ANDREAS METZ ALEXEI PROKUDIN NOBUO SATO

Introduction

- * Generalized Parton Distributions (GPDs) contain information about many hadron properties:
 - * 3D structure
 - * Spin sum
 - * Pressure and shear force distributions
- * Goal:
 - * Perform a global fit of GPDs using the Jefferson Lab Angular Momentum (JAM) methodologies.
- * Obstacle:
 - * Shadow GPDs (SGPDS) (Bertone, et. al. Phys.Rev.D 103) (2021) 11, 114019):
 - * There is an infinite number of functions that can give the same CFF.

GPUS * Definition: $P \cdot n \int \frac{\mathrm{d}\lambda}{2\pi} e^{ixP \cdot n\lambda} \left\langle p' \left| \bar{\psi}^q \left(-\frac{1}{2}\lambda n \right) \not n \psi^q \left(\frac{1}{2}\lambda n \right) \right| \right\rangle$ $n_{\mu}n_{\nu}\int \frac{\mathrm{d}\lambda}{2\pi} e^{ixP\cdot n\lambda} \langle p' | G^{\mu\alpha}(-\frac{1}{2}\lambda n) G_{\alpha}^{\nu}(\frac{1}{2}\lambda n) |$ * Functions of *x*, ξ , and *t*: $x = \frac{k^{+} + k^{'+}}{p^{+} + p^{'+}} \quad \xi = \frac{p^{'+} - p^{+}}{p^{+} + p^{'+}} \quad t = (p' - p)^{2}$

$$\begin{split} p &\rangle = \bar{u}(p') \left[\begin{array}{c} H^q(x,\xi,t;\mu^2) \not n + & E^q(x,\xi,t;\mu^2) \, \frac{i\sigma^{n\Delta}}{2M} \right] u(p), \\ p &\rangle = \bar{u}(p') \left[x \, H^g(x,\xi,t;\mu^2) \, \not n + x \, E^g(x,\xi,t;\mu^2) \, \frac{i\sigma^{n\Delta}}{2M} \right] u(p), \end{split}$$

GPDs

* Properties:

* Polynomiality:

$$\int_{-1}^{1} dx \, x^{s} H^{a}(x,\xi,t;\mu^{2}) = \sum_{i=0 \text{ (even)}}^{s} (2\xi)^{i} A^{a}_{s+1,i}(t,\mu^{2}) + \text{mod}(s,2) (2\xi)^{s+1} C^{a}_{s+1}(t,\mu^{2}),$$

$$\int_{-1}^{1} dx \, x^{s} E^{a}(x,\xi,t;\mu^{2}) = \sum_{i=0 \text{ (even)}}^{s} (2\xi)^{i} B^{a}_{s+1,i}(t,\mu^{2}) - \text{mod}(s,2) (2\xi)^{s+1} C^{a}_{s+1}(t,\mu^{2}),$$
* Forward Limit $(\xi, t \to 0)$:

$$H^{q}(x,0,0) = q(x) \Theta(x) - \bar{q}(-x) \Theta(-x),$$

$$2 H^{q}(x,0,0) = q(x) \Theta(x) - \bar{q}(-x) \Theta(-x),$$

 $2H^{g}(x,0,0) = g(x) \Theta(x) - g(-x) \Theta(-x),$

* Evolution:

* GPDs change with the energy scale in accordance with evolution equations of the general form:

$$\frac{\mathrm{d}H^a(x,\xi,t)}{\mathrm{d}\ln Q^2}$$

$$= \int \mathrm{d}x P^a(x,\xi) H^a(x,\xi,t;Q_0^2)$$

The Inverse Problem

* Deeply virtual Compton scattering: * Compton Form Factors:

$$\mathcal{H}(\xi, t, Q^2) = \int_{-1}^1 dx \, \sum_{k=1}^{\infty} dx \, \sum_{k=1$$

* x-dependence is lost in the integration:

* There is an infinite number of functions that can give the same CFF.

$\sum C^{a}(x,\xi,Q^{2},\mu^{2}) H^{a}(x,\xi,t;\mu^{2})$

Shadow GPDs

- * Can rule out any F_F^a that do not satisfy the properties of GPDs, therefore SGPDs:
 - Must satisfy polynomiality
 - * Zero contribution to CFF:

$$\sum_{a} C^{a}(x,\xi,Q^{2},$$

* Forward Limit: $H_S^a(x,0,0) = 0$

* The difference between one of the multiple solutions to the inverse problem and the true GPD:

 $F_S^a(x,\xi;\mu^2) = F_F^a(x,\xi;\mu^2) - F_T^a(x,\xi;\mu^2)$

$$\mu^2) \otimes F_S^a(x,\xi;\mu^2) = 0$$

Evolution and SGPDs

- Example SGPDs explored in Bertone, et. al. Phys.Rev.D 103 (2021)
 11, 114019 give very small but non-zero CFF after evolution to a different energy scale.
- SGPDs can be multiplied by any factor and the result would still be a SGPD at the input scale
- * Non-zero CFF after evolution would be multiplied by this factor
- Data spanning a range of energy scales would give a limit to the possible scaling factors

Evolution and SGPDs

* In this work:

- and skewness using a model
- SGPDs

* Generate simulated CFF data spanning a range of energy scales

* Calculate how this data constrains a Monte Carlo sampling of

"True" GPDs

- * Use VGG model as a proxy for the "true" GPD:
 - * Vanderhaeghen, et. al., Phys. Rev. Lett. 80, 5064 (1998)
 - * Vanderhaeghen, et. al., Phys. Rev. D 60, 094017 (1999)
 - * Goeke, et. al., Prog. Part. Nucl. Phys. 47, 401 (2001)
 - * Guidal, et. al., Phys. Rev. D 72, 054013 (2005)
- * Use PDFs from JAM20-SIDIS (EM, et. al., Phys. Rev. D 104, 016015 (2021))

"True" GPDs

 $\xi = 0.01$ $H_T (\mu_0^2)$ 1.00 ••••• $H_T (100 \text{ GeV}^2)$ $E_T \ (\mu_0^2)$ 0.75 $F^{u(+)}$ ••••• $E_T \ (100 \ {\rm GeV}^2)$ 0.50 0.250.00 10^{-2} 10^{-1} 10^{0} 10^{-3} 0.0 0.2 ${\mathcal X}$

Calculating Shadow GPDs

* Start from a double distribution (DD):

* SGPD is a Radon transform of the DD:

$$H_{S}(x,\xi) = \int_{-1}^{1} d\beta \int$$

* This guarantees the SGPDs satisfy polynomiality

 $F_{DD}(\alpha,\beta) = \sum^{m+n \leq N} c_{mn} \alpha^m \beta^n$

m even,*n* odd

 $1-|\beta|$ $d\alpha\delta(x-\beta-\alpha\xi)F_{DD}(\alpha,\beta)$ $-1+|\beta|$

Calculating Shadow GPDs

- * SGPD conditions give a set of equations that can be solved for the unknowns (c_{mn})
 - * For a given N there are more unknown coefficients than constraining equations:
 - * Assign random values to enough randomly selected coefficients to reduce the number of unknowns so that the equations can be solved
 - * Use N = 27
 - * SGPDs give zero contribution to the CFF at next-to-leading order

Calculating Shadow GPDs

- * For SGPDs derived this way we can impose the forward limit in two ways: * Type A:
 - * Consistent with Bertone, et. al. Phys.Rev.D 103 (2021) 11, 114019: $H_{\varsigma}^{u(+)}(x,0;\mu_0)) = 0$

* Type B:

* Could also multiply F_{DD} by a function of t that is zero when t = 0

 $H_{s}^{u(+)}(x,0;\mu_{0})) \neq 0$

* Use Monte Carlo sampling to generate replicas that are linear combinations of three SGPDs:

$$H^{u(+)}(x,\xi;\mu^2,\lambda) = H_T^{u(+)}(x,\xi;\mu^2) + \lambda_1 H_{S1}^{u(+)}(x,\xi;\mu^2) + \lambda_2 H_{S2}^{u(+)}(x,\xi;\mu^2) + \lambda_3 H_{S3}^{u(+)}(x,\xi;\mu^2)$$

- * Plot the region δH_S : Outer boundary of all 10000 replicas

* Randomly select the scaling factors until we get 10000 replicas that all give CFFs that are within 1% of the simulated data from the model.

Exploring SGPDs and Evolution $Q^2 \leq 100 \text{ GeV}^2$

- * Inclusion of higher ξ data leads to better constraint of SGPDs at smaller ξ
 - True over the full range of x when $H_{S}^{u(+)}(x,0;\mu_{0})) = 0$
 - * Only true for low x when $H^{u(+)}_{c}(.)$ $(x,0;\mu_0)) \neq 0$

* Some range of Q^2 is necessar evolution to constrain the SGPDs but a large range is not as necessary as having large ξ data.

- * The trend of larger ξ data leading to better constrained SGPDs at smaller ξ is a direct result of the ξ dependence of the SGPDs
 - * Independent of the model used as a proxy for the "true" GPD
 - * Independent of the chosen uncertainty

Conclusions

* Conclusions:

- * For the SGPDs that have been explored here:
 - ξ at least in the range of low x
- * The SGPDs explored are only a small sampling of all possible SGPDs:
 - * At this point we cannot generalize these results to all SGPDs
 - extracting GPDs from DVCS data.

* Data spanning a range of Q^2 at larger ξ leads to the SGPDs being better constrained at lower

* These findings are independent of the model used as the proxy for the "true" GPD.

* Data spanning a range of Q^2 at larger ξ is a necessary but possibly not sufficient condition for

