Measurement of the weak neutral form-factor of the proton at high momentum transfer

Kent Paschke University of Virginia

E12-23-004

Spokespeople: R.Beminiwattha, D.Hamilton, C. Palatchi, KP, B.Wojtsekhowski

LaTech, Glascow, Indiana, UVa, JLab, CUA, INFN - Roma, Temple, Ohio, Syracuse, FIU, CNU, Fermilab, UWashington, Tel Aviv U, Hebrew U, W&M, AANL Yerevan, Northern Michigan, UConn, Orsay

Nucleon Elastic Form-factors

Elastic form factors describe the deviation of the cross section from that of a point-like target

Fixed-target elastic electron-nucleon scattering

$$\frac{d\sigma}{d\Omega} = \left(\frac{d\sigma}{d\Omega}\right)_{\text{Mott}} \frac{E' \, \epsilon G_E^2 + \tau G_M^2}{E \, (1 + \tau)}$$

Alternative expression: Dirac (F_1) and Pauli (F_2) form factors instead of Sachs (G_E, G_M)

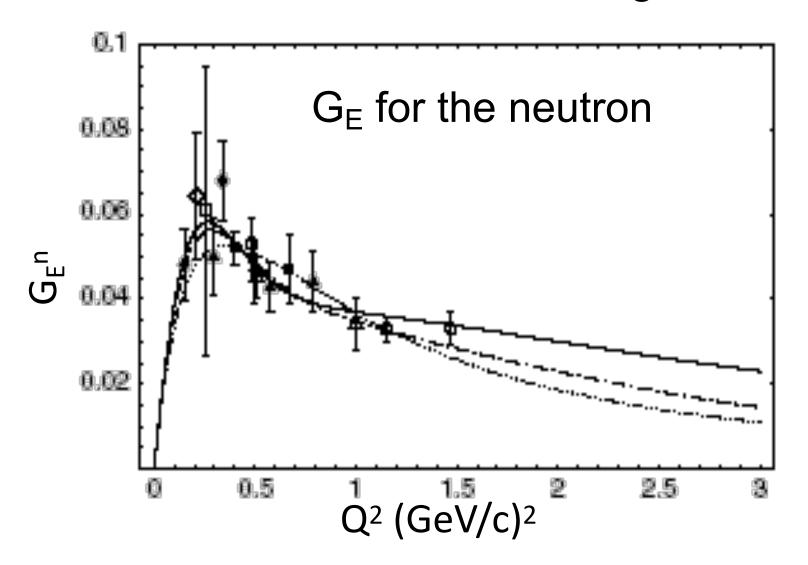
$$G_E = F_1 - \tau F_2$$

$$G_M = F_1 + F_2$$

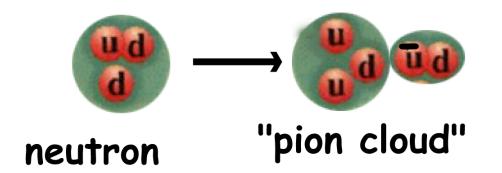
$$\tau = \frac{Q^2}{4M^2}$$
 $\epsilon = \left(1 + 2(1+\tau)\tan^2\frac{\theta}{2}\right)^{-1}$

At $Q^2 = 0$, the form factor represents an integral over the nucleon

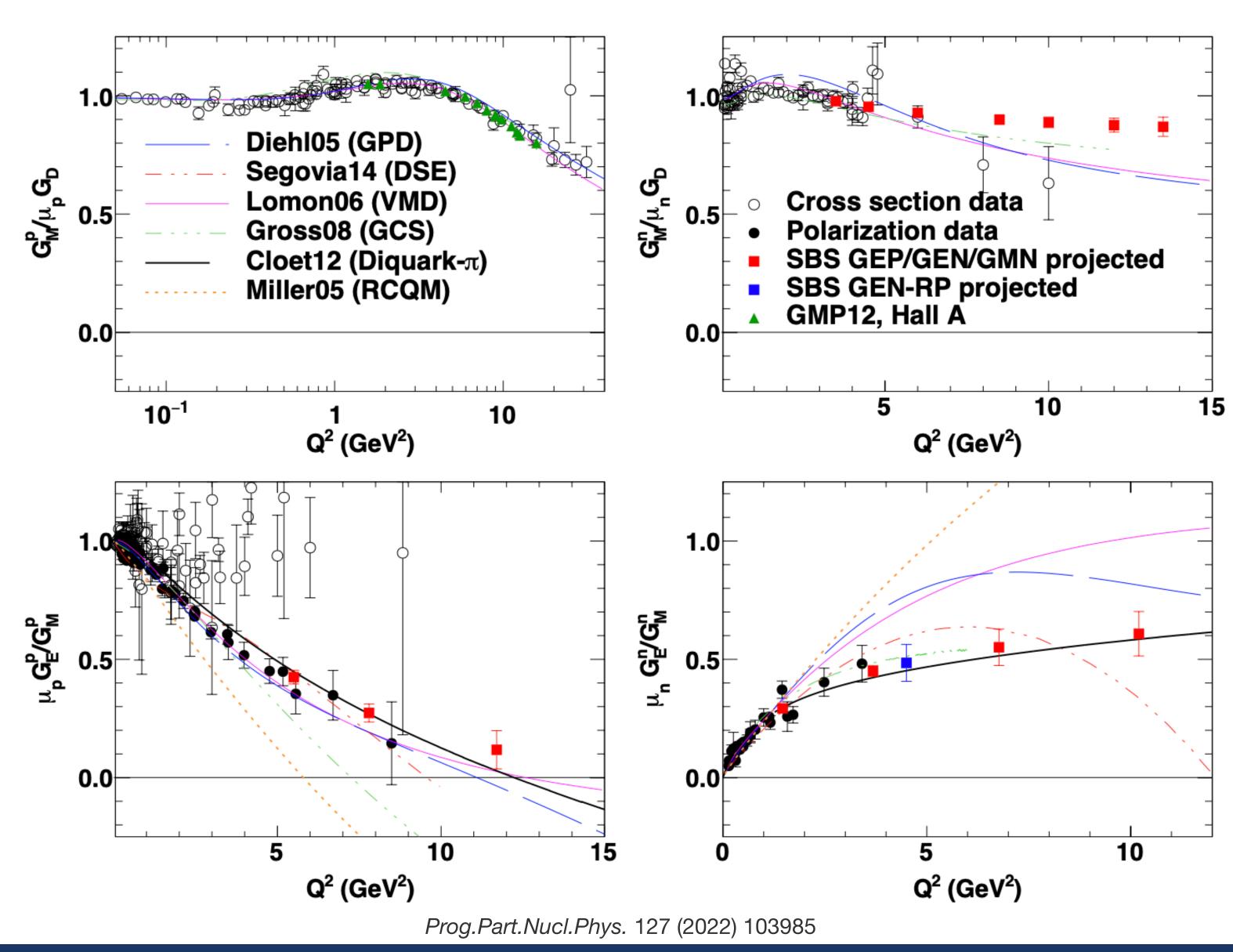
At low Q², (non-relativistic recoil) G_E and G_M are the Fourier transforms of the charge and magnetization distributions



neutron charge distribution



Nucleon Form Factors at High Q²



- One might expect a transition to perturbatively dominated mechanisms
- Other degrees of freedom might become evident, such as orbital angular momentum or diquark structure
- Part of the 3D mapping of nucleon structure as the first moment of GPDs at $\xi=0$

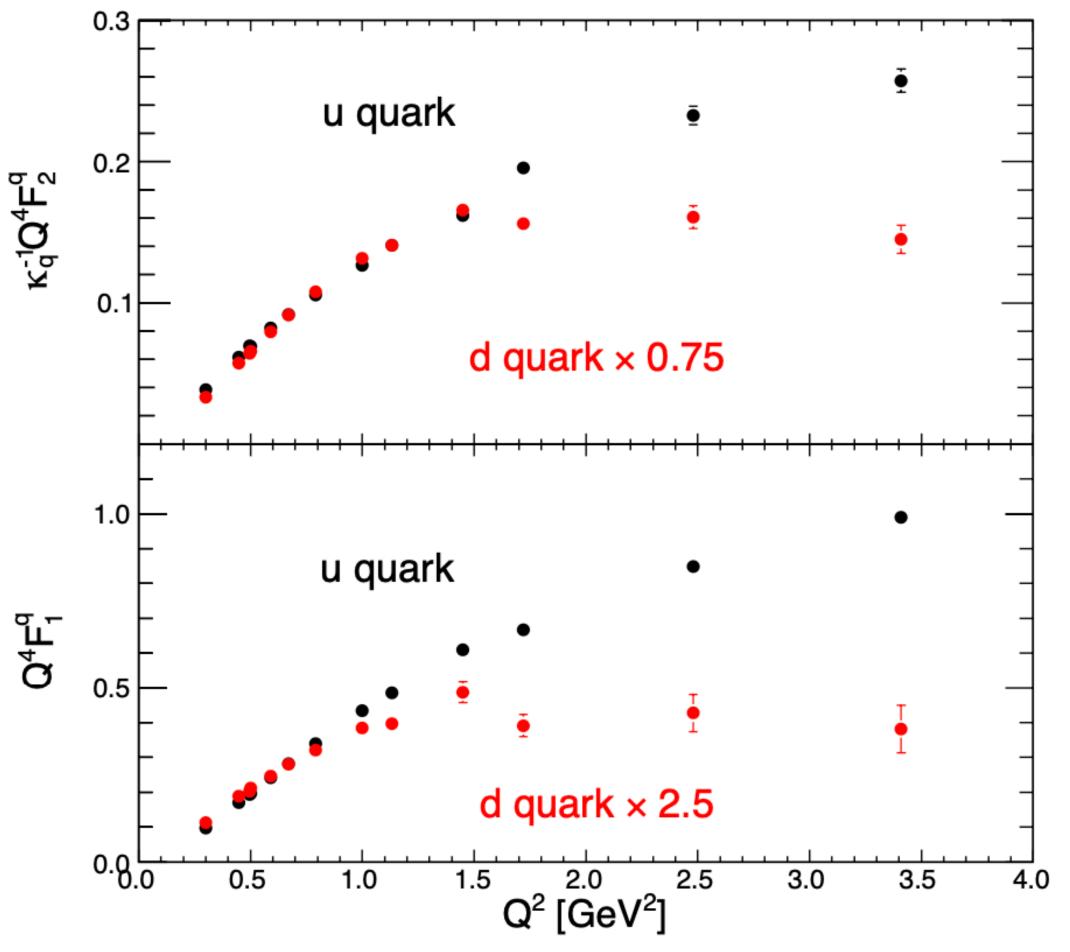
$$\int_{-1}^{+1} dx \, H^q(x,0,Q^2) \, = \, F_1^q(Q^2)$$

$$\int_{-1}^{+1} dx \, E^q(x,0,Q^2) \, = \, F_2^q(Q^2)$$

Flavor Separation of Nucleon Form Factors

These implications rely on extracting the independent quark contributions

$$F_{1(2)}^u = 2F_{1(2)}^p + F_{1(2)}^n$$
 and $F_{1(2)}^d = 2F_{1(2)}^n + F_{1(2)}^p$



For example: the apparent onset of Q⁴ scaling for d-quark form-factors has been suggested to be consistent with the emergence of perturbative behavior in scattering and with the minority quark tied up in a diquark structure

This is speculative, but there is a strong effort to extend this data to higher Q^2

G. Cates et al. Phys. Rev Lett. 106 (2011)

Charge symmetry and the nucleon form factors

Charge Symmetry

$$G_{E}^{p} = rac{2}{3}G_{E}^{u,p} - rac{1}{2}G_{E}^{d,p}$$
 $G_{E}^{n} = rac{2}{3}G_{E}^{u,n} - rac{1}{3}G_{E}^{d,n}$

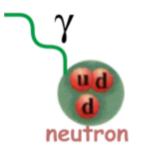
Charge symmetry is assumed for the form factors,
$$G_E^{u,p}=G_E^{d,n}$$
, etc. and used to find the flavor separated form-factors, measuring $G_{EM}^{p,n}$ to find $G_{EM}^{u,d}$

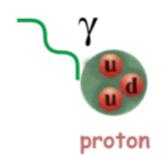
$$G_{E}^{p} = rac{2}{3}G_{E}^{u,p} - rac{1}{3}G_{E}^{d,p} - rac{1}{3}G_{E}^{s}$$
 $G_{E}^{n} = rac{2}{3}G_{E}^{u,n} - rac{1}{3}G_{E}^{d,n} - rac{1}{3}G_{E}^{s}$

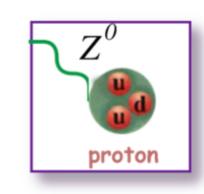
But this can broken! One way is to have a non-zero strange form-factor, which breaks the "2 equations and 2 unknowns" system

The weak form factor provides a third linear combination:

$$G_E^{p,Z} = \left(1 - \frac{8}{3}\sin^2\theta_W\right)G_E^{u,p} + \left(-1 + \frac{4}{3}\sin^2\theta_W\right)G_E^{d,p} + \left(-1 + \frac{4}{3}\sin^2\theta_W\right)G_E^{s}$$







A strange quark form factor would be indistinguishable from a broken charge symmetry in u,d flavors

$$\delta G_E^u \equiv G_E^{u,p} - G_E^{d,n}$$

$$\delta G_E^d \equiv G_E^{d,p} - G_E^{u,n}$$

So, more generally: the assumption of charge symmetry is crucial to the flavor decomposition of the form factors

Parity Violating Electron Scattering

Elastic e-p scattering with longitudinally polarized beam and unpolarized target:

Weak and EM amplitudes interfere:

$$\sigma = \left| \mathcal{M}_{\gamma} + \mathcal{M}_{Z} \right|^{2}$$

$$A_{PV} = \frac{\sigma_R - \sigma_L}{\sigma_R + \sigma_L} \sim \frac{\frac{\gamma}{|\mathcal{M}_Z|}}{|\mathcal{M}_{\gamma}|} \approx \frac{|\mathcal{M}_Z|}{|\mathcal{M}_{\gamma}|}$$

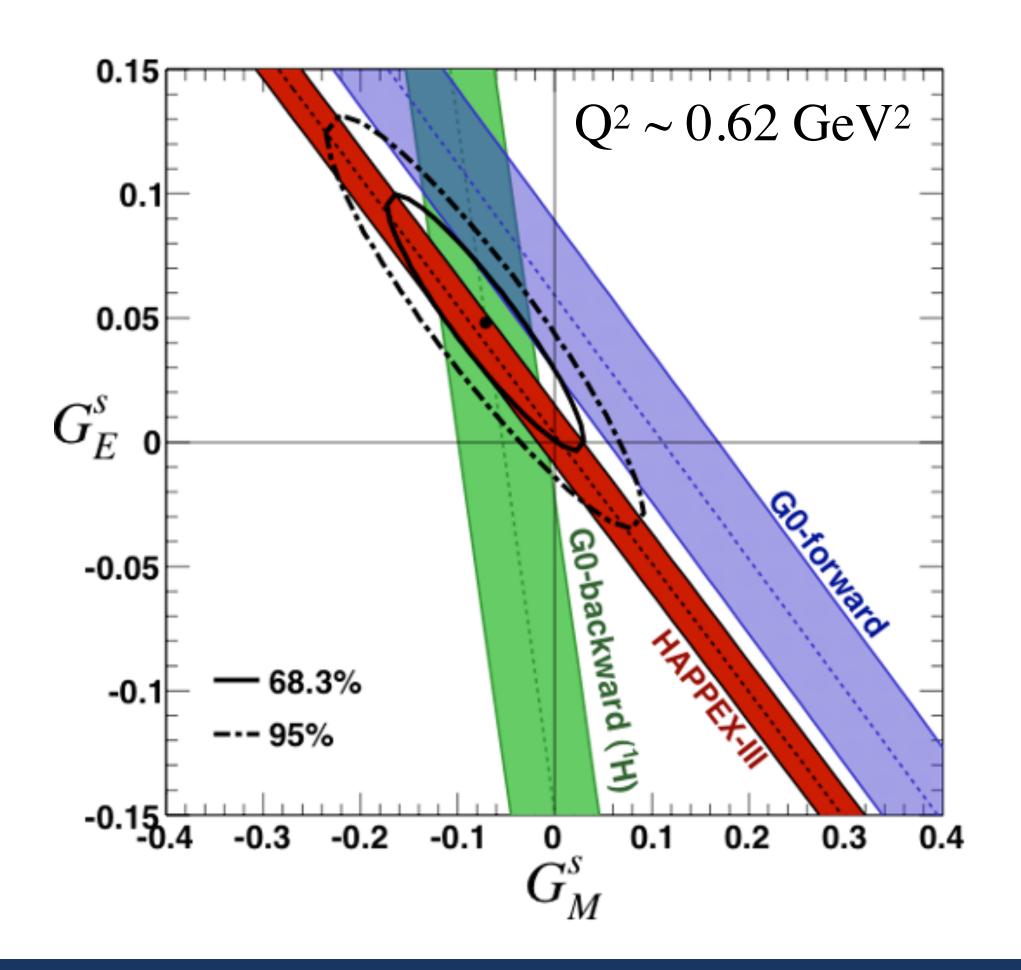
Expressing A_{PV} for e-p scattering, with proton and neutron EM form-factors plus strange form factors:

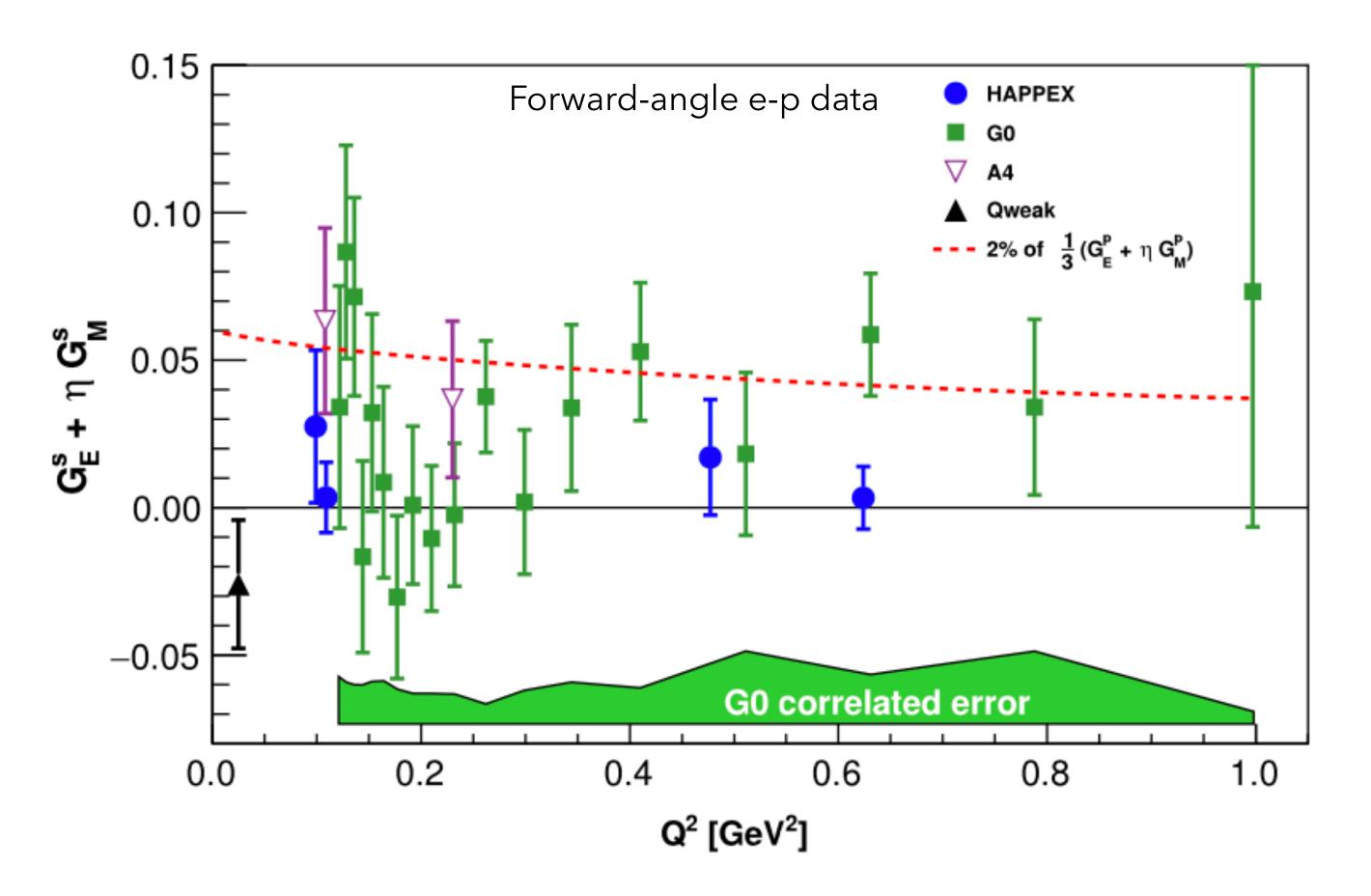
$$A_{PV} = -\frac{G_F Q^2}{4\pi\alpha\sqrt{2}} \cdot \left[(1 - 4\sin^2\theta_W) - \frac{\epsilon G_E^p G_E^n + \tau G_M^p G_M^n}{\epsilon (G_E^p)^2 + \tau (G_M^p)^2} - \frac{\epsilon G_E^p G_E^s + \tau G_M^p G_M^s}{\epsilon (G_E^p)^2 + \tau (G_M^p)^2} \right] + \epsilon' (1 - 4\sin^2\theta_W) \frac{G_M^p G_A^{Zp}}{\epsilon (G_E^p)^2 + \tau (G_M^p)^2}$$

This technique was used to hunt for indications of strange quark contributions in the nucleon, particularly in the static properties: a strange charge radius or strange magnetic moment

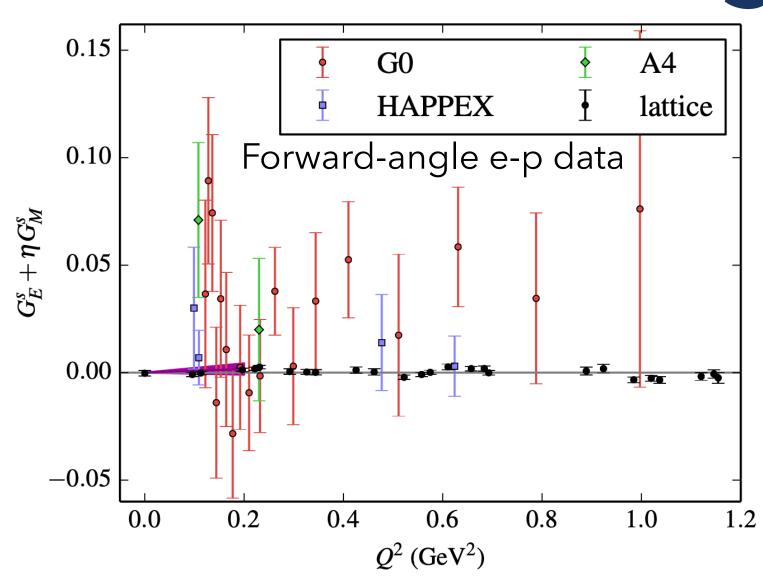
Proton strange form factors via parity violating elastic electron scattering

Strange form factors are measured to be consistent with zero at low Q^2 , but do not rule out non-zero values at higher Q^2 , especially for magnetic form factor which is more accessible at higher Q^2



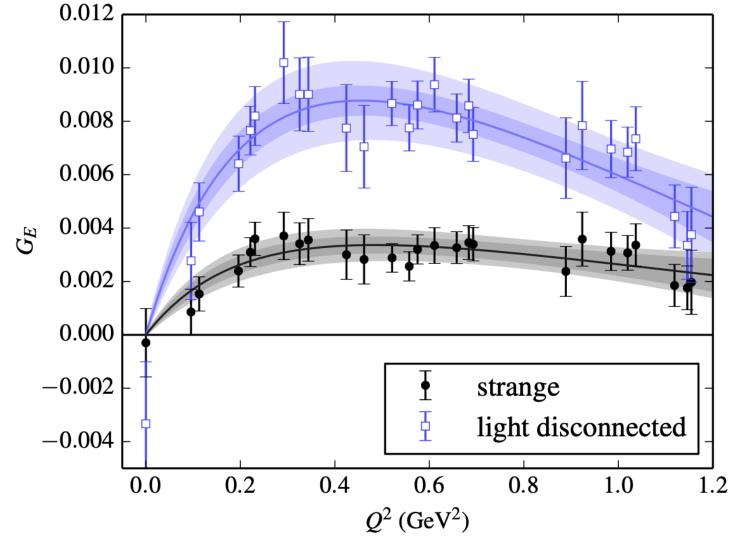


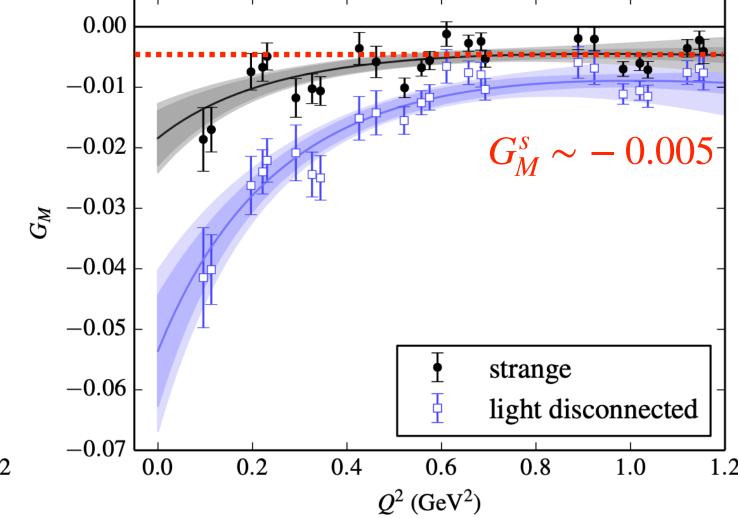
Strange form-factors on the lattice

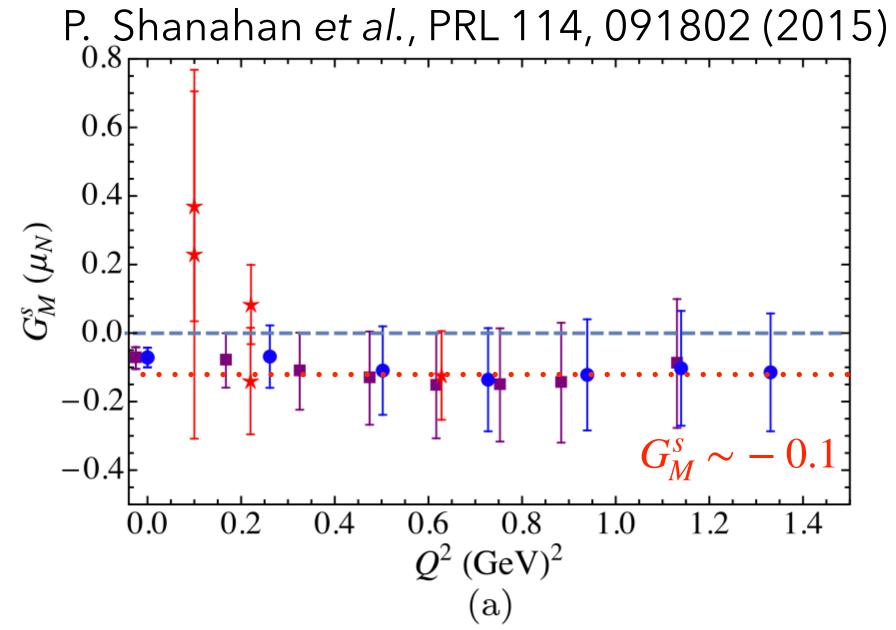


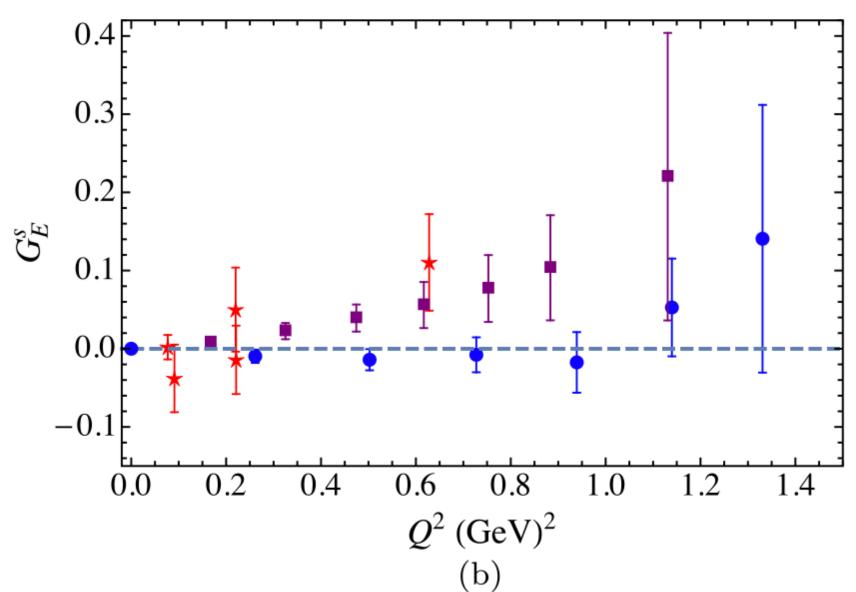
Some lattice calculations predict central values which are small, 10x below the limit of low Q^2 studies.

But they do not apparently fall with Q^2 . These values would be significant contributions at high Q^2



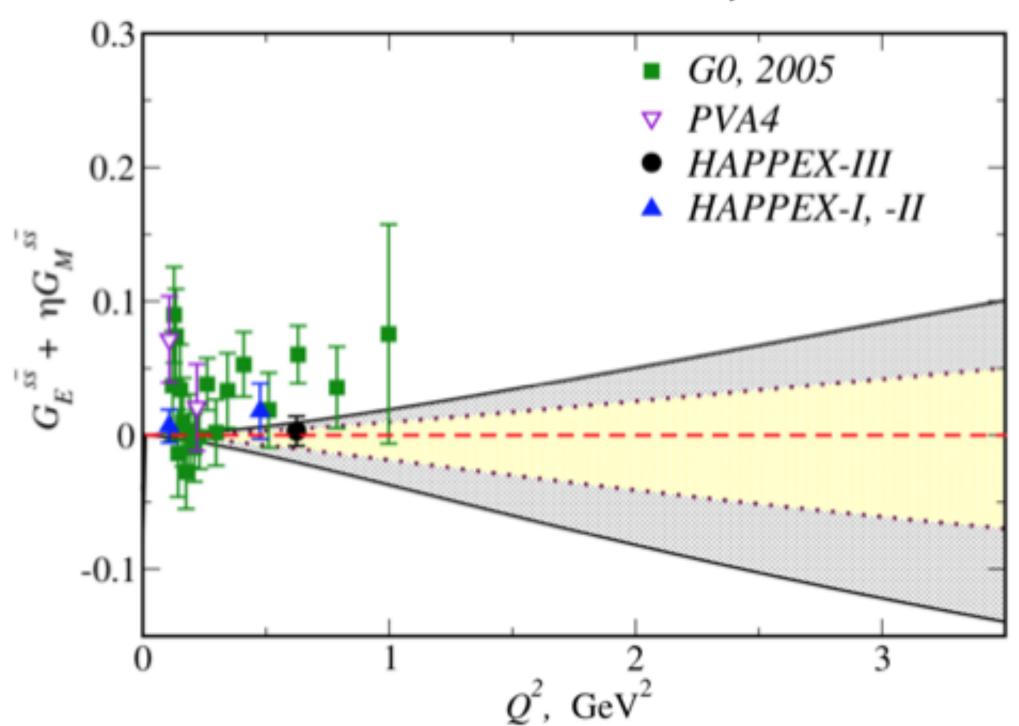






Strange form-factor predictions

T.Hobbs & J.Miller, 2018



Follows work from *Phys.Rev.C* 91 (2015) 3, 035205 (LFWF to tie DIS and elastic measurements in a simple model)

Conclusion: sFF small (but non-zero) at low Q^2 , but quite reasonable within constraints from data to think that they may grow relatively large at large Q^2

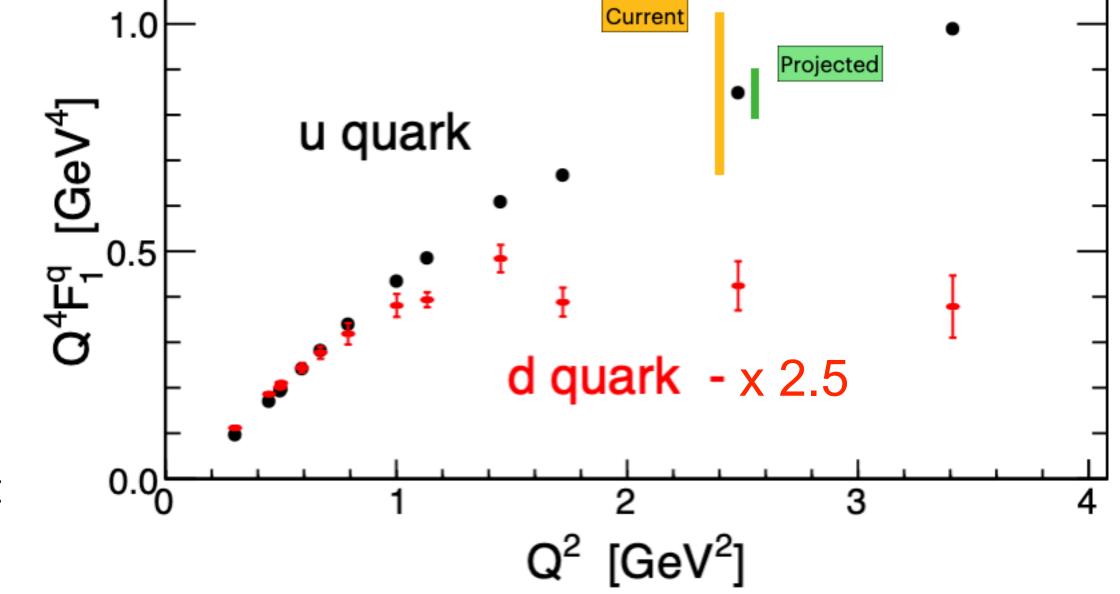
To set the scale of the data constraints: the width of the uncertainty band at $Q^2 = 2.5 \text{ GeV}^2$ is approximately the size of the dipole form-factor parameterization G_D

 $G_s/G_D \sim 1$ is not excluded

Q² dependence of Q⁴F₁

$$F_1^u = 2F_{1p} + F_{1n} - F_1^s$$
 $F_1^d = 2F_{1n} + F_{1p} - F_1^s$

Assuming $\delta G_{E,M}^s \sim G_D \sim 0.048 \longrightarrow \delta(Q^4 F_1^u) \sim \pm 0.17$



Such a large SFF could be huge in a proton PV measurement $\delta A_{PV} \sim \pm 22$ ppm, $\sim \pm 15\%$ of A_{PV}^{ns}

- Flavor separated form factors are a crucial piece of information for GPDs / nuclear femtography.
- So far, these have relied on poorly tested assumptions of strange quark contributions.
- Experimentally not ruled out (at level of yellow band) and lattice calculations do not rule out significant contributions (at level of 1x-2x the green band)

A measurement is needed

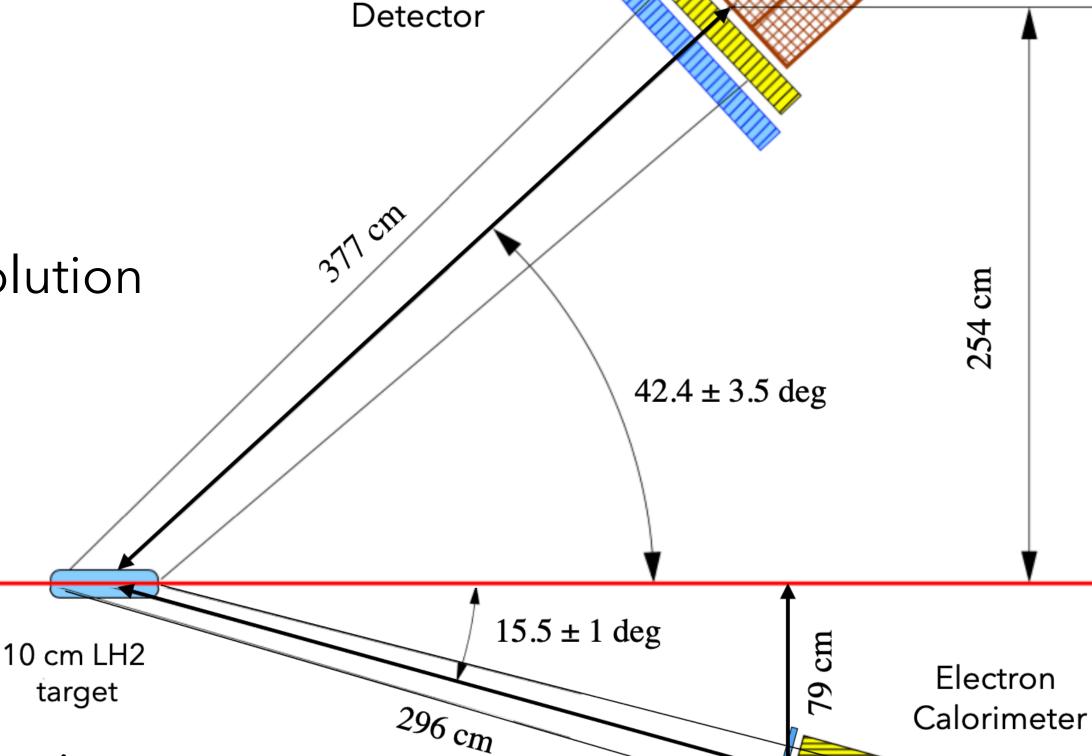
The planned measurement

Aim for $Q^2 = 2.5 \text{ GeV}^2$

Identify elastic kinematics with electron-proton coincidence

- Angular e-p correlation, 6.6 GeV beam energy (electron at 15.5 degrees, proton at 42.4 degrees)
- High resolution calorimeter trigger for electron arm
- Calorimeter trigger for proton arm

• Scintillator array on proton arm, to improve position resolution



Proton

- APV = 150 ppm, 4% precision goal, so $3x10^{10}$ elastic scattering events
- $\mathcal{L} = 1.7 \times 10^{38}$ cm⁻²/s, 10 cm LH₂ target and 65 μA beam current
- Full azimuthal coverage, ~42 msr

1cm Lead PbWO₄

shield

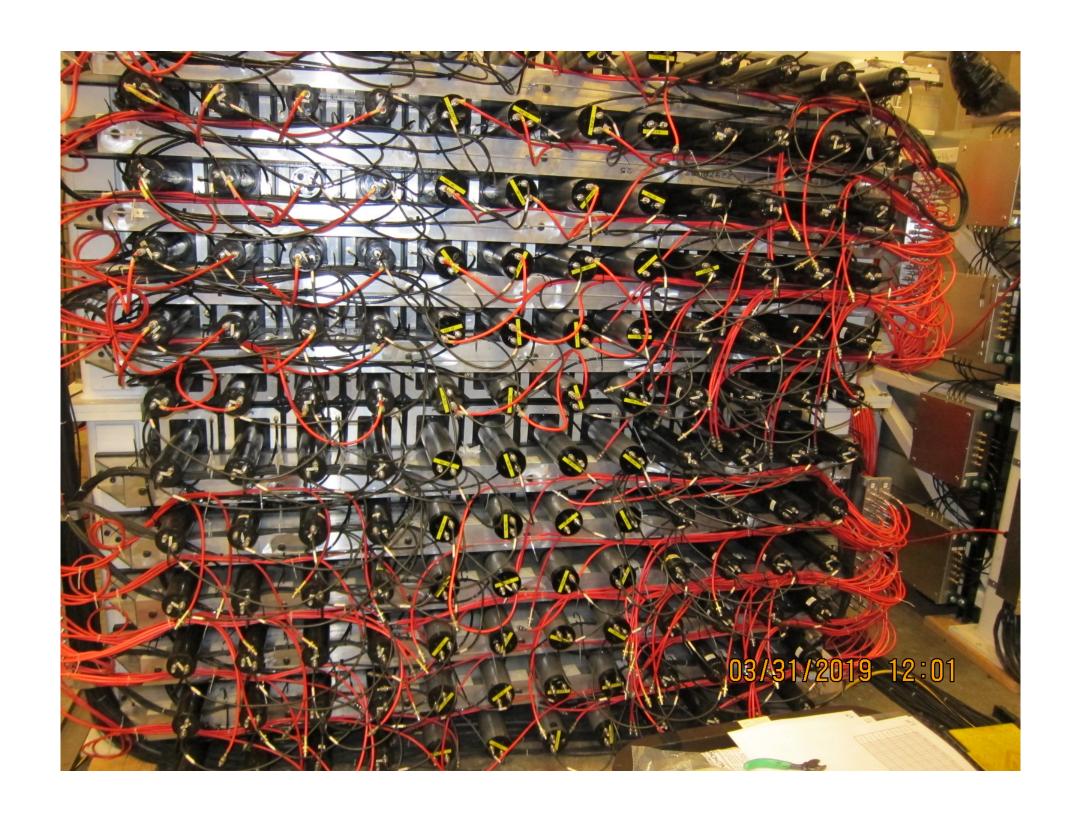
Calorimeters reusing components

NPS electromagnetic calorimeter

• 1200 PBWO₄ scintillators, PMTs + bases

SBS hadronic calorimeter

288 iron/scintillator detectors,
 PMTs + bases



Detector System

HCAL - hadron calorimeter

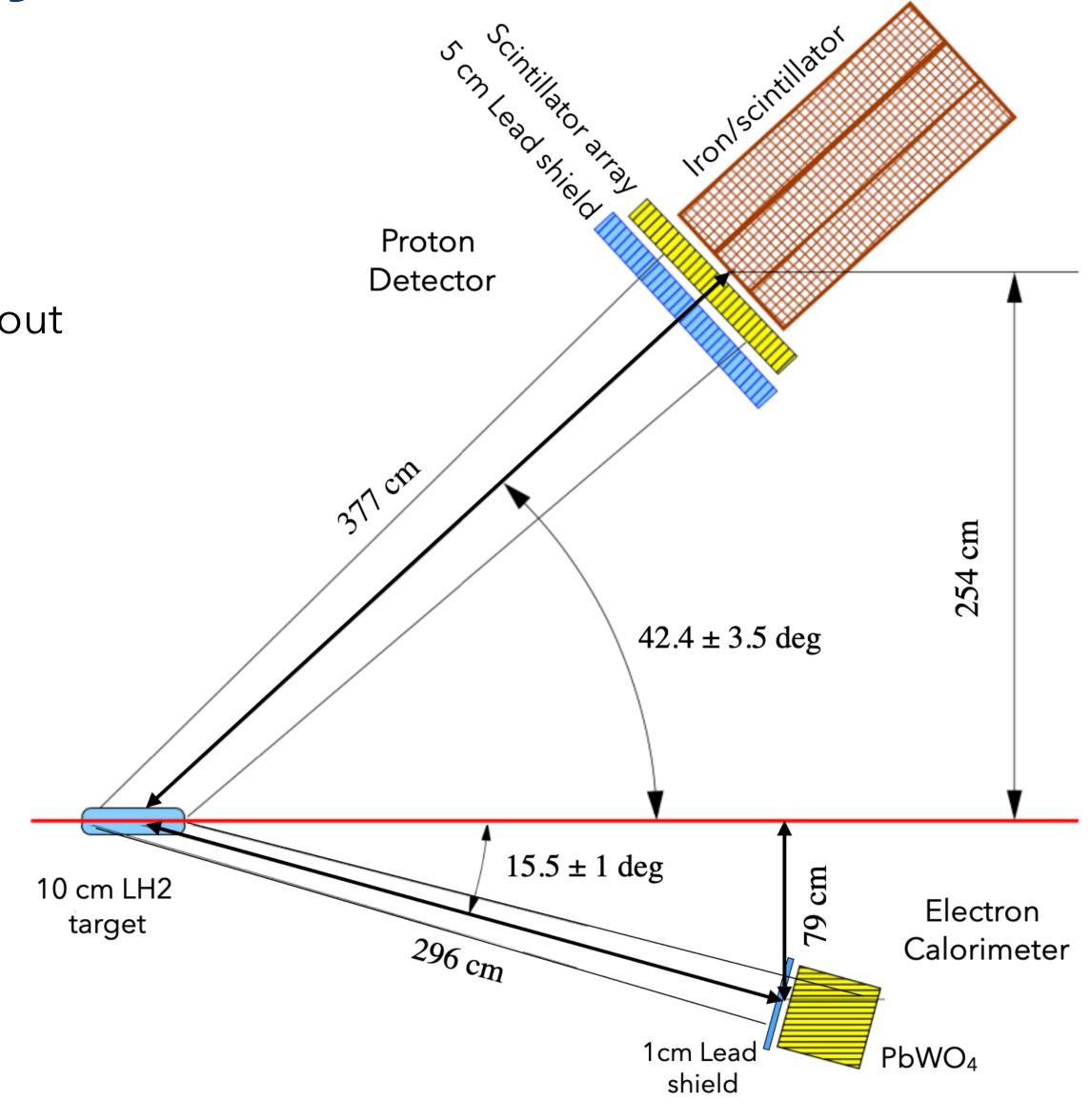
- Detector elements from the SBS HCAL
- 288 blocks, each 15.5 x 15.5 x 100 cm³
- iron/scintillator sandwich with wavelength shifting fiber readout

ECAL - electron calorimeter

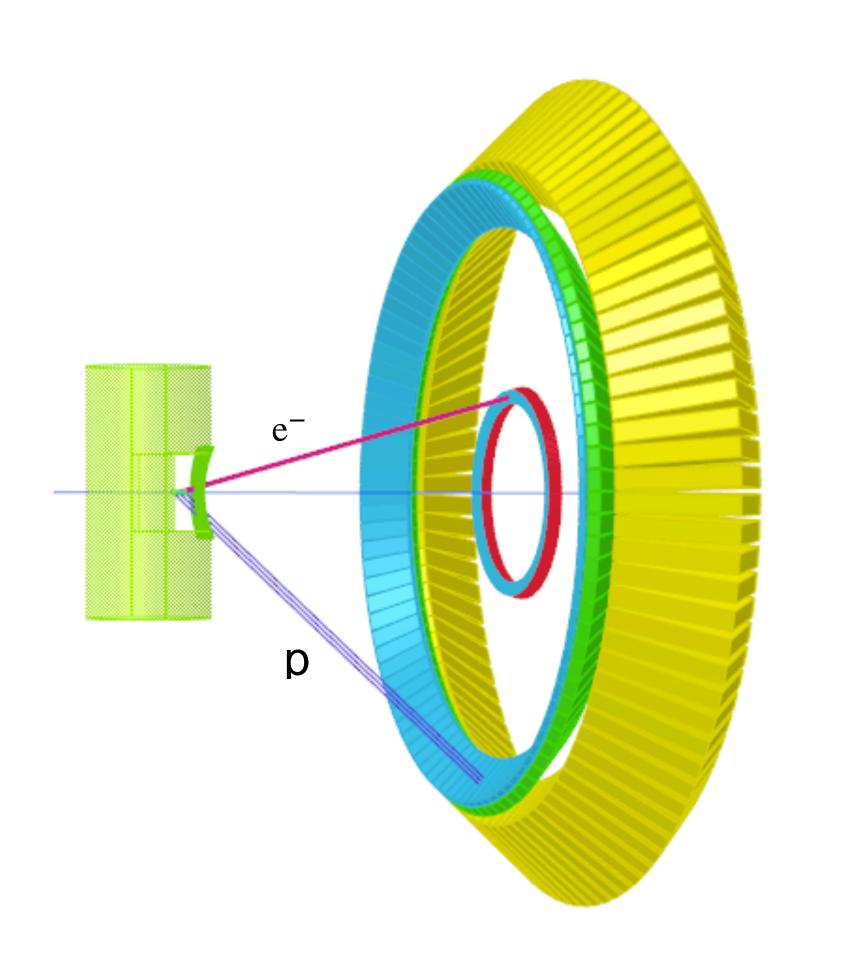
- Detector elements from the NPS calorimeter
- 1200 blocks, each 2 x 2 x 20 cm³
- PbWO₄ scintillator

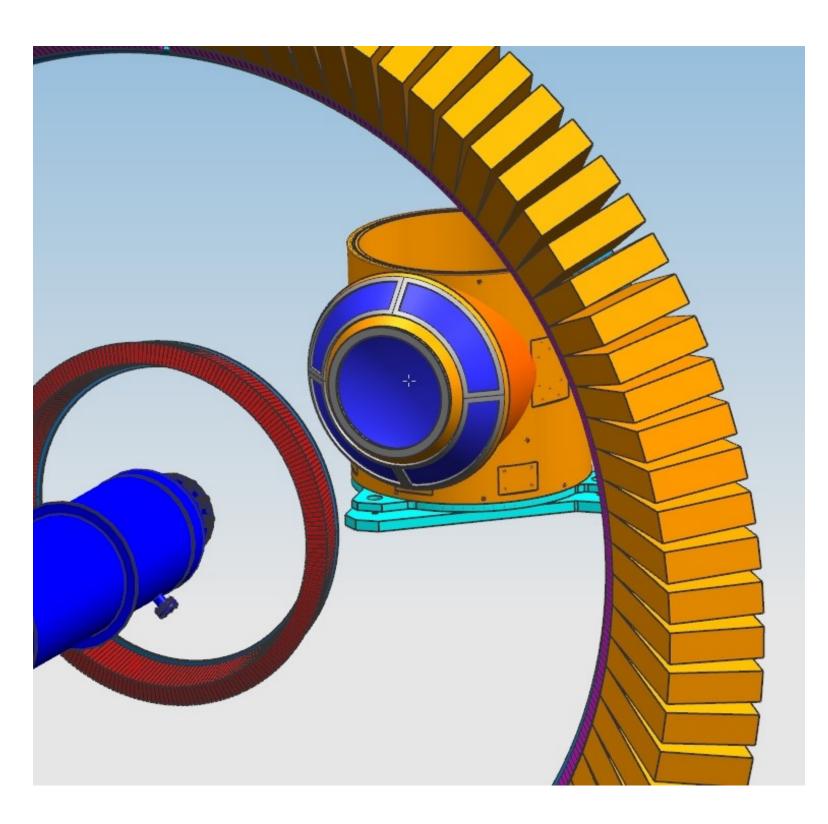
Scintillator array

- 7200 plastic scintillators, each 3 x 3 x 10 cm³
- Wavelength shifting fiber to MA-PMT
- Used for position resolution in front of HCAL



Experimental concept

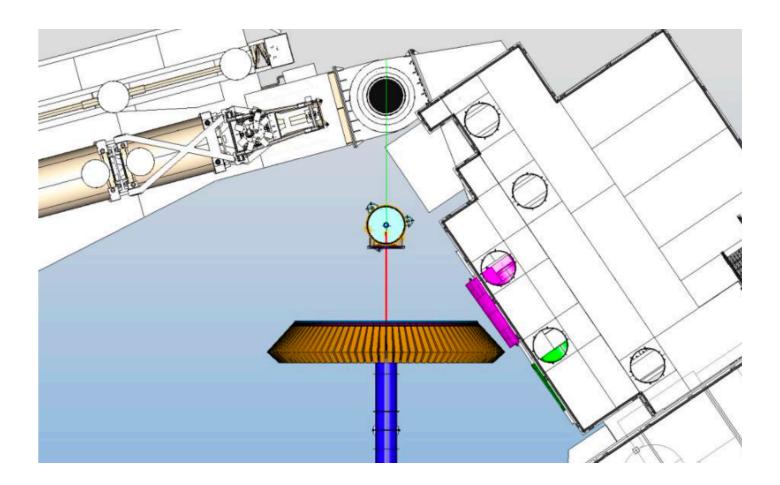


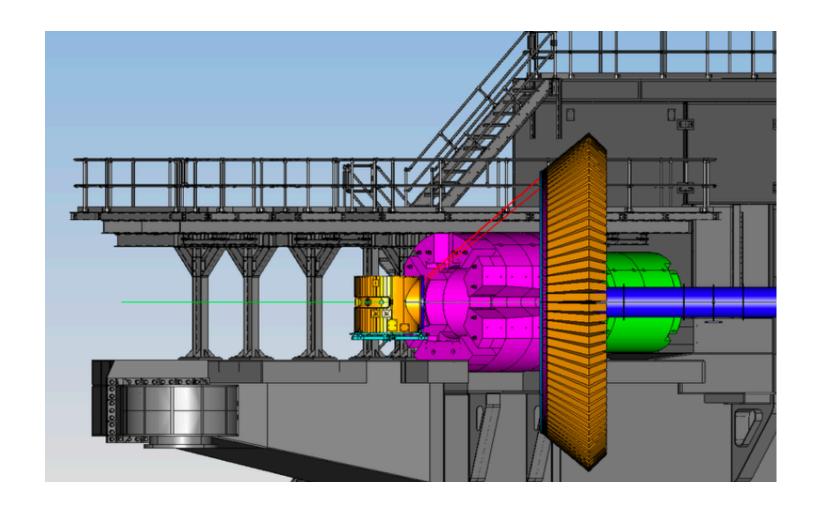


Preliminary design of scattering chamber

He bag will reduce backgrounds between target chamber and exit beampipe

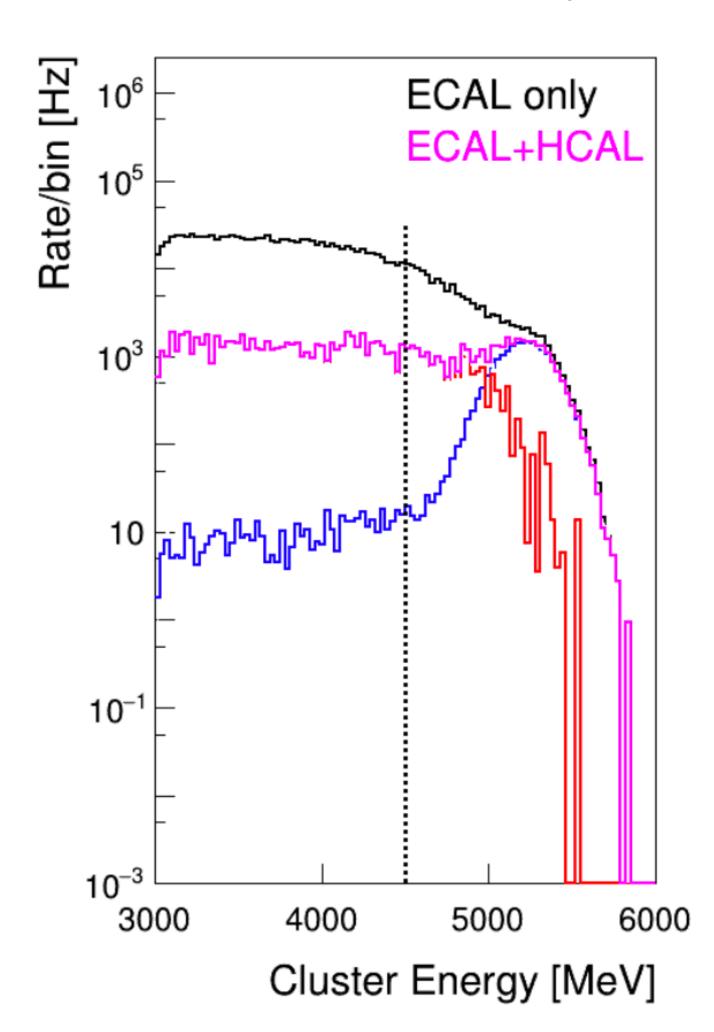
This fits in Hall C (but it's tight)





Trigger: calorimeters, with geometric coincidence

A relatively high ECAL cut (~66% of beam energy) and loose e-p coincidence cut provides high efficiency and manageable data rate

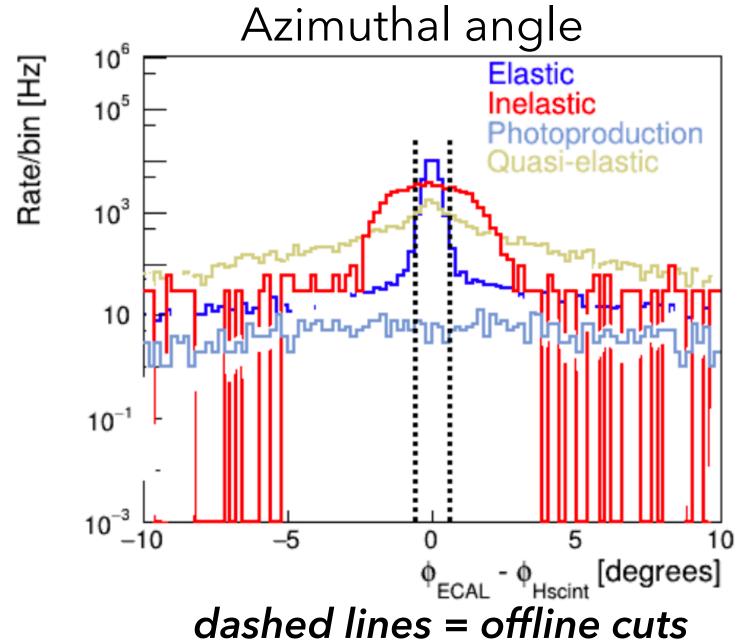


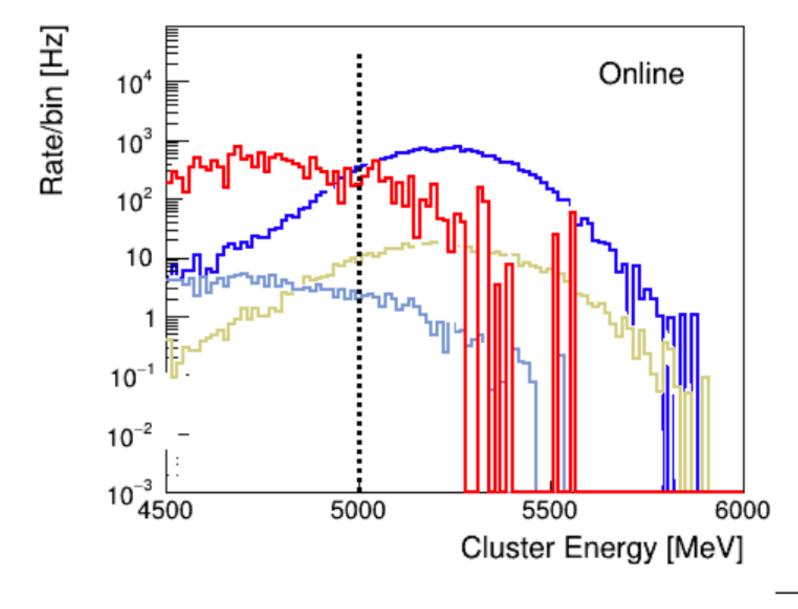
ECAL > 4.5 GeV: 150 kHz

ECAL + HCAL in coincidence: 35 kHz

Fraction of total by event type	Online
Elastic scattering Inelastic (pion electro-production) Quasi-elastic scattering (target windows) π^0 photo-production	$0.531 \\ 0.450 \\ 0.015 \\ 0.004$

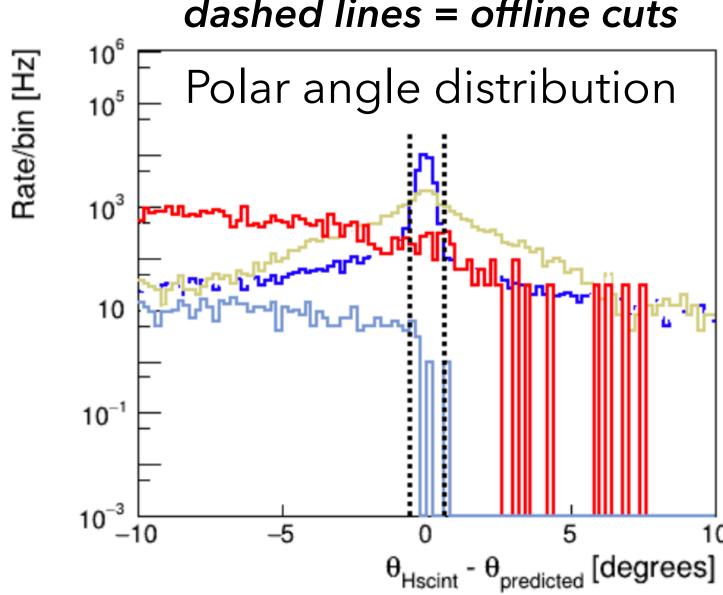
Elastic event discrimination

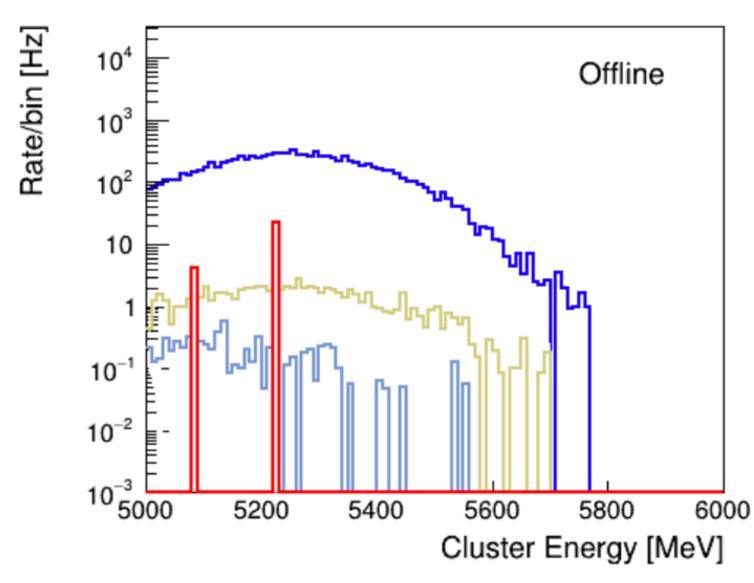




Offline: tighten geometric cut with pixel hodoscope and ECAL cluster center

Exclude inelastic background to ~0.2%





Fraction of total by event type	Offline
Elastic scattering Inelastic (pion electro-production) Quasi-elastic scattering (target windows) π^0 photo-production	$0.989 \\ 0.002 \\ 0.008 \\ 0.001$

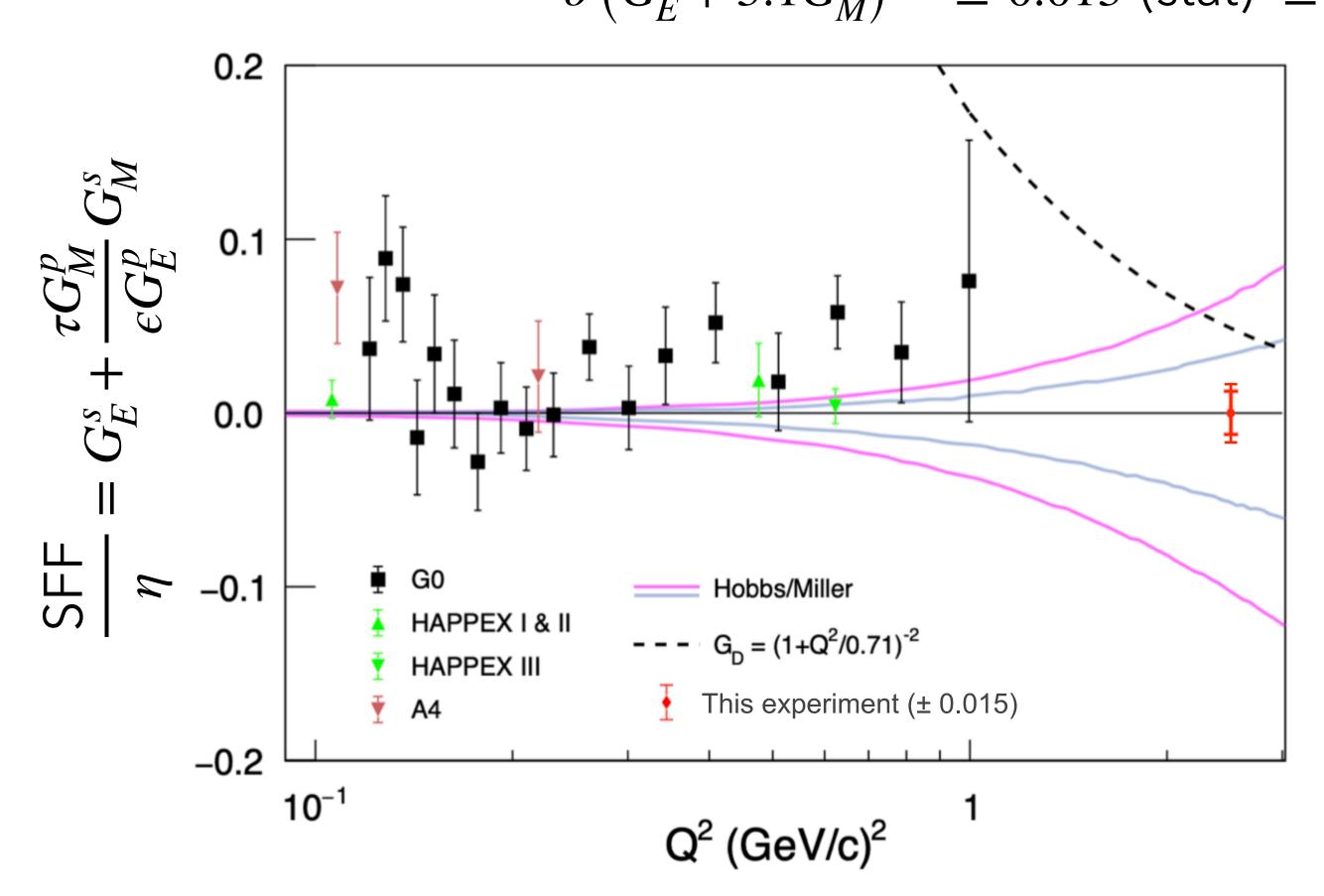
"sideband" analyses will help verify QE and inelastic asymmetries

Projected result

 $A_{PV} = 150 \text{ ppm}$ (if no strange FF)

$$\delta A_{PV} = \pm 6.2 \text{ (stat)} \pm 3.3 \text{ (syst)} \quad (\delta A/A = \pm 4\% \pm 2\%)$$

 $\delta (G_E^s + 3.1G_M^s) = \pm 0.013 \text{ (stat)} \pm 0.007 \text{ (syst)} = 0.015 \text{ (total)}$



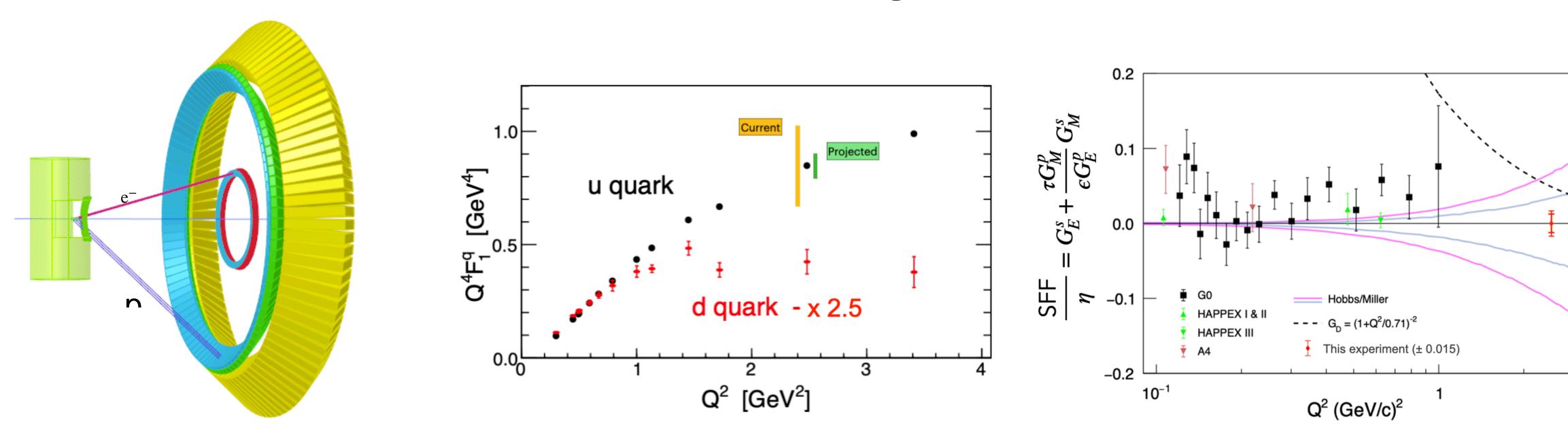
If
$$G_M^s = 0$$
, $\delta G_E^s \sim 0.015$, (about 34% of G_D)

If
$$G_E^s = 0$$
, $\delta G_M^s \sim 0.005$, (about 11% of G_D)

The proposed measurement is especially sensitive to $G_{\!M}^{\scriptscriptstyle S}$

The proposed error bar reaches the range of lattice predictions, and the empirically unknown range is much larger.

Summary



- 10+ years after the last sFF searches were performed, a new experiment is now planned for much higher Q^2 , motivated by interest in flavor decomposition of electromagnetic form factors
- Projected accuracy at 11% of the dipole value allows high sensitivity search for non-zero strange form factor.
- •The proposed error bar is in the range possibly suggested by lattice predictions, and significantly inside the range from the simple extrapolation from previous data
- Recently approved. Schedule is as yet uncertain, but the path forward is clear.

Backup slides

Error budget

quantity	value	contributed uncertainty
Beam polarization	$85\%\pm1\%$	1.2%
Beam energy	6.6 + / - 0.003 GeV	0.1%
Scattering angle	$15.5^{\circ}\pm0.03^{\circ}$	0.4%
Beam intensity	<100 nm,<10 ppm	0.2%
Backgrounds	< 0.2 ppm	0.2%
G_E^n/G_M^n	-0.2122 ± 0.017	0.9%
G_E^p/G_M^p	0.246 ± 0.0016	0.1%
σ_n/σ_p	0.402 ± 0.012	1.2%
σ_n/σ_p $G_A^{Zp}/G_{ m Dipole}$	-0.15 ± 0.02	0.9%
Total systematic uncertainty:		2.2%

or 3.3 ppm

Statistical precision for A_{PV} : 6.2 ppm (4.1%)

Radiative correction uncertainties are small; theoretical correction uncertainty lies in the proton "anapole" moment If the anapole uncertainty is not improved, this would contribute at additional 4.1 ppm (2.7%) uncertainty