Measurement of the weak neutral form-factor of the proton at high

LaTech, G
UWas

momentum transfer

Kent Paschke
University of Virginia

E12-23-004
Spokespeople: R.Beminiwattha, D.Hamilton, C. Palatchi,

ascow, Indiana, UVa, JLab, CUA, INFN - Roma, Temple, O

nington, Tel Aviv U, Hebrew U, W&M, AANL Yerevan, Nort

KP, B.Wojtsekhowski
nio, Syracuse, FIU, CNU, Fermilab,

nern Michigan, UConn, Orsay




Nucleon Elastic Form-factors

Elastic form factors describe the deviation of the cross section from that of a point-like target
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At low Q2, (non-relativistic recoil) Ge and Gwm are the Fourier
transforms of the charge and magnetization distributions
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Nucleon Form Factors at High Q2
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Flavor Separation of Nucleon Form Factors
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These implications rely on extracting the independent quark contributions
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I S S S S S For example: the apparent onset of Q4 scaling for d-quark
ol . B form-factors has been suggested to be consistent with

; _ the emergence of perturbative behavior in scattering and

- U quark ) } with the minority quark tied up in a diquark structure

I ¢ ° ]
05 . ¢ . : : |  Thisis speculative, but there is a strong effort to extend

- o' ‘ ! . this data to higher Q2

C L d quark x 2.5 -
080~ "05 10 15 _ 20 25 30 35 40

Q? [GeV?]

G. Cates et al. Phys. Rev Lett. 106 (2011)
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Charge symmetry and the nucleon form factors

Charge Symmetry

G?, = 2_ l Charge symmetry is assumed for the form factors, G.*' = Gg’”, etc.
g and used to find the flavor separated form-factors,
308D~

n __ - p.n . u,d
Gg = measuring GE,M to find Gy
Gp — gGU,P _ lGd’p . le ] )
E—g"E g E g7 FE But this can broken! One way is to have a non-zero strange form-tfactor,
2 1 1 . 1 . 1"
G — gG%n 3 chli;,n B §G€E which breaks the "2 equations and 2 unknowns" system

The weak form factor provides a third linear combination:
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A strange quark form factor would be indistinguishable from a broken charge symmetry in u,d flavors

SGY = Gu,p . Gd,n . :
E=VE E So, more generally: the assumption of charge symmetry is

5GY = GaP — Gun crucial to the flavor decomposition of the form factors
E— TF E
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Parity Violating Electron Scattering

Elastic e-p scattering with longitudinally polarized beam and unpolarized target:

Weak and EM amplitudes interfere: ! / >ZO//
4 _%r=0. _ \ Mz
o =M, + Mgl " op+0, T M,
AN

Expressing Apy for e-p scattering, with proton and neutron EM form-factors plus strange form factors:

r
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This technique was used to hunt for indications of strange quark contributions in the nucleon,
particularly in the static properties: a strange charge radius or strange magnetic moment
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Proton strange form factors via parity violating elastic electron scattering
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Strange form factors are measured to be consistent with zero at low Qz2,
but do not rule out non-zero values at higher Q2?,
especially for magnetic form factor which is more accessible at higher Q2

111 llll

QZ ~

|

0.62

! T 1T 17 1T

GeV?2 -

l

Kent Paschke - University of Virginia

0.15

0.10

O

-

o)
Illl

:><]l0

HAPPEX
GO

A4
Qweak

- 2% of %(G: +1G)

GO correlated error

O
o

| 0.6
Q% [GeV?]

0.8




Strange form-factors on the lattice
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Strange form-factor predictions

T.Hobbs & J.Miller, 2018

m GO, 2005

0.3

v PVA4 Conclusion: sFF small (but non-zero) at low Q2, but
02| ® HAPPEX-]II | quite reasonable within constraints from data to
’ A HAPPEX-I, -1l think that they may grow relatively large at large Q2
2 0.1
2
:,3' ; To set the scale of the data constraints: the width of

the uncertainty band at Q2 = 2.5 GeV2 is
approximately the size of the dipole form-factor

0.1 parameterization Gp

0 | 1 ‘ > | 3

g, GeV G./Gp ~ 1 is not excluded
Follows work from Phys.Rev.C 91 (2015) 3, 035205
(LFWF to tie DIS and elastic measurements in a simple model)
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Q2 dependence of Q4F
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Such a large SFF could be huge in a proton PV measurement 0.0y —~————F—————F

OApy ~ £22 ppm, ~+15% of Az, Q° [GeV?]

* Flavor separated form factors are a crucial piece of information for GPDs / nuclear femtography.
* So far, these have relied on poorly tested assumptions of strange quark contributions.

* Experimentally not ruled out (at level of yellow band) and lattice calculations do not rule out

significant contributions (at level of 1x-2x the green band)

A measurement is needed
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The planned measurement
Aim for Q2 = 2.5 GeV? %

Identify elastic kinematics with electron-proton coincidence

* Angular e-p correlation, 6.6 GeV beam energy
(electron at 15.5 degrees, proton at 42.4 degrees)

Proton
Detector

* High resolution calorimeter trigger for electron arm
e Calorimeter trigger for proton arm o
* Scintillator array on proton arm, to improve position resolution ™

254 cm

424:£35deg
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| !."'| 155+1 deg =
1Otc;rrng|e_|:2 \ ; octron
296 CaIOrimeter
* APV =150 ppm, 4% precision goal, so 3x1010 elastic scattering events /
1cm Lead
e /' =1.7x1038cm=2/s, 10 cm LH; target and 65 pA beam current o e PbWO4

e Full azimuthal coverage, ~42 msr
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Calorimeters reusing components

NPS electromagnetic calorimeter
e 1200 PBWOQy, scintillators, PMTs + bases

232 3PN
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SBS hadronic calorimeter

e 288 iron/scintillator detectors,
PMTs + bases
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Detector System

HCAL - hadron calorimeter
e Detector elements from the SBS HCAL
e 288 blocks, each 15.5x 15.5x 100 cm3 Proton

Detector

* iron/scintillator sandwich with wavelength shifting fiber readout

ECAL - electron calorimeter
e Detector elements from the NPS calorimeter L0
e 1200 blocks, each 2 x2 x 20 cm3

e PbWQ, scintillator 424£3.5 deg

s
Q
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'e)
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Scintillator array
e /200 plastic scintillators, each 3 x 3 x 10 cm3 _ / Y Y

e \Wavelength shifting fiber to MA-PM 10 crm LHD
e Used for position resolution in front of HCAL target

Electron
Calorimeter

= ruvo,

79 cm

1cm Lead
shield
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Experimental concept

This fits in Hall C (but it's tight)
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Preliminary design of scattering
chamber
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He bag will reduce backgrounds E
between target chamber and exit

beampipe
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Trigger: calorimeters, with geometric coincidence

A relatively high ECAL cut (~66% of beam energy) and loose e-p coincidence cut
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provides high efficiency and manageable data rate
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ECAL > 4.5 GeV: 150 kHz

ECAL + HCAL in coincidence: 35 kHz

Fraction of total by event type Online
Elastic scattering 0.531
Inelastic (pion electro-production) 0.450
Quasi-elastic scattering (target windows)  0.015
7° photo-production 0.004




Elastic event discrimination

Azimuthal angle
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Projected result

Apy = 150 ppm (if no strange FF)

O Apy = = 6.2 (stat) * 3.3 (syst)

(BA/A = + 4% + 2%)

5 (Gy+3.1Gy,) = = 0.013 (stat) £ 0.007 (syst) = 0.015 (total)
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- - = G, =(1+Q%0.71)*

? This experiment (x 0.015)

L

Q? (GeV/c)

1

t Gy, =0, 6Gy. ~ 0.015, (about 34% of Gp)

it G =0, 6Gy, ~ 0.005, (about 11% of Gp)

The proposed measurement is especially sensitive to G,

The proposed error bar reaches the range of lattice predictions,
and the empirically unknown range is much larger.
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Summary
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* 10+ years atter the last sFF searches were performed, a new experiment is now planned for much
higher Q2, motivated by interest in flavor decomposition of electromagnetic form factors

* Projected accuracy at 11% of the dipole value allows high sensitivity search for non-zero strange form
factor.

*The proposed error bar is in the range possibly suggested by lattice predictions, and significantly
inside the range from the simple extrapolation from previous data

*Recently approved. Schedule is as yet uncertain, but the path forward is clear.
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Error budget

quantity value contributed uncertainty

Beam polarization 85% + 1% 1.2%

Beam energy |6.6 + / — 0.003 GeV 0.1%

Scattering angle 15.5° +0.03° 0.4%

Beam intensity | <100 nm,<10 ppm 0.2%

Backgrounds < 0.2 ppm 0.2%

5 /G'y —0.2122 +0.017 0.9%

G /G®. 0.246 + 0.0016 0.1%

On/0p 0.402 £ 0.012 1.2%

G %P /Gbipole —0.15 4+ 0.02 0.9%
Total systematic uncertainty: 2.2% or 3.3 ppm

Statistical precision for Apy: 6.2 ppm (4.1%)

Radiative correction uncertainties are small; theoretical correction uncertainty lies in the proton “anapole” moment

It the anapole uncertainty is not improved, this would contribute at additional 4.1 ppm (2.7%) uncertainty
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