Unpolarized Time Like Compton Scattering in Hall C at JLab

Debaditya Biswas¹, Marie Böer²

¹Postdoctoral Research Associate, Virginia Tech ²Assistant Professor, Virginia Tech

SPIN, September 2023

Biswas,	D	(V ⁻	Γ)
---------	---	-----------------	----

Table of Content

- 1. Time Like Compton Scattering
- 2. Physics observables
- 3. Experimental Setup : Geant4 simulation
- 4. Other future experiments
- 5. Summary

Timelike Compton Scattering

Biswas, D. (VT)

TCS @ HaLL C

SPIN 2023 3/20

Timelike Compton Scattering

- ψ : Angle between reaction plane and γ spin
- ϕ : Angle between the hadronic plane (blue) and e^+e^- plane (yellow)
- heta : Angle between γ^* and e^-
- θ_s, ϕ_s : target and spin vector orientation

Source : M, Boer. et.al. Eur. Phys. J. A (2015) 51: 103

4/20

Physics Observables : unpolarized cross section and polarized beam spin asymmetry

Single Spin Asymmetry ($A_{\odot U}$) : circularly polarized beam and unpolarized target

$$A_{\odot U} = \frac{\sigma^+ - \sigma^-}{\sigma^+ + \sigma^-} \qquad \dots (1)$$

1. $\sigma^{\pm} \equiv \frac{d^5 \sigma}{dQ'^2 dt \, d\Omega \, dE_{\gamma}}$: 5 differential scattering cross-section TCS+BH

- 2. \pm : right (+) or left (-) handed circular polarization of the real photon
- 3. 5 differential cross section sensitive to both Real and Imaginary part of CFF
- 4. Asymmetry arises due to the interference between the TCS and BH processes

5. $A_{\odot U} \propto sin(\phi)$ moment of the $\frac{d^5 \sigma^{INT}}{dQ^2 dt d(cos\theta) d\phi dE_{\gamma}}$

- 6. $A_{\odot U}$ is sensible to the Imaginary part of the amplitude
- 7. As BH amplitude is purely Real, $A_{\odot U}$ asymmetry is due to TCS process only

Compact photon source

- 1. Spot size $\sim 0.9 \ mm$ at a distance of 2m away from the radiator
- 2. Photon Flux ~ $1.5 \times 10^{12} s^{-1}$ from electron beam current 2.5 μA on 10% X₀ Cu radiator
- 3. Photon energy > 0.5 E_{beam}
- 4. T warm magnet to bend incoming electrons to local beam dump
- 5. Source : D.Day et al., NIMA 957 (2020) 163429

Scattering Chamber & Target

Calorimeter

Fig : Geant4 simulation of scattering chamber and target

- 1. Scattering chamber inner diameter = 41 inches
- 2. Scattering chamber outer diameter = 45 inches
- 3. Angular range : horizontal HMS : 3.2 to 77.0 degrees
- 4. Angular range : SHMS : 3.2 to 47.0 degrees
- 5. Vertical angular range : ±17.3 degrees
- 6. Target thickness of Entrance and exit cap = 0.1778 cm
- Target cell wall thickness = 0.0254 cm

Fig : Geant4 simulation calorimeter

- 1. e^-, e^+, P detection and PID
- 2. Clones of the NPS calorimeter at Hall C
- 3. 2x2x20 cm² PBWO4 scintillator crystal
- 4. Expected energy resolution $\frac{2.5\%}{\sqrt{E}} + 1\%$
- 5. Coordinate resolution $\sim 3 \text{ mm at } 1 \text{ GeV}$
- 6. Fly's eye assembly of 23x23 matrix of total 2116 modules

Biswas, D. (VT)

TCS @ HaLL C

SPIN 2023

Magnet : Separate the outgoing particles

- Fig : CAD Drawing for Super Bigbite Magnet Source : <u>https://userweb.jlab.org/~bogdanw/SBS-general.pdf</u>
- 1. The field integral is 2.4 Tesla-meter with 1.2 m long pole

Fig : Geant4 simulation of simple magnet geometry

GEM Tracker

Hodoscopes

- 1.GEM tracker will be used to track e^- , e^+ , P
- 2.Coordinate reconstruction accuracy ~80 μm
- 3. Background rate tolerance up to 106 Hz/ mm²
- Minimum material thickness along particle pass
- 5. Big size manufacturing Use at Jlab: SBS, SoLID DDVCS, Prad

- For recoil proton detection and and PID
- 2. To provide dE/dX signal from low momentum recoil protons
- 3. 2x2x5 cm³ scintillators arranged in "Fly's eye" hodoscopic construction

Geant4 Simulation : Simple One Calorimeter Plane Setup

Geant4 Simulation : towards more realistic setup

Projection of electron on calorimeter plane

Projection of positron on calorimeter plane

11/20

Possible extension to measure TCS for neutron

- 2. Number of reconstructed TCS events plotted against -t weighted by cross-section
- 3. Study before having the full Geant4 simulation
- 4. In principle it is possible to do the measurement on neutron, provided we have an neutron detector

From : Camille Zindy & M. Boer, 2021

Polarized TCS measurement setup for Hall C

1. High intensity photon source $1.5 \times 1012 \text{ y/sec}$ (CPS)

2. Target chamber: NH3, 3cm Polarized via DNP

3. Tracking: GEM+hodoscopes,4 symmetric quadrants

4. Calorimeters: 4 symmetric
quadrants, equivalent of 2 NPS
~ 6° to 27° aperture

5.Lumi request: 5.85 x 105 pb-1

Fig : Geant4 simulation of detector setup at Hall C for proposed polarized TCS experiment

Biswas, D. (VT)

TCS @ HaLL C

SPIN 2023

13/20

Polarized TCS measurement setup for Hall C

Dependence in GPD parametrization and J_u , J_d (VGG model) vs ϕ and $\phi_S = 0$

 $sin(\phi)$ moment of transverse spin asymmetry vs ϕ_S , Dependence in GPD E and J^{u,d} (VGG model)

Biswas, D. (VT)

Unpolarized TCS measurement setup for Hall A

Measures unpolarized TCS asymmetry

- 2. Large Kinematic coverage
- 3. Not a dedicated Experiment : Run parallel with j/ψ
- 4. Not as high luminosity compared to Hall C unpolarized
- 5. Runs in Hall A after Moller
- 6. Quasi real unpolarized photon beams

Fig: The SIDIS configurations of SoLID setup

Source : https://arxiv.org/pdf/2209.13357.pdf

For Hall B TCS results : see Pierre C. Talk from Monday :

https://indico.jlab.org/event/663/contributions/12955/attachments/10250/15331/Slides_Spin2023_Chatagnon.pdf

Biswas, D. (VT)

TCS @ HaLL C

Summary

- 1. DEEPGen simulator (written by M.Boer) is used to generated Unpolarized TCS events
- 2. Geant4 Simulation for the detector setup is ready
- 3. Propose to measure both asymmetry and cross-sections
- 4. Can set a bench mark for the future asymmetry measurements at Hall C
- 5. This measurement will be dedicated TCS measurement at Hall C
- 6. Also, can run sooner than SoLID unpolarized TCS proposed experiment
- 7. Higher statistics compared to SoLID
- 8. Working on full background simulations for a new PAC proposal
- 9. In principle it is possible to measure both proton and neutron TCS