Moments of GPDs from the OPE of nonlocal quark bilinears

In collaboration with: S. Bhattacharya, K. Cichy, M. Constantinou, A. Metz, J. Miller, S. Mukherjee, P. Petreczky, F. Steffens, and Y. Zhao

ERNATIONAL **SPIN PHYSICS** SYMPOSIUM

Xiang Gao **Argonne National Laboratory**

> September 24 - 29, 2023 Durham Convention Center Durham, NC, USA

2 Generalized parton distributions

in the form factors.

• Belitsky and Radyushkin: Phys.Rept. 418 (2005) 1-387

GPDs goes far beyond the 1D PDFs and the transverse structure encoded

$$= \int \frac{dz^{-}}{4\pi} e^{-ixP^{+}z^{-}} \langle \mathbf{p}_{f} | \bar{q}(-\frac{z}{2})\gamma^{\mu} \mathcal{W}(-\frac{z}{2},\frac{z}{2})q(\frac{z}{2}) | \mathbf{p}_{i} \rangle$$

• Offer insights into the 3D image of hadrons.

• Give access to the orbital motion and spin of partons.

• Have a relation to pressure and shear forces inside hadrons.

Challenging:

- Observables appear at the amplitude level.
- Multi-dimensionality $F(x, \xi, t)$.

• Y. Guo, et al., JHEP 05 (2023) 150

• The momentum fraction x is integrated over (Compton Form Factors).

Complementary knowledge from lattice QCD is essential.

• Y. Guo, et al., JHEP 05 (2023) 150

GPDs from Lattice QCD: local operator

 $\langle p_f | \bar{q}(-\frac{z^-}{2}) \gamma^{\mu} \mathcal{W}(-\frac{z^-}{2},\frac{z^-}{2}) q(\frac{z^-}{2}) | p_i \rangle$

Light-cone correlation: Cannot be calculated on the lattice

OPE of the light-cone operator

$$\bar{q}(-\frac{z^{-}}{2})\gamma^{+}\mathscr{W}(-\frac{z^{-}}{2},\frac{z^{-}}{2})q(\frac{z^{-}}{2})$$
$$=\sum_{n=0}^{\infty}\frac{(-iz^{-})^{n}}{n!}O^{++\dots+}(\mu)$$

- Moments from Local operator $\bar{q}\gamma^{\{\mu_0 i D^{\mu_1} \dots i D^{\mu_n}\}}q$

GPDs from Lattice QCD: local operator

- Moments from Local operator

 $\bar{q}\gamma^{\{\mu_0}iD^{\mu_1}\dots iD^{\mu_n\}}q$

High dimensional operator

• Limited up to $\langle x^3 \rangle$ due to signal decay and power-divergent mixing under renormalization.

Moments of GPDs

• LHPC, Phys.Rev.D 77 (2008) 094502

GPDs from Lattice QCD: non-local operator

• X. Ji, PRL 2013

 $F^{\mu}(z, P, \Delta) = \langle p_f | \bar{q}(-\frac{z}{2}) \gamma^{\mu} \mathscr{W}(-\frac{z}{2}, \frac{z}{2}) q(\frac{z}{2}) | p_i \rangle$

 $z = (0, 0, 0, z_3), z^2 = z_3^2$

Large-momentum effective theory: *x*-space matching of quasi-PDF.

• X. Ji, PRL 2013

• X. Ji, et al, RevModPhys 2021

Short distance factorization of the quasi-PDF matrix elements or the pseudo-PDF approach.

• A. Radyushkin, PRD 100 (2019)

• A. Radyushkin, Int.J.Mod.Phys.A 2020

GPDs from short distance factorization

• X. Ji, PRL 2013

 $F^{\mu}(z, P, \Delta)$ = $\langle p_f | \bar{q}(-\frac{z}{2})\gamma^{\mu} \mathscr{W}(-\frac{z}{2}, \frac{z}{2})q(\frac{z}{2}) | p_i \rangle$ $z = (0, 0, 0, z_3), \ z^2 = z_3^2$

OPE of the equal-time operator

 $\bar{q}(-\frac{z}{2})\gamma^{\mu}\mathscr{M}(-\frac{z}{2},\frac{z}{2})q(\frac{z}{2})$ $= \sum_{n=1}^{\infty} C_n(\mu^2 z^2) \frac{(-iz)^n}{n!} e_{\mu_1} \dots e_{\mu_n} O^{\mu_0 \mu_1 \dots \mu_n}(\mu)$ n=0+Higher twist operators

GPDs from short distance factorization

SDF/OPE of the quasi-GPD matrix elements:

- The perturbative matching is valid in short range of z^2 .
- The information is limited to the first moments by the range of finite $\lambda = z P$.
- Free of power divergent mixing so that can be systematically improved.

10 quasi-GPD matrix elements

The unpolarized qGPD matrix elements in γ_0 definition: $F^{0}(z, P, \Delta) = \langle p_{f} | \bar{q}(-\frac{z}{2})\gamma^{0} \mathcal{W}(-\frac{z}{2}, \frac{z}{2})q(\frac{z}{2}) | p_{i} \rangle$ $= \bar{u}(p_f, \lambda') \left[\gamma^0 \mathcal{H}_0(z, P, \Delta) + \frac{i\sigma^{0\mu}\Delta_{\mu}}{2m} \mathcal{E}_0(z, P, \Delta) \right] u(p_i, \lambda)$

Problem:

- The qGPDs are frame dependent though light-cone GPDs are Lorentz invariant.
- Computationally expensive for multiple $-t = Q^2$ in symmetric frame.

frame-dependent power corrections $\sim \Delta/P$ at the tree level

guasi-GPD matrix elements

 $A_i(z \cdot P, z \cdot \Delta, \Delta^2, z^2)$:

$$F^{\mu}(z, P, \Delta) = \bar{u}(p_{f}, \lambda') \left[\frac{P^{\mu}}{m} A_{1} + mz^{\mu}A_{2} + \frac{\Delta^{\mu}}{m} A_{3} + im\sigma^{\mu z}A_{4} + \frac{i\sigma^{\mu \Delta}}{m} A_{5} + \frac{P^{\mu}i\sigma^{z\Delta}}{m} A_{6} + mz^{\mu}i\sigma^{z\Delta}A_{7} + \frac{\Delta^{\mu}i\sigma^{z\Delta}}{m} A_{8} \right] u(p_{i}, A_{i}) = \bar{u}(p_{i}, \lambda') \left[\frac{z/2}{p_{i}} + \frac{z}{m} A_{i} + \frac{z}{m} A$$

New development:

- Construct qGPD from asymmetric-frame calculation.
- corrections with proper construction.

The matrix elements can be parametrized in terms of Lorentz invariant amplitudes

Shohini Bhattacharya's talk on Friday

• S. Bhattacharya, XG, et al., Phys.Rev.D 106 (2022), 114512

• Computational much cheaper for multiple -t, and possibly reducing the power

12 quasi-GPD matrix elements

The matrix elements can be parametrized in terms of Lorentz invariant amplitudes $A_i(z \cdot P, z \cdot \Delta, \Delta^2, z^2)$:

$$F^{\mu}(z,P,\Delta) = \bar{u}(p_{f},\lambda') \left[\frac{P^{\mu}}{m} A_{1} + mz^{\mu}A_{2} + \frac{\Delta^{\mu}}{m} A_{3} + im\sigma^{\mu z}A_{4} + \frac{i\sigma^{\mu\Delta}}{m} A_{5} + \frac{P^{\mu}i\sigma^{z\Delta}}{m} A_{6} + mz^{\mu}i\sigma^{z\Delta}A_{7} + \frac{\Delta^{\mu}i\sigma^{z\Delta}}{m} A_{8} \right] u(p_{i},M_{i})$$

A Lorentz invariant (LI) choice analogous to the light-cone GPD:

$$\mathcal{H}(z, P, \Delta) = A_1 + \frac{\Delta \cdot z}{P \cdot z} A_3$$
$$\mathcal{E}(z, P, \Delta) = -A_1 - \frac{\Delta \cdot z}{P \cdot z} A_3 + 2A_3$$

• Differ from Light-cone GPD only by $z^2 \neq 0$

$A_5 + 2P \cdot zA_6 + 2\Delta \cdot zA_8$

13 Renormalization

The operator can be multiplicatively renormalized

$$[\overline{\psi}(0)\Gamma W_{\hat{z}}(0,z)\psi(z)]_{B} =$$

Short distance factorization with ratio scheme renormalization

$$\mathcal{M}(z^2, zP, \Delta^2) = \frac{\mathcal{H}^R(z, P)}{\mathcal{H}^R(z, P)}$$

$$= \sum_{n=0}^{\infty} \frac{(-izP)^n}{n!} \frac{C_n(z^2\mu^2)}{C_n(z^2\mu^2)} \langle x^n \rangle (\Delta^2; \mu) + \mathcal{O}(z^2\Lambda_{\text{QCD}}^2)$$
$$C_n^{\overline{MS}}(\mu^2 z^2) = 1 + \alpha_s C^{(1)}(\mu^2 z^2) + \dots \text{ up to N}$$

Lattice setup

- X. Ji, J. H. Zhang and Y. Zhao, PRL120.112001
- J. Green, K. Jansen and F. Steffens, PRL.121.022004

$= e^{-\delta m(a)|z|} Z(a) [\overline{\psi}(0) \Gamma W_{\hat{\gamma}}(0,z) \psi(z)]_{R}$

• A. V. Radyushkin et al., PRD 96 (2017)

- $\frac{P, \Delta; \mu}{0, \Delta = 0; \mu} = \frac{\mathcal{H}^B(z, P, \Delta; a)}{\mathcal{H}^B(z, P = 0, \Delta = 0; a)} \cdot \text{BNL, PRD 102 (2020)}$

 $m_{\pi} = 260$ MeV, a = 0.093 fm, $32^3 \times 64$, $N_f = 2 + 1 + 1$ twisted mass fermions

Renormalized matrix elements

• S. Bhattacharya, XG, et al., Phys.Rev.D 108 (2023) 1,014507

-t =

• filled symbols: real part, sensitive to even moments In unfilled symbols: imaginary part, sensitive to odd moments

$$\mathcal{M}(z^{2}, zP, \Delta^{2}) = \sum_{n=0}^{\infty} \frac{(-izP)^{n}}{n!} \frac{C_{n}(z^{2}\mu^{2})}{C_{n}(z^{2}\mu^{2})} \langle x^{n} \rangle(\mu) + \mathcal{O}(z^{2}\Lambda_{\text{QCD}}^{2})$$

- \bullet 0.17GeV² \bullet 0.69GeV² \bullet 1.39GeV² 2.33GeV^2
- 0.34GeV^2 \bullet 0.81GeV^2 \bullet 1.40GeV^2 \bullet 2.78GeV^2
- \bullet 0.66GeV² \bullet 1.26GeV² \bullet 1.54GeV²

• Perturbative corrections $C_n(z^2\mu^2) = 1 + \mathcal{O}(\alpha_s)$ Stable moments $\langle x^n \rangle(\mu)$ $\frac{(P)^n}{!} \frac{C_n(z^2\mu^2)}{C_n(z^2\mu^2)} \langle x^n \rangle(\mu) + \mathcal{O}(z^2\Lambda_{\rm QCD}^2)$

$$\mathcal{M}(z^2, zP, \Delta^2) = \sum_{n=0}^{\infty} \frac{(-iz)}{n!}$$

 Good agreement with available traditional lattice QCD calculations of GPD moments using local operators (ETMC'11)

 Good agreement with available traditional lattice QCD calculations of GPD moments using local operators (ETMC'11)

Mellin moments of GPDs

- Up to 5th moments of GPDs show reasonable signals and smooth -tdependence.
- Higher moments can be constrained by increasing the hadron momentum.

Mellin moments of GPDs

$$\int_{-1}^{1} dx x^{n} H^{q}(x, \xi = 0, t) = A_{n+1}^{q}$$
$$\int_{-1}^{1} dx x^{n} E^{q}(x, \xi = 0, t) = B_{n+1}^{q}$$

• 2nd moments: Gravitational form factors

Ji sum rule:
$$J^q = \frac{1}{2} \left[A^q_{20}(0) + B^q_{20}(0) \right]$$

$$J^{u-d} = 0.281(21)(11)$$
$$J^{u+d} = 0.296(22)(33)$$

• $m_{\pi} = 260$ MeV, a = 0.093 fm

Disconnected diagrams neglected

20 Impact parameter space interpretation

Unpolarized quark inside unpolarized nucleon

$$q(x, \vec{b}_{\perp}) = \int \frac{d^2 \vec{\Delta}_{\perp}}{(2\pi)^2} H(x, \vec{b}_{\perp}) dx = \int \frac{d^2 \vec{\Delta}_{\perp}}{(2\pi)^2} dx dx$$

$$\rho_{n+1}(\vec{b}_{\perp}) = \int \frac{a \Delta_{\perp}}{(2\pi)^2} A_{n+1}$$

Unpolarized quark inside transversely polarized nucleon

$$q^{T}(x,\vec{b}_{\perp}) = \int \frac{d^{2}\vec{\Delta}_{\perp}}{(2\pi)^{2}} \left[H(x,-\vec{\Delta}_{\perp}^{2}) + \frac{i\Delta_{y}}{2M} E(x,-\vec{\Delta}_{\perp}^{2}) \right] e^{-i\vec{b}_{\perp}\cdot\vec{\Delta}_{\perp}}$$
$$\rho_{n+1}^{T}(\vec{b}_{\perp}) = \int \frac{d^{2}\vec{\Delta}_{\perp}}{(2\pi)^{2}} \left[A_{n+1,0}(-\vec{\Delta}_{\perp}^{2}) + \frac{i\Delta_{y}}{2M} B_{n+1,0}(-\vec{\Delta}_{\perp}^{2}) \right] e^{-i\vec{b}_{\perp}\cdot\vec{\Delta}_{\perp}}$$

• Matthias Burkardt, Int.J.Mod.Phys.A 18 (2003) 173-208

$$-\overrightarrow{\Delta}_{\perp}^{2})e^{-i\overrightarrow{b}_{\perp}\cdot\overrightarrow{\Delta}_{\perp}}$$

$$(-\overrightarrow{\Delta}_{\perp}^2)e^{-i\overrightarrow{b}_{\perp}\cdot\overrightarrow{\Delta}_{\perp}}$$

21 Impact parameter space interpretation

· 6.3

2.7

1.8

0.0

1.8

1.5

1.2

· 0.9

0.0

- The **1st** moment: charge distribution
- d quark exhibits a broader distribution and smaller amplitudes
- When transversely polarized, the **u** and **d** quarks shift in different directions, with the **d** quarks showing larger distortion.

22 Impact parameter space interpretation

- The **2nd** moment: momentum distribution.
- The total contribution of **u** and **d** quarks to the transverse center of energy is small.

$$\sum_{u,d} \int d^2 \vec{b}_{\perp} \ \vec{b}_{\perp} \rho_2^T (\vec{b}_{\perp}) = 1/(2M) B_{20}^{u+d}(0)$$

$$B_{20}^{u+d}(0) = 0.047(33)(65)$$

Impact parameter space interpretation 23

Summary and outlook

- We carried out lattice calculation of the quasi-GPD matrix elements of proton using the Lorentz invariant amplitudes.
- The matrix elements are renormalized in ratio scheme and the Mellin moments up to the 5th ones were extracted using the leading-twist short distance factorization.
- The methods can be extended to other kind of GPDs and non-zero skewness.
- Using hybrid renormalization and LaMET matching for x dependence.

Thanks for your attention!

25 SDF of qGPDs: γ_0 definition

• no scaling with zP_{7}

 $\mathcal{M}(z^{2}, zP, \Delta^{2}) = \sum_{n=0}^{\infty} \frac{(-izP)^{n}}{n!} \frac{C_{n}(z^{2}\mu^{2})}{C_{n}(z^{2}\mu^{2})} \langle x^{n} \rangle(\mu) + \mathcal{O}(z^{2}\Lambda_{\text{QCD}}^{2})$

• not constant in z