Results on proton GPDs from lattice QCD

Martha Constantinou

Temple University

Recent results

Unpolarized and Helicity Generalized Parton Distributions of the Proton within Lattice QCD

Constantia Alexandrou, ${ }^{1,2}$ Krzysztof Cichy, ${ }^{3}$ Martha Constantinou $\odot{ }^{4}$ Kyriakos Hadjiyiannakou, ${ }^{1}$ Karl Jansen, ${ }^{5}$ Aurora Scapellato, ${ }^{3}$ and Fernanda Steffens ${ }^{6}$

PHYSICAL REVIEW D 105, 034501 (2022)

* Twist-2 GPDs: "traditional" calculations

Transversity GPDs of the proton from lattice QCD
Constantia Alexandrou, ${ }^{1,2}$ Krzysztof Cichy, ${ }_{5}^{3}$ Martha Constantinou $\odot,{ }^{4}$ Kyriakos Hadjiyiannakou, ${ }^{1,2}$ Karl Jansen, ${ }^{5}$ Aurora Scapellato, ${ }^{4}$ and Fernanda Steffens ${ }^{6}$

PHYSICAL REVIEW D 108, 054501 (2023)

Chiral-even axial twist-3 GPDs of the proton from lattice QCD
Shohini Bhattacharya $\oplus,{ }^{1,2}$ Krzysztof Cichy, ${ }^{3}$ Martha Constantinou $\odot,{ }^{1}$ Jack Dodson, ${ }^{1}$ Andreas Metz $\oplus,{ }^{1}$ Aurora Scapellato, ${ }^{1}$ and Fernanda Steffens ${ }^{4}$

Generalized parton distributions from lattice QCD with asymmetric
momentum transfer: Unpolarized quarks

+ Joshua Miller

[^0]
* Twist-2 GPDs: new approach

Recent results

Unpolarized and Helicity Generalized Parton Distributions of the Proton within Lattice QCD

Constantia Alexandrou, ${ }^{1,2}$ Krzysztof Cichy, ${ }^{3}$ Martha Constantinou $\odot{ }^{4}$ Kyriakos Hadjiyiannakou, ${ }^{1}$ Karl Jansen, ${ }^{5}$ Aurora Scapellato, ${ }^{3}$ and Fernanda Steffens ${ }^{6}$

PHYSICAL REVIEW D 105, 034501 (2022)

\star Twist-2 GPDs: "traditional" calculations

Transversity GPDs of the proton from lattice QCD
Constantia Alexandrou, ${ }^{1,2}$ Krzysztof Cichy, ${ }_{5}^{3}$ Martha Constantinou $\odot,{ }^{4}$ Kyriakos Hadjiyiannakou, ${ }^{1,2}$ Karl Jansen, ${ }^{5}$ Aurora Scapellato, ${ }^{4}$ and Fernanda Steffens ${ }^{6}$

PHYSICAL REVIEW D 108, 054501 (2023)

Chiral-even axial twist-3 GPDs of the proton from lattice QCD
Shohini Bhattacharya $\oplus,{ }^{1,2}$ Krzysztof Cichy, ${ }^{3}$ Martha Constantinou $\odot,{ }^{1}$ Jack Dodson, ${ }^{1}$ Andreas Metz $\oplus,{ }^{1}$ Aurora Scapellato, ${ }^{1}$ and Fernanda Steffens ${ }^{4}$

Generalized parton distributions from lattice QCD with asymmetric momentum transfer: Unpolarized quarks

+ Joshua Miller
Shohini Bhattacharya $\odot{ }^{1, *}$ Krzysztof Cichy, ${ }^{2}$ Martha Constantinou $\odot{ }^{3, \dagger}{ }^{3}$ Jack Dodson, ${ }^{3}$ Xiang Gao, ${ }^{4}$ Andreas Metz, ${ }^{3}$ Swagato Mukherjee ${ }^{1},{ }^{1}$ Aurora Scapellato, ${ }^{3}$ Fernanda Steffens, and Yong Zhao
> * Twist-2 GPDs: new approach

Motivation for GPDs studies

[H. Abramowicz et al., whitepaper for NSAC LRP, 2007]
$\mathbf{1}_{\text {mom }}+2_{\text {coord }}$ tomographic images of quark distribution in nucleon at fixed longitudinal momentum

3-D image from FT of the longitudinal mom. transfer
\star GPDs are not well-constrained experimentally:

- x-dependence extraction is not direct. DVCS amplitude: $\mathscr{H}=\int_{-1}^{+1} \frac{H(x, \xi, t)}{x-\xi+i \epsilon} d x$ (SDHEP [J. Qiu et al, arXiv:2205.07846] gives access to x)
- independent measurements to disentangle GPDs
- GPDs phenomenology more complicated than PDFs (multi-dimensionality)
- and more challenges ...

Essential to complement the knowledge on GPD from lattice QCD

Hadron structure at core of nuclear physics

Tomographic imaging of proton has central role in the science program of EIC GPDs, FFs, GFFs, TMDs, ...
[R. Abdul Khalek et al.,
EIC Yellow Report 2021, arXiv:2103.05419]

Hadron structure at core of nuclear physics

\star Tomographic imaging of proton has central role in the science program of EIC
GPDs, FFs, GFFs, TMDs, ...
[R. Abdul Khalek et al.,
EIC Yellow Report 2021, arXiv:2103.05419]

Award Number:
DE-SC0023646

Lattice data may be incorporated in global analysis of experimental data and may influence parametrization of t and ξ dependence

Hadron structure at core of nuclear physics

\star Tomographic imaging of proton has central role in the science program of EIC
GPDs, FFs, GFFs, TMDs, ...
[R. Abdul Khalek et al.,
EIC Yellow Report 2021, arXiv:2103.05419]

Award Number:
DE-SC0023646

Lattice data may be incorporated in global analysis of experimental data and may influence parametrization of t and ξ dependence

Advances of lattice QCD are timely

Accessing information on GPDs

$$
\begin{aligned}
& \text { Mellin moments } \\
& \text { (local OPE expansion) } \\
& \bar{q}\left(-\frac{1}{2} z\right) \gamma^{\sigma} W\left[-\frac{1}{2} z, \frac{1}{2} z\right] q\left(\frac{1}{2} z\right)=\sum_{n=0}^{\infty} \frac{1}{n!} z_{\alpha_{1}} \ldots z_{\alpha_{n}}\left[\bar{q} \gamma^{\sigma} \overleftrightarrow{D}^{\alpha_{1}} \ldots \overleftrightarrow{D}^{\alpha_{n}} q\right]
\end{aligned}
$$

Accessing information on GPDs

* Mellin moments (local OPE expansion)

$$
\bar{q}\left(-\frac{1}{2} z\right) \gamma^{\sigma} W\left[-\frac{1}{2} z, \frac{1}{2} z\right] q\left(\frac{1}{2} z\right)=\sum_{n=0}^{\infty} \frac{1}{n!} z_{\alpha_{1}} \ldots z_{\alpha_{n}} \frac{\left[\bar{q} \gamma^{\sigma} \stackrel{\leftrightarrow}{D^{\alpha_{1}}} \ldots \stackrel{\leftrightarrow}{D^{\alpha_{n}}} q\right]}{\text { local operators }}
$$

$\left.\left.\left.\left\langle N\left(P^{\prime}\right)\right| \mathcal{O}_{V}^{\mu \mu_{1} \cdots \mu_{n-1}}|N(P)\rangle \sim \sum_{\substack{i=0 \\ \text { even }}}^{n-1}\left\{\gamma^{\{\mu} \Delta^{\mu_{1}} \cdots \Delta^{\mu_{i}} \bar{P}^{\mu_{i+1}} \cdots \bar{P}^{\left.\mu_{n-1}\right\}}\right\} A_{n, i}(t)-i \frac{\Delta_{\alpha} \sigma^{\alpha \mu \mu}}{2 m_{N}} \Delta^{\mu_{1}} \cdots \Delta^{\mu_{i}} \bar{P}^{\mu_{i+1}} \cdots \bar{P}^{\left.\mu_{n-1}\right\}} B_{n_{n, i}(t)}\right\}+\left.\frac{\Delta^{\mu} \Delta^{\mu_{1}} \ldots \Delta^{\mu_{n-1}}}{m_{N}} C_{n, 0}\left(\Delta^{2}\right)\right|_{n \text { even }}\right)\right\}$

Wide -t range that comes at the cost of 1 (in the majority of cases)

Accessing information on GPDs

* Mellin moments (local OPE expansion)

$$
\bar{q}\left(-\frac{1}{2} z\right) \gamma^{\sigma} W\left[-\frac{1}{2} z, \frac{1}{2} z\right] q\left(\frac{1}{2} z\right)=\sum_{n=0}^{\infty} \frac{1}{n!} z_{\alpha_{1}} \ldots z_{\alpha_{n}} \frac{\left[\bar{q} \gamma^{\sigma} \stackrel{\leftrightarrow}{D^{\alpha_{1}}} \ldots \stackrel{\leftrightarrow}{D^{\alpha_{n}}} q\right]}{\text { local operators }}
$$

$\left.\left.\left\langle N\left(P^{\prime}\right)\right| \mathcal{O}_{V}^{\mu \mu_{1} \cdots \mu_{n-1}}|N(P)\rangle \sim \sum_{\substack{i=0 \\ \text { even }}}^{n-1}\left\{\gamma^{\{\mu} \Delta^{\mu_{1}} \cdots \Delta^{\mu_{i}} \bar{P}^{\mu_{i+1}} \cdots \bar{P}^{\left.\mu_{n-1}\right\}} A_{n, i}(t)-i \frac{\Delta_{\alpha} \sigma^{\alpha \alpha \mu}}{2 m_{N}} \Delta^{\mu_{1}} \cdots \Delta^{\mu_{i}} \bar{P}^{\mu_{i+1}} \cdots \bar{P}^{\left.\mu_{n-1}\right\}} B_{n_{n, i}(t)}\right\}+\left.\frac{\Delta^{\mu} \Delta^{\mu_{1}} \ldots \Delta^{\mu_{n-1}}}{m_{N}} C_{n, 0}\left(\Delta^{2}\right)\right|_{n \text { even }}\right)\right\}$

Wide -t range that comes at the cost of 1
(in the majority of cases)

Matrix elements of non-local operators (quasi-GPDs, pseudo-GPDs, ...)

$$
\left\langle N\left(P_{f}\right)\right| \bar{\Psi}(z) \underset{\text { Wilson line }}{\frac{\mathscr{W}(z, 0) \Psi(0)}{}}\left|N\left(P_{i}\right)\right\rangle_{\mu}
$$

$$
\begin{aligned}
& \left\langle N\left(P^{\prime}\right)\right| O_{V}^{\mu}(x)|N(P)\rangle=\bar{U}\left(P^{\prime}\right)\left\{\gamma^{\mu} H(x, \xi, t)+\frac{i \sigma^{\mu \nu} \Delta_{\nu}}{2 m_{N}} E(x, \xi, t)\right\} U(P)+\mathrm{ht}, \\
& \left\langle N\left(P^{\prime}\right)\right| O_{A}^{\mu}(x)|N(P)\rangle=\bar{U}\left(P^{\prime}\right)\left\{\gamma^{\mu} \gamma_{5} \widetilde{H}(x, \xi, t)+\frac{\gamma_{5} \Delta^{\mu}}{2 m_{N}} \widetilde{E}(x, \xi, t)\right\} U(P)+\mathrm{ht}, \\
& \left\langle N\left(P^{\prime}\right)\right| O_{T}^{\mu \nu}(x)|N(P)\rangle=\bar{U}\left(P^{\prime}\right)\left\{i \sigma^{\mu \nu} H_{T}(x, \xi, t)+\frac{\gamma^{\mu \mu} \Delta^{\nu]}}{2 m_{N}} E_{T}(x, \xi, t)+\frac{\bar{P}^{[\mu} \Delta^{\nu]}}{m_{N}^{2}} \widetilde{H}_{T}(x, \xi, t)+\frac{\gamma^{[\mu} \bar{P}^{\nu]}}{m_{N}} \widetilde{E}_{T}(x, \xi, t)\right\} U(P)+\mathrm{ht}
\end{aligned}
$$

GPDs

Through non-local matrix elements of fast-moving hadrons

Access of PDFs/GPDs on a Euclidean Lattice

[X. Ji, Phys. Rev. Lett. 110 (2013) 262002]
Matrix elements of nonlocal (equal-time) operators with fast moving hadrons

$$
\tilde{q}_{\Gamma}^{\operatorname{GPD}}\left(x, t, \xi, P_{3}, \mu\right)=\int \frac{d z}{4 \pi} e^{-i x P_{3} z}\left\langle N\left(P_{f}\right)\right| \bar{\Psi}(z) \Gamma \mathscr{W}(z, 0) \Psi(0)\left|N\left(P_{i}\right)\right\rangle_{\mu}
$$

$$
\begin{gathered}
\Delta=P_{f}-P_{i} \\
t=\Delta^{2}=-Q^{2} \\
\xi=\frac{Q_{3}}{2 P_{3}}
\end{gathered}
$$

Access of PDFs/GPDs on a Euclidean Lattice

[X. Ji, Phys. Rev. Lett. 110 (2013) 262002]
Matrix elements of nonlocal (equal-time) operators with fast moving hadrons

$$
\tilde{q}_{\Gamma}^{\operatorname{GPD}}\left(x, t, \xi, P_{3}, \mu\right)=\int \frac{d z}{4 \pi} e^{-i x P_{3} z} \underline{\left\langle N\left(P_{f}\right)\right| \bar{\Psi}(z) \Gamma \mathscr{W}(z, 0) \Psi(0)\left|N\left(P_{i}\right)\right\rangle_{\mu}}
$$

$\Delta=P_{f}-P_{i}$
Accessing -t dependence:
Computatighally intensive
$t=\Delta^{2}=-Q^{2}$
$\xi=\frac{Q_{3}}{2 P_{3}}$

Access of PDFs/GPDs on a Euclidean Lattice

[X. Ji, Phys. Rev. Lett. 110 (2013) 262002]
Matrix elements of nonlocal (equal-time) operators with fast moving hadrons

$$
\tilde{q}_{\Gamma}^{\operatorname{GPD}}\left(x, t, \xi, P_{3}, \mu\right)=\int \frac{d z}{4 \pi} e^{-i x P_{3} z} \underline{\left\langle N\left(P_{f}\right)\right| \bar{\Psi}(z) \Gamma \mathscr{W}(z, 0) \Psi(0)\left|N\left(P_{i}\right)\right\rangle_{\mu}}
$$

$\Delta=P_{f}-P_{i}$
Accessing -t dependence:
Computatighally intensive
$t=\Delta^{2}=-Q^{2}$
$\xi=\frac{Q_{3}}{2 P_{3}}$

Matching to light-cone GPDs
quasi distribution approach

x-dependence reconstruction

Traditional calculations of GPDs

Unpolarized and Helicity Generalized Parton Distributions of the Proton within Lattice QCD

Constantia Alexandrou, ${ }^{1,2}$ Krzysztof Cichy, ${ }^{3}$ Martha Constantinou $\odot,{ }^{4}$ Kyriakos Hadjiyiannakou, ${ }^{1}$ Karl Jansen, ${ }^{5}$ Aurora Scapellato, ${ }^{3}$ and Fernanda Steffens ${ }^{6}$

Transversity GPDs of the proton from lattice QCD

Constantia Alexandrou, ${ }^{1,2}$ Krzysztof Cichy, ${ }^{3}$ Martha Constantinou•, ${ }^{4}$ Kyriakos Hadjiyiannakou, ${ }^{1,2}$ Karl Jansen, ${ }^{5}$ Aurora Scapellato, ${ }^{4}$ and Fernanda Steffens ${ }^{6}$

Traditional calculations of GPDs

Unpolarized and Helicity Generalized Parton Distributions of the Proton within Lattice QCD

Constantia Alexandrou, ${ }^{1,2}$ Krzysztof Cichy, ${ }^{3}$ Martha Constantinou $\odot,{ }^{4}$ Kyriakos Hadjiyiannakou, ${ }^{1}$
Karl Jansen, ${ }^{5}$ Aurora Scapellato, ${ }^{3}$ and Fernanda Steffens ${ }^{6}$

Transversity GPDs of the proton from lattice QCD

Constantia Alexandrou, ${ }^{1,2}$ Krzysztof Cichy, ${ }^{3}$ Martha Constantinou•, ${ }^{4}$ Kyriakos Hadjiyiannakou, ${ }^{1,2}$ Karl Jansen, ${ }^{5}$ Aurora Scapellato, ${ }^{4}$ and Fernanda Steffens ${ }^{6}$

$$
F^{\left[\gamma^{0}\right]}\left(x, \Delta ; \lambda, \lambda^{\prime} ; P^{3}\right)=\frac{1}{2 P^{0}} \bar{u}\left(p^{\prime}, \lambda^{\prime}\right)\left[\gamma^{0} H_{\mathrm{Q}(0)}\left(x, \xi, t ; P^{3}\right)+\frac{i \sigma^{0 \mu} \Delta_{\mu}}{2 M} E_{\mathrm{Q}(0)}\left(x, \xi, t ; P^{3}\right)\right] u(p, \lambda)
$$

Parameters of calculations

$\mathrm{Nf}=2+1+1$ twisted mass fermions with a clover term;
[Extended Twisted Mass Collaboration, Phys. Rev. D 104, 074515 (2021), arXiv:2104.13408]

Name	β	N_{f}	$L^{3} \times T$	$a[\mathrm{fm}]$	M_{π}	$m_{\pi} L$
cA211.32	1.726	u, d, s, c	$32^{3} \times 64$	0.093	260 MeV	4

Calculation of connected diagram

$P_{3}[\mathrm{GeV}]$	$\vec{q}\left[\frac{2 \pi}{L}\right]$	$-t\left[\mathrm{GeV}^{2}\right]$	N_{ME}	$N_{\text {confs }}$	$N_{\text {src }}$	$N_{\text {total }}$
± 0.83	$(0,0,0)$	0	2	194	8	3104
± 1.25	$(0,0,0)$	0	2	731	16	23392
± 1.67	$(0,0,0)$	0	2	1644	64	210432
± 0.83	$(\pm 2,0,0)$	0.69	8	67	8	4288
± 1.25	$(\pm 2,0,0)$	0.69	8	249	8	15936
± 1.67	$(\pm 2,0,0)$	0.69	8	294	32	75264
± 1.25	$(\pm 2, \pm 2,0)$	1.38	16	224	8	28672
± 1.25	$(\pm 4,0,0)$	2.76	8	329	32	84224

Parameters of calculations

$\mathrm{Nf}=2+1+1$ twisted mass fermions with a clover term;
[Extended Twisted Mass Collaboration, Phys. Rev. D 104, 074515 (2021), arXiv:2104.13408]

Name	β	N_{f}	$L^{3} \times T$	$a[\mathrm{fm}]$	M_{π}	$m_{\pi} L$
cA211.32	1.726	u, d, s, c	$32^{3} \times 64$	0.093	260 MeV	4

\star Calculation of connected diagram

$P_{3}[\mathrm{GeV}]$	$\vec{q}\left[\frac{2 \pi}{L}\right]$	$-t\left[\mathrm{GeV}^{2}\right]$	N_{ME}	$N_{\text {confs }}$	$N_{\text {src }}$	$N_{\text {total }}$
± 0.83	$(0,0,0)$	0	2	194	8	3104
± 1.25	$(0,0,0)$	0	2	731	16	23392
± 1.67	$(0,0,0)$	0	2	1644	64	210432
± 0.83	$(\pm 2,0,0)$	0.69	8	67	8	4288
± 1.25	$(\pm 2,0,0)$	0.69	8	249	8	15936
± 1.67	$(\pm 2,0,0)$	0.69	8	294	32	75264
± 1.25	$(\pm 2, \pm 2,0)$	1.38	16	224	8	28672
± 1.25	$(\pm 4,0,0)$	2.76	8	329	32	84224

Parameters of calculations

$\mathrm{Nf}=2+1+1$ twisted mass fermions with a clover term;
[Extended Twisted Mass Collaboration, Phys. Rev. D 104, 074515 (2021), arXiv:2104.13408]

Name	β	N_{f}	$L^{3} \times T$	$a[\mathrm{fm}]$	M_{π}	$m_{\pi} L$
cA211.32	1.726	u, d, s, c	$32^{3} \times 64$	0.093	260 MeV	4

\star Calculation of connected diagram

$P_{3}[\mathrm{GeV}]$	$\vec{q}\left[\frac{2 \pi}{L}\right]$	$-t\left[\mathrm{GeV}^{2}\right]$	N_{ME}	$N_{\text {confs }}$	$N_{\text {src }}$	$N_{\text {total }}$
± 0.83	$(0,0,0)$	0	2	194	8	3104
± 1.25	$(0,0,0)$	0	2	731	16	23392
± 1.67	$(0,0,0)$	0	2	1644	64	210432
± 0.83	$(\pm 2,0,0)$	0.69	8	67	8	4288
± 1.25	$(\pm 2,0,0)$	0.69	8	249	8	15936
± 1.67	$(\pm 2,0,0)$	0.69	8	294	32	75264
± 1.25	$(\pm 2, \pm 2,0)$	1.38	16	224	8	28672
± 1.25	$(\pm 4,0,0)$	2.76	8	329	32	84224

Symmetric frame
computationally
expensive

Suppressing gauge noise and reliably extracting the ground state comes at a significant computational cost

First lattice calculation of x-dependent GPDs

First lattice calculation of x-dependent GPDs

[C. Alexandrou et al., PRL 125, 262001 (2020)]

First lattice calculation of x-dependent GPDs

[C. Alexandrou et al., PRL 125, 262001 (2020)]

* ERBL/DGLAP: Qualitative differences
$\xi= \pm x$ inaccessible (formalism breaks down)
$\star \quad x \rightarrow 1$ region: qualitatively comparison with power counting analysis [F. Yuan, PRD69 (2004) 051501, hep-ph/0311288]

First lattice calculation of x-dependent GPDs

[C. Alexandrou et al., PRL 125, 262001 (2020)]

* ERBL/DGLAP: Qualitative differences
$\xi= \pm x$ inaccessible (formalism breaks down)
$\star \quad x \rightarrow 1$ region: qualitatively comparison with power counting analysis [F. Yuan, PRD69 (2004) 051501, hep-ph/0311288] $\downarrow t$-dependence vanishes at large- x
- $\quad H(x, 0)$ asymptotically equal to $f_{1}(x)$

First lattice calculation of x-dependent GPDs

[C. Alexandrou et al., PRL 125, 262001 (2020)]

* ERBL/DGLAP: Qualitative differences
$\star \xi= \pm x$ inaccessible (formalism breaks down)
$\star \quad x \rightarrow 1$ region: qualitatively comparison with power counting analysis [F. Yuan, PRD69 (2004) 051501, hep-ph/0311288] $\downarrow t$-dependence vanishes at large- x
- $H(x, 0)$ asymptotically equal to $f_{1}(x)$

First lattice calculation of x-dependent GPDs

[C. Alexandrou et al., PRL 125, 262001 (2020)]

* ERBL/DGLAP: Qualitative differences
$\star \xi= \pm x$ inaccessible (formalism breaks down)
$\star \quad x \rightarrow 1$ region: qualitatively comparison with power counting analysis [F. Yuan, PRD69 (2004) 051501, hep-ph/0311288] - t-dependence vanishes at large- x
- $\quad H(x, 0)$ asymptotically equal to $f_{1}(x)$

important contribution in the proton spin

$$
\int_{-1}^{+1} d x x^{2} H^{q}(x, \xi, t)=A_{20}^{q}(t)+4 \xi^{2} C_{20}^{q}(t), \quad \int_{-1}^{+1} d x x^{2} E^{q}(x, \xi, t)=B_{20}^{q}(t)-4 \xi^{2} C_{20}^{q}(t)
$$

Exploration of twist-3 GPDs

Chiral-even axial twist-3 GPDs of the proton from lattice QCD

Shohini Bhattacharya $\odot,{ }^{1,2}$ Krzysztof Cichy, ${ }^{3}$ Martha Constantinou $\odot,{ }^{1}$ Jack Dodson, ${ }^{1}$ Andreas Metz $\odot,{ }^{1}$ Aurora Scapellato, ${ }^{1}$ and Fernanda Steffens ${ }^{4}$

Exploration of twist-3 GPDs

Chiral-even axial twist-3 GPDs of the proton from lattice QCD

Shohini Bhattacharya $\odot,{ }^{1,2}$ Krzysztof Cichy, ${ }^{3}$ Martha Constantinou $\odot,{ }^{1}$ Jack Dodson, ${ }^{1}$ Andreas Metz $\odot,{ }^{1}$ Aurora Scapellato, ${ }^{1}$ and Fernanda Steffens ${ }^{4}$

$$
\begin{aligned}
F^{\left[\gamma^{\mu} \gamma_{5}\right]}\left(x, \Delta ; P^{3}\right)=\frac{1}{2 P^{3}} \bar{u}\left(p_{f}, \lambda^{\prime}\right) & {\left[P^{\mu} \frac{\gamma^{3} \gamma_{5}}{P^{0}} F_{\widetilde{H}}\left(x, \xi, t ; P^{3}\right)+P^{\mu} \frac{\Delta^{3} \gamma_{5}}{2 m P^{0}} F_{\widetilde{E}}\left(x, \xi, t ; P^{3}\right)\right.} \\
& +\Delta_{\perp}^{\mu} \frac{\gamma_{5}}{2 m} F_{\widetilde{E}+\widetilde{G}_{1}}\left(x, \xi, t ; P^{3}\right)+\gamma_{\perp}^{\mu} \gamma_{5} F_{\widetilde{H}+\widetilde{G}_{2}}\left(x, \xi, t ; P^{3}\right) \\
& \left.+\Delta_{\perp}^{\mu} \frac{\gamma^{3} \gamma_{5}}{P^{3}} F_{\widetilde{G}_{3}}\left(x, \xi, t ; P^{3}\right)+i \varepsilon_{\perp}^{\mu \nu} \Delta_{\nu} \frac{\gamma^{3}}{P^{3}} F_{\widetilde{G}_{4}}\left(x, \xi, t ; P^{3}\right)\right] u\left(p_{i}, \lambda\right)
\end{aligned}
$$

[D. Kiptily and M. Polyakov, Eur. Phys. J. C37 (2004) 105, arXiv:hep-ph/0212372]
[F. Aslan et a., Phys. Rev. D 98, 014038 (2018), arXiv:1802.06243]

Exploration of twist-3 GPDs

Chiral-even axial twist-3 GPDs of the proton from lattice QCD

Shohini Bhattacharya $\odot,{ }^{1,2}$ Krzysztof Cichy, ${ }^{3}$ Martha Constantinou $\odot,{ }^{1}$ Jack Dodson, ${ }^{1}$ Andreas Metz $\odot,{ }^{1}$ Aurora Scapellato, ${ }^{1}$ and Fernanda Steffens ${ }^{4}$

$$
F^{\left[\gamma^{\mu} \gamma_{5]}\right]}\left(x, \Delta ; P^{3}\right)=\frac{1}{2 P^{3}} \bar{u}\left(p_{f}, \lambda^{\prime}\right)\left[P^{\mu} \frac{\gamma^{3} \gamma_{5}}{P^{0}} F_{\widetilde{H}}\left(x, \xi, t ; P^{3}\right)+P^{\mu} \frac{\Delta^{3} \gamma_{5}}{2 m P^{0}} F_{\widetilde{E}}\left(x, \xi, t ; P^{3}\right)\right.
$$

$$
+\Delta_{\perp}^{\mu} \frac{\gamma_{5}}{2 m} F_{\widetilde{E}+\widetilde{G}_{1}}\left(x, \xi, t ; P^{3}\right)+\gamma_{\perp}^{\mu} \gamma_{5} F_{\widetilde{H}+\widetilde{G}_{2}}\left(x, \xi, t ; P^{3}\right)
$$

$$
8 \longdiv { \square \widetilde { \mathbb { H } ^ { 2 } + \widetilde { \mathrm { G } } _ { 2 } , - t = 0 . 6 9 \mathrm { GeV } ^ { 2 } } }
$$

[D. Kiptily and M. Polyakov, Eur. Phys. J. C37 (2004) 105, arXiv:hep-ph/0212372]
[F. Aslan et a., Phys. Rev. D 98, 014038 (2018), arXiv:1802.06243]

New parametrization of GPDs

Generalized parton distributions from lattice QCD with asymmetric momentum transfer: Unpolarized quarks

Shohini Bhattacharya©, ${ }^{1, *}$ Krzysztof Cichy, ${ }^{2}$ Martha Constantinou $\odot{ }^{3, \dagger}$ Jack Dodson, ${ }^{3}$ Xiang Gao, ${ }^{4}$ Andreas Metz, ${ }^{3}$ Swagato Mukherjee \oplus, ${ }^{1}$ Aurora Scapellato, ${ }^{3}$ Fernanda Steffens, ${ }^{5}$ and Yong Zhao ${ }^{4}$

Recent addition:
Josh Miller (Temple University)

For latest updates see Miller's Lattice Conference 2023 talk here

Theoretical setup

Theoretical setup

γ^{+}inspired parametrization is prohibitively expensive

$$
F^{\left[\gamma^{0}\right]}\left(x, \Delta ; \lambda, \lambda^{\prime} ; P^{3}\right)=\frac{1}{2 P^{0}} \bar{u}\left(p^{\prime}, \lambda^{\prime}\right)\left[\gamma^{0} H_{\mathrm{Q}} \quad \lambda^{1 /}+\frac{i \sigma^{0 \mu} \Delta_{\mu}}{2 M} E_{\mathrm{Q}(0)}\left(x, \xi, t ; P^{3}\right)\right] u(p, \lambda)
$$

Theoretical setup

$\star \gamma^{+}$inspired parametrization is prohibitively expensive

$$
F^{\left[\gamma^{0]}\right.}\left(x, \Delta ; \lambda, \lambda^{\prime} ; P^{3}\right)=\frac{1}{2 P^{0}} \bar{u}\left(p^{\prime}, \lambda^{\prime}\right)\left[\gamma^{0} H_{\mathrm{Q}} \gamma^{(1 /}+\frac{i \sigma^{0 \mu} \Delta_{\mu}}{2 M} E_{\mathrm{Q}(0)}\left(x, \xi, t ; P^{3}\right)\right] u(p, \lambda)
$$

$$
F_{\lambda, \lambda^{\prime}}^{\mu}=\bar{u}\left(p^{\prime}, \lambda^{\prime}\right)\left[\frac{P^{\mu}}{M} A_{1}+z^{\mu} M A_{2}+\frac{\Delta^{\mu}}{M} A_{3}+i \sigma^{\mu z} M A_{4}+\frac{i \sigma^{\mu \Delta}}{M} A_{5}+\frac{P^{\mu} i \sigma^{z \Delta}}{M} A_{6}+\frac{z^{\mu} i \sigma^{z \Delta}}{M} A_{7}+\frac{\Delta^{\mu} i \sigma^{z \Delta}}{M} A_{8}\right] u(p, \lambda)
$$

A_{i} : - Lorentz invariant amplitudes

- have definite symmetries

Theoretical setup

$\star \gamma^{+}$inspired parametrization is prohibitively expensive

$$
F^{\left[\gamma^{0}\right]}\left(x, \Delta ; \lambda, \lambda^{\prime} ; P^{3}\right)=\frac{1}{2 P^{0}} \bar{u}\left(p^{\prime}, \lambda^{\prime}\right)\left[\gamma^{0} H_{\mathrm{Q}}{ }^{1 / \prime}+\frac{i \sigma^{0 \mu} \Delta_{\mu}}{2 M} E_{\mathrm{Q}(0)}\left(x, \xi, t ; P^{3}\right)\right] u(p, \lambda)
$$

$$
F_{\lambda, \lambda^{\prime}}^{\mu}=\bar{u}\left(p^{\prime}, \lambda^{\prime}\right)\left[\frac{P^{\mu}}{M} A_{1}+z^{\mu} M A_{2}+\frac{\Delta^{\mu}}{M} A_{3}+i \sigma^{\mu z} M A_{4}+\frac{i \sigma^{\mu \Delta}}{M} A_{5}+\frac{P^{\mu} i \sigma^{z \Delta}}{M} A_{6}+\frac{z^{\mu} i \sigma^{z \Delta}}{M} A_{7}+\frac{\Delta^{\mu} i \sigma^{z \Delta}}{M} A_{8}\right] u(p, \lambda)
$$

A_{i} : - Lorentz invariant amplitudes

- have definite symmetries

Two decompositions can be related

$$
\begin{aligned}
\mathcal{H}_{0}^{s}\left(A_{i}^{s} ; z\right) & =A_{1}+\frac{z\left(\Delta_{1}^{2}+\Delta_{2}^{2}\right)}{2 P_{3}} A_{6}, \\
\mathcal{E}_{0}^{s}\left(A_{i}^{s} ; z\right) & =-A_{1}-\frac{m^{2} z}{P_{3}} A_{4}+2 A_{5}-\frac{z\left(4 E^{2}+\Delta_{1}^{2}+\Delta_{2}^{2}\right)}{2 P_{3}} A_{6}
\end{aligned}
$$

Theoretical setup

$\star \gamma^{+}$inspired parametrization is prohibitively expensive

$$
F^{\left[\gamma^{0}\right]}\left(x, \Delta ; \lambda, \lambda^{\prime} ; P^{3}\right)=\frac{1}{2 P^{0}} \bar{u}\left(p^{\prime}, \lambda^{\prime}\right)\left[\gamma^{0} H_{\mathrm{Q}} \mathcal{A}^{1 / \prime}+\frac{i \sigma^{0 \mu} \Delta_{\mu}}{2 M} E_{\mathrm{Q}(0)}\left(x, \xi, t ; P^{3}\right)\right] u(p, \lambda)
$$

$$
F_{\lambda, \lambda^{\prime}}^{\mu}=\bar{u}\left(p^{\prime}, \lambda^{\prime}\right)\left[\frac{P^{\mu}}{M} A_{1}+z^{\mu} M A_{2}+\frac{\Delta^{\mu}}{M} A_{3}+i \sigma^{\mu z} M A_{4}+\frac{i \sigma^{\mu \Delta}}{M} A_{5}+\frac{P^{\mu} i \sigma^{z \Delta}}{M} A_{6}+\frac{z^{\mu} i \sigma^{z \Delta}}{M} A_{7}+\frac{\Delta^{\mu} i \sigma^{z \Delta}}{M} A_{8}\right] u(p, \lambda)
$$

A_{i} : - Lorentz invariant amplitudes

- have definite symmetries

Two decompositions can be related

$$
\begin{aligned}
\mathcal{H}_{0}^{s}\left(A_{i}^{s} ; z\right) & =A_{1}+\frac{z\left(\Delta_{1}^{2}+\Delta_{2}^{2}\right)}{2 P_{3}} A_{6}, \\
\mathcal{E}_{0}^{s}\left(A_{i}^{s} ; z\right) & =-A_{1}-\frac{m^{2} z}{P_{3}} A_{4}+2 A_{5}-\frac{z\left(4 E^{2}+\Delta_{1}^{2}+\Delta_{2}^{2}\right)}{2 P_{3}} A_{6}
\end{aligned}
$$

Light-cone GPDs using lattice correlators in non-symmetric frames

Theoretical setup

$$
F_{\lambda, \lambda^{\prime}}^{\mu}=\bar{u}\left(p^{\prime}, \lambda^{\prime}\right)\left[\frac{P^{\mu}}{M} A_{1}+z^{\mu} M A_{2}+\frac{\Delta^{\mu}}{M} A_{3}+i \sigma^{\mu z} M A_{4}+\frac{i \sigma^{\mu \Delta}}{M} A_{5}+\frac{P^{\mu} i \sigma^{z \Delta}}{M} A_{6}+\frac{z^{\mu} i \sigma^{z \Delta}}{M} A_{7}+\frac{\Delta^{\mu} i \sigma^{z \Delta}}{M} A_{8}\right] u(p, \lambda)
$$

Goals
(A) A_{i} are to the standard H, E GPDs $\quad \mathcal{H}_{0}^{s}\left(A_{i}^{s} ; z\right)=A_{1}+\frac{z\left(\Delta_{1}^{2}+\Delta_{2}^{2}\right)}{2 P_{3}} A_{6}$
(B) Extraction of standard GPDs using A_{i} obtained from any frame
(C) quasi-GPDs may be redefined (Lorentz covariant) inspired by light-cone:

Theoretical setup

$F_{\lambda, \lambda^{\prime}}^{\mu}=\bar{u}\left(p^{\prime}, \lambda^{\prime}\right)\left[\frac{P^{\mu}}{M} A_{1}+z^{\mu} M A_{2}+\frac{\Delta^{\mu}}{M} A_{3}+i \sigma^{\mu z} M A_{4}+\frac{i \sigma^{\mu \Delta}}{M} A_{5}+\frac{P^{\mu} i \sigma^{z \Delta}}{M} A_{6}+\frac{z^{\mu} i \sigma^{z \Delta}}{M} A_{7}+\frac{\Delta^{\mu} i \sigma^{z \Delta}}{M} A_{8}\right] u(p, \lambda)$
Goals
(A) A_{i} are to the standard H, E GPDs $\quad \mathcal{H}_{0}^{s}\left(A_{i}^{s} ; z\right)=A_{1}+\frac{z\left(\Delta_{1}^{2}+\Delta_{2}^{2}\right)}{2 P_{3}} A_{6}$
(B) Extraction of standard GPDs using A_{i} obtained from any frame
(C) quasi-GPDs may be redefined (Lorentz covariant) inspired by light-cone:

$$
\begin{aligned}
& H\left(z \cdot P, z \cdot \Delta, t=\Delta^{2}, z^{2}\right)=A_{1}+\frac{\Delta_{s / a} \cdot z}{P_{\text {avg,s/a }} \cdot z} A_{3} \\
& E\left(z \cdot P, z \cdot \Delta, t=\Delta^{2}, z^{2}\right)=-A_{1}-\frac{\Delta_{s / a} \cdot z}{P_{\text {avg,s/a }} \cdot z} A_{3}+2 A_{5}+2 P_{\text {avg,sla }} \cdot z A_{6}+2 \Delta_{s / a} \cdot z A_{8}
\end{aligned}
$$

Theoretical setup

$F_{\lambda, \lambda^{\prime}}^{\mu}=\bar{u}\left(p^{\prime}, \lambda^{\prime}\right)\left[\frac{P^{\mu}}{M} A_{1}+z^{\mu} M A_{2}+\frac{\Delta^{\mu}}{M} A_{3}+i \sigma^{\mu z} M A_{4}+\frac{i \sigma^{\mu \Delta}}{M} A_{5}+\frac{P^{\mu} i \sigma^{z \Delta}}{M} A_{6}+\frac{z^{\mu} i \sigma^{z \Delta}}{M} A_{7}+\frac{\Delta^{\mu} i \sigma^{z \Delta}}{M} A_{8}\right] u(p, \lambda)$

Goals

(A) A_{i} are to the standard H, E GPDs $\quad \mathcal{H}_{0}^{s}\left(A_{i}^{s} ; z\right)=A_{1}+\frac{z\left(\Delta_{1}^{2}+\Delta_{2}^{2}\right)}{2 P_{3}} A_{6}$
(B) Extraction of standard GPDs using A_{i} obtained from any frame
(C) quasi-GPDs may be redefined (Lorentz covariant) inspired by light-cone:

$$
\begin{aligned}
& H\left(z \cdot P, z \cdot \Delta, t=\Delta^{2}, z^{2}\right)=A_{1}+\frac{\Delta_{s / a} \cdot z}{P_{\text {avg,s/a }} \cdot z} A_{3} \\
& E\left(z \cdot P, z \cdot \Delta, t=\Delta^{2}, z^{2}\right)=-A_{1}-\frac{\Delta_{s / a} \cdot z}{P_{\text {avg,sla }} \cdot z} A_{3}+2 A_{5}+2 P_{\text {avy,s/a }} \cdot z A_{6}+2 \Delta_{s / a} \cdot z A_{8}
\end{aligned}
$$

(A) Proof-of-concept calculation $(\xi=0)$:

- symmetric frame: $\quad \vec{p}_{f}^{s}=\vec{P}+\frac{\vec{Q}}{2}, \quad \vec{p}_{i}^{s}=\vec{P}-\frac{\vec{Q}}{2} \quad-t^{s}=\vec{Q}^{2}=0.69 \mathrm{GeV}^{2}$
- asymmetric frame: $\quad \vec{p}_{f}^{a}=\vec{P}, \quad \vec{p}_{i}^{a}=\vec{P}-\vec{Q} \quad t^{a}=-\vec{Q}^{2}+\left(E_{f}-E_{i}\right)^{2}=0.65 \mathrm{GeV}^{2}$

Parameters of calculations

$\mathrm{Nf}=2+1+1$ twisted mass fermions with a clover term;

[Extended Twisted Mass Collaboration, Phys. Rev. D 104, 074515 (2021), arXiv:2104.13408]

Name	β	N_{f}	$L^{3} \times T$	$a[\mathrm{fm}]$	M_{π}	$m_{\pi} L$
cA211.32	1.726	u, d, s, c	$32^{3} \times 64$	0.093	260 MeV	4

frame	$P_{3}[\mathrm{GeV}]$	$\Delta\left[\frac{2 \pi}{L}\right]$	$-t\left[\mathrm{GeV}^{2}\right]$	ξ	N_{ME}	$N_{\text {confs }}$	$N_{\text {src }}$	$N_{\text {tot }}$
N/A	± 1.25	$(0,0,0)$	0	0	2	731	16	23392
symm	± 0.83	$(\pm 2,0,0),(0, \pm 2,0)$	0.69	0	8	67	8	4288
symm	± 1.25	$(\pm 2,0,0),(0, \pm 2,0)$	0.69	0	8	249	8	15936
symm	± 1.67	$(\pm 2,0,0),(0, \pm 2,0)$	0.69	0	8	294	32	75264
symm	± 1.25	$(\pm 2, \pm 2,0)$	1.39	0	16	224	8	28672
symm	± 1.25	$(\pm 4,0,0),(0, \pm 4,0)$	2.76	0	8	329	32	84224
asymm	± 1.25	$(\pm 1,0,0),(0, \pm 1,0)$	0.17	0	8	429	8	27456
asymm	± 1.25	$(\pm 1, \pm 1,0)$	0.33	0	16	194	8	12416
asymm	± 1.25	$(\pm 2,0,0),(0, \pm 2,0)$	0.64	0	8	429	8	27456
asymm	± 1.25	$(\pm 1, \pm 2,0),(\pm 2, \pm 1,0)$	0.80	0	16	194	8	12416
asymm	± 1.25	$(\pm 2, \pm 2,0)$	1.16	0	16	194	8	24832
asymm	± 1.25	$(\pm 3,0,0),(0, \pm 3,0)$	1.37	0	8	429	8	27456
asymm	± 1.25	$(\pm 1, \pm 3,0),(\pm 3, \pm 1,0)$	1.50	0	16	194	8	12416
asymm	± 1.25	$(\pm 4,0,0),(0, \pm 4,0)$	2.26	0	8	429	8	27456

Results: matrix elements

Eight independent matrix elements needed to disentangle the A_{i} asymmetric frame

Results: matrix elements

Eight independent matrix elements needed to disentangle the A_{i}

asymmetric frame

Results: matrix elements

* Eight independent matrix elements needed to disentangle the A_{i}

Results: matrix elements

\star Eight independent matrix elements needed to disentangle the A_{i}

Results: matrix elements

\star Eight independent matrix elements needed to disentangle the A_{i}

* Asymmetric frame: ME do not have definite symmetries in $\pm P_{3}, \pm Q, \pm z$
* Noisy ME lead to challenges in extracting A_{i} of sub-leading magnitude

Comparison of A_{i} in two frames

Unpolarized GPDs

$\star A_{1}, A_{5}$ dominant contributions
Full agreement in two frames for both Re and Im parts of A_{1}, A_{5}
$\star A_{3}, A_{4}, A_{8}$ zero at $\xi=0$
$\star A_{2}, A_{6}, A_{7}$ suppressed (at least for this kinematic setup and $\xi=0$)

Comparison of A_{i} in two frames

Unpolarized GPDs

H, E light-cone GPDs

quasi-GPDs transformed to momentum space

Matching formalism to 1 loop accuracy level
+/-x correspond to quark and anti-quark region
Anti-quark region susceptible to systematic uncertainties.

$-t=0.17 \mathrm{GeV}^{2}$
$-t=0.33 \mathrm{GeV}^{2}$
$-t=0.64 \mathrm{GeV}^{2}$
$-t=0.80 \mathrm{GeV}^{2}$
$-t=1.16 \mathrm{GeV}^{2}$
$-t=1.37 \mathrm{GeV}^{2}$
$-t=1.50 \mathrm{GeV}^{2}$
$-t=2.26 \mathrm{GeV}^{2}$

Similar analysis for helicity GPDs

H light-cone GPD

$$
\begin{aligned}
& \widetilde{F}^{\mu}(z, P, \Delta) \equiv\left\langle p_{f} ; \lambda^{\prime}\right| \bar{\psi}\left(-\frac{z}{2}\right) \gamma^{\mu} \gamma_{5} \mathcal{W}\left(-\frac{z}{2}, \frac{z}{2}\right) \psi\left(\frac{z}{2}\right)\left|p_{i} ; \lambda\right\rangle \\
&=\bar{u}\left(p_{f}, \lambda^{\prime}\right) {\left[\frac{i \epsilon^{\mu P z \Delta}}{m} \widetilde{A}_{1}+\gamma^{\mu} \gamma_{5} \widetilde{A}_{2}+\gamma_{5}\left(\frac{P^{\mu}}{m} \widetilde{A}_{3}+m z^{\mu} \widetilde{A}_{4}+\frac{\Delta^{\mu}}{m} \widetilde{A}_{5}\right)\right.} \\
&\left.+m \not \approx \gamma_{5}\left(\frac{P^{\mu}}{m} \widetilde{A}_{6}+m z^{\mu} \widetilde{A}_{7}+\frac{\Delta^{\mu}}{m} \widetilde{A}_{8}\right)\right] u\left(p_{i}, \lambda\right),
\end{aligned}
$$

How to lattice QCD data fit into the overall effort for hadron tomography

How to lattice QCD data fit into the overall effort for hadron tomography
Lattice data may be incorporated in global analysis of experimental data and may influence parametrization of t and ξ dependence

How to lattice QCD data fit into the overall effort for hadron tomography

* Lattice data may be incorporated in global analysis of experimental data and may influence parametrization of t and ξ dependence

1. Theoretical studies of high-momentum transfer processes using perturbative QCD methods and study of GPDs properties
2. Lattice QCD calculations of GPDs and related structures
3. Global analysis of GPDs based on experimental data using modern data analysis techniques for inference and uncertainty quantification

Synergies: constraints \& predictive power of lattice QCD

[JAM/HadStruc, PRD105 (2022) 114051]
proton \& neutron radius

[Atac et al., Nature Comm. 12, 1759 (2021)]

helicity PDF

[JAM \& ETMC, PRD 103 (2021) 016003]

Experiments, global analysis
transversity PDF

[JAM, PRD 106 (2022) 3, 034014]

And many more!

Summary

* Lattice QCD data on GPDs will play an important role in the pre-EIC era and can complement experimental efforts of JLab@12GeV
* New proposal for Lorentz invariant decomposition has great advantages:
- significant reduction of computational cost
- access to a broad range of t and ξ
* Future calculations have the potential to transform the field of GPDs
* Synergy with phenomenology is an exciting prospect!

QGT Collaboration will be instrumental in such effort
M. Constantinou, SPIN 2023

Summary

* Lattice QCD data on GPDs will play an important role in the pre-EIC era and can complement experimental efforts of JLab@12GeV
* New proposal for Lorentz invariant decomposition has great advantages:
- significant reduction of computational cost
- access to a broad range of t and ξ
* Future calculations have the potential to transform the field of GPDs
* Synergy with phenomenology is an exciting prospect! QGT Collaboration will be instrumental in such effort

Miscellaneous

M. Constantinou, SPIN 2023

Consistency checks

* Norms satisfied encouraging results

GPD	$P_{3}=0.83[\mathrm{GeV}]$ $-t=0.69\left[\mathrm{GeV}^{2}\right]$	$P_{3}=1.25[\mathrm{GeV}]$ $-t=0.69\left[\mathrm{GeV}^{2}\right]$	$P_{3}=1.67[\mathrm{GeV}]$ $-t=0.69\left[\mathrm{GeV}^{2}\right]$	$P_{3}=1.25[\mathrm{GeV}]$ $-t=1.38\left[\mathrm{GeV}^{2}\right]$	$P_{3}=1.25[\mathrm{GeV}]$ $-t=2.76\left[\mathrm{GeV}^{2}\right]$
\widetilde{H}	$0.741(21)$	$0.712(27)$	$0.802(48)$	$0.499(21)$	$0.281(18)$
$\widetilde{H}+\widetilde{G}_{2}$	$0.719(25)$	$0.750(33)$	$0.788(70)$	$0.511(36)$	$0.336(34)$

Consistency checks

\star Norms satisfied
encouraging results

GPD	$P_{3}=0.83[\mathrm{GeV}]$ $-t=0.69\left[\mathrm{GeV}^{2}\right]$	$P_{3}=1.25[\mathrm{GeV}]$ $-t=0.69\left[\mathrm{GeV}^{2}\right]$	$P_{3}=1.67[\mathrm{GeV}]$ $-t=0.69\left[\mathrm{GeV}^{2}\right]$	$P_{3}=1.25[\mathrm{GeV}]$ $-t=1.38\left[\mathrm{GeV}^{2}\right]$	$P_{3}=1.25[\mathrm{GeV}]$ $-t=2.76\left[\mathrm{GeV}^{2}\right]$
\widetilde{H}	$0.741(21)$	$0.712(27)$	$0.802(48)$	$0.499(21)$	$0.281(18)$
$\widetilde{H}+\widetilde{G}_{2}$	$0.719(25)$	$0.750(33)$	$0.788(70)$	$0.511(36)$	$0.336(34)$

* Alternative kinematic setup can be utilized

[Fernanda Steffens]

$$
\begin{array}{ll}
F_{\widetilde{H}+\widetilde{G}_{2}}=\frac{1}{2 m^{2}} \frac{z_{3} P_{0}^{2}\left(\Delta_{\perp}\right)^{2}}{P_{3}}+A_{2} & F_{\widetilde{G}_{3}}=\frac{1}{2 m^{2}}\left(z_{3} P_{0}^{2} \Delta_{3}-z_{3} P_{3} P_{0} \Delta_{0}\right) A_{1}-z_{3} P_{3} A_{8} \\
F_{\widetilde{E}+\widetilde{G}_{1}}=\frac{2 z_{3} P_{0}^{2}}{P_{3}}+2 A_{5} & F_{\widetilde{G}_{3}}=\frac{1}{m^{2}}\left(z_{3} P_{0} P_{3}^{2}-z_{3} P_{0}^{3}\right) A_{1}
\end{array}
$$

FIG. 10. $z_{\max }$ dependence of $F_{\widetilde{H}+\widetilde{G}_{2}}$ and $\widetilde{H}+\widetilde{G}_{2}$ (left), as well as $F_{\widetilde{E}+\widetilde{G}_{1}}$ and $\widetilde{E}+\widetilde{G}_{1}$ (right) at $-t=0.69 \mathrm{GeV}^{2}$ and $P_{3}=1.25 \mathrm{GeV}$. Results are given in the $\overline{\mathrm{MS}}$ scheme at a scale of 2 GeV .

FIG. 11. $z_{\max }$ dependence of $F_{\widetilde{G}_{4}}$ and \widetilde{G}_{4} at $-t=0.69 \mathrm{GeV}^{2}$ and $P_{3}=1.25 \mathrm{GeV}$. Results are given in $\overline{\mathrm{MS}}$ scheme at a scale of 2 GeV .

Extension to twist-3 tensor GPDs

Extension to twist-3 tensor GPDs

Extension to twist-3 tensor GPDs

Parametrization [Meissner et al., JHEP 08 (2009) 056]

$$
F^{\left[\sigma^{+-} \gamma_{5}\right]}=\bar{u}\left(p^{\prime}\right)\left(\gamma^{+} \gamma_{5} \widetilde{H}_{2}^{\prime}+\frac{P^{+} \gamma_{5}}{M} \widetilde{E}_{2}^{\prime}\right) u(p)
$$

[^0]: Shohini Bhattacharya $\varrho^{1,{ }^{1, *}}$ Krzysztof Cichy, ${ }^{2}$ Martha Constantinou \oplus, ${ }^{3, \dagger}$ Jack Dodson, ${ }^{3}$ Xiang Gao, ${ }^{4}$ Andreas Metz, ${ }^{3}$
 Swagato Mukherjee \oplus, ${ }^{1}$ Aurora Scapellato, ${ }^{3}$ Fernanda Steffens, and Yong Zhao ${ }^{4}$

