Results on proton GPDs from lattice QCD

Martha Constantinou

Temple University

25TH INTERNATIONAL SPIN PHYSICS SYMPOSIUM

September 24 – 29, 2023 Durham Convention Center Durham, NC, USA

September 26, 2023

Recent results

PHYSICAL REVIEW LETTERS 125, 262001 (2020)

Unpolarized and Helicity Generalized Parton Distributions of the Proton within Lattice QCD

Constantia Alexandrou,^{1,2} Krzysztof Cichy,³ Martha Constantinou⁰,⁴ Kyriakos Hadjiyiannakou,¹ Karl Jansen,⁵ Aurora Scapellato,³ and Fernanda Steffens⁶

PHYSICAL REVIEW D 105, 034501 (2022)

Transversity GPDs of the proton from lattice QCD

Constantia Alexandrou,^{1,2} Krzysztof Cichy,³ Martha Constantinou^{,4} Kyriakos Hadjiyiannakou,^{1,2} Karl Jansen,⁵ Aurora Scapellato,⁴ and Fernanda Steffens⁶

Twist-2 GPDs: "traditional" calculations

PHYSICAL REVIEW D 108, 054501 (2023)

★ Twist-3 GPDs

Chiral-even axial twist-3 GPDs of the proton from lattice QCD

Shohini Bhattacharya[®],^{1,2} Krzysztof Cichy,³ Martha Constantinou[®],¹ Jack Dodson,¹ Andreas Metz[®],¹ Aurora Scapellato,¹ and Fernanda Steffens⁴

Recent results

PHYSICAL REVIEW LETTERS 125, 262001 (2020)

Unpolarized and Helicity Generalized Parton Distributions of the Proton within Lattice QCD

Constantia Alexandrou,^{1,2} Krzysztof Cichy,³ Martha Constantinou⁰,⁴ Kyriakos Hadjiyiannakou,¹ Karl Jansen,⁵ Aurora Scapellato,³ and Fernanda Steffens⁶

PHYSICAL REVIEW D 105, 034501 (2022)

Transversity GPDs of the proton from lattice QCD

Constantia Alexandrou,^{1,2} Krzysztof Cichy,³ Martha Constantinou^{,4} Kyriakos Hadjiyiannakou,^{1,2} Karl Jansen,⁵ Aurora Scapellato,⁴ and Fernanda Steffens⁶

Twist-2 GPDs: "traditional" calculations

PHYSICAL REVIEW D 108, 054501 (2023)

★ Twist-3 GPDs

K. Cichy, Wed@llam

Chiral-even axial twist-3 GPDs of the proton from lattice QCD

Shohini Bhattacharya[®],^{1,2} Krzysztof Cichy,³ Martha Constantinou[®],¹ Jack Dodson,¹ Andreas Metz[®],¹ Aurora Scapellato,¹ and Fernanda Steffens⁴

PHYSICAL REVIEW D 106, 114512 (2022)

Generalized parton distributions from lattice QCD with asymmetric momentum transfer: Unpolarized guarks

+ Joshua Miller

Shohini Bhattacharya[®],^{1,*} Krzysztof Cichy,² Martha Constantinou[®],^{3,†} Jack Dodson,³ Xiang Gao,⁴ Andreas Metz,³ Swagato Mukherjee[®],¹ Aurora Scapellato,³ Fernanda Steffens,³ and Yong Zhao⁴

Twist-2 GPDs: new approach

Motivation for GPDs studies

1_{mom} + 2_{coord} tomographic images of quark distribution in nucleon at fixed longitudinal momentum

3-D image from FT of the longitudinal mom. transfer

- - ★ GPDs are not well-constrained experimentally:
 - x-dependence extraction is not direct. DVCS amplitude: $\mathscr{H} = \int_{-\infty}^{+\infty} \frac{H(x,\xi,t)}{x-\xi+i\epsilon} dx$

(SDHEP [J. Qiu et al, arXiv:2205.07846] gives access to x)

- independent measurements to disentangle GPDs
- GPDs phenomenology more complicated than PDFs (multi-dimensionality)
- and more challenges ...

Essential to complement the knowledge on GPD from lattice QCD

Hadron structure at core of nuclear physics

Hadron structure at core of nuclear physics

Office of

U.S. DEPARTMENT OF

Award Number: DE-SC0023646 ★ Lattice data may be incorporated in global analysis of experimental data and may influence parametrization of *t* and ξ dependence

Hadron structure at core of nuclear physics

Office of

U.S. DEPARTMENT OF

Award Number: DE-SC0023646 ★ Lattice data may be incorporated in global analysis of experimental data and may influence parametrization of t and ξ dependence

Advances of lattice QCD are timely

Accessing information on GPDs

Accessing information on GPDs

Accessing information on GPDs

Matrix elements of non-local operators (quasi-GPDs, pseudo-GPDs, ...)

 $\langle N(P_f) | \bar{\Psi}(z) \Gamma \mathcal{W}(z,0) \Psi(0) | N(P_i) \rangle_{\mu}$

Wilson line

$$\langle N(P')|O_V^{\mu}(x)|N(P)\rangle = \overline{U}(P') \left\{ \gamma^{\mu}H(x,\xi,t) + \frac{i\sigma^{\mu\nu}\Delta_{\nu}}{2m_N}E(x,\xi,t) \right\} U(P) + \text{ht},$$

$$\langle N(P')|O_A^{\mu}(x)|N(P)\rangle = \overline{U}(P') \left\{ \gamma^{\mu}\gamma_5 \widetilde{H}(x,\xi,t) + \frac{\gamma_5\Delta^{\mu}}{2m_N}\widetilde{E}(x,\xi,t) \right\} U(P) + \text{ht},$$

$$\langle N(P')|O_T^{\mu\nu}(x)|N(P)\rangle = \overline{U}(P') \left\{ i\sigma^{\mu\nu}H_T(x,\xi,t) + \frac{\gamma^{[\mu}\Delta^{\nu]}}{2m_N}E_T(x,\xi,t) + \frac{\overline{P}^{[\mu}\Delta^{\nu]}}{m_N^2}\widetilde{H}_T(x,\xi,t) + \frac{\gamma^{[\mu}\overline{P}^{\nu]}}{m_N}\widetilde{E}_T(x,\xi,t) \right\} U(P) + \text{ht},$$

Through non-local matrix elements of fast-moving hadrons

Access of PDFs/GPDs on a Euclidean Lattice

[X. Ji, Phys. Rev. Lett. 110 (2013) 262002]

Matrix elements of nonlocal (equal-time) operators with fast moving hadrons

$$\tilde{q}_{\Gamma}^{\text{GPD}}(x, t, \xi, P_3, \mu) = \int \frac{dz}{4\pi} e^{-ixP_3 z} \langle N(P_f) | \bar{\Psi}(z) \Gamma \mathcal{W}(z, 0) \Psi(0) | N(P_i) \rangle_{\mu}$$

$$\Delta = P_f - P_i$$

$$t = \Delta^2 = -Q^2$$

$$\xi = \frac{Q_3}{2P_3}$$

Access of PDFs/GPDs on a Euclidean Lattice

[X. Ji, Phys. Rev. Lett. 110 (2013) 262002]

Matrix elements of nonlocal (equal-time) operators with fast moving hadrons

Access of PDFs/GPDs on a Euclidean Lattice

[X. Ji, Phys. Rev. Lett. 110 (2013) 262002]

Matrix elements of nonlocal (equal-time) operators with fast moving hadrons

Traditional calculations of GPDs

PHYSICAL REVIEW LETTERS 125, 262001 (2020)

Unpolarized and Helicity Generalized Parton Distributions of the Proton within Lattice QCD

Constantia Alexandrou,^{1,2} Krzysztof Cichy,³ Martha Constantinou[®],⁴ Kyriakos Hadjiyiannakou,¹ Karl Jansen,⁵ Aurora Scapellato,³ and Fernanda Steffens⁶

PHYSICAL REVIEW D 105, 034501 (2022)

Transversity GPDs of the proton from lattice QCD

Constantia Alexandrou,^{1,2} Krzysztof Cichy,³ Martha Constantinou[®],⁴ Kyriakos Hadjiyiannakou,^{1,2} Karl Jansen,⁵ Aurora Scapellato,⁴ and Fernanda Steffens⁶

Traditional calculations of GPDs

PHYSICAL REVIEW LETTERS 125, 262001 (2020)

Unpolarized and Helicity Generalized Parton Distributions of the Proton within Lattice QCD

Constantia Alexandrou,^{1,2} Krzysztof Cichy,³ Martha Constantinou[®],⁴ Kyriakos Hadjiyiannakou,¹ Karl Jansen,⁵ Aurora Scapellato,³ and Fernanda Steffens⁶

PHYSICAL REVIEW D 105, 034501 (2022)

Transversity GPDs of the proton from lattice QCD

Constantia Alexandrou,^{1,2} Krzysztof Cichy,³ Martha Constantinou[®],⁴ Kyriakos Hadjiyiannakou,^{1,2} Karl Jansen,⁵ Aurora Scapellato,⁴ and Fernanda Steffens⁶

$$F^{[\gamma^0]}(x,\Delta;\lambda,\lambda';P^3) = \frac{1}{2P^0} \bar{u}(p',\lambda') \left[\gamma^0 H_{Q(0)}(x,\xi,t;P^3) + \frac{i\sigma^{0\mu}\Delta_{\mu}}{2M} E_{Q(0)}(x,\xi,t;P^3) \right] u(p,\lambda)$$

\star Nf=2+1+1 twisted mass fermions with a clover term;

[Extended Twisted Mass Collaboration, Phys. Rev. D 104, 074515 (2021), arXiv:2104.13408]

Name	β	N_{f}	$L^3 \times T$	$a~[{ m fm}]$	M_{π}	$m_{\pi}L$
cA211.32	1.726	u,d,s,c	$32^3 \times 64$	0.093	260 MeV	4

★ Calculation of connected diagram

$P_3[{ m GeV}]$	$ec{q}[rac{2\pi}{L}]$	$-t[{\rm GeV}^2]$	N_{ME}	$N_{ m confs}$	$N_{ m src}$	$N_{ m total}$
± 0.83	(0,0,0)	0	2	194	8	3104
± 1.25	(0,0,0)	0	2	731	16	23392
± 1.67	(0,0,0)	0	2	1644	64	210432
± 0.83	$(\pm 2,0,0)$	0.69	8	67	8	4288
± 1.25	$(\pm 2,0,0)$	0.69	8	249	8	15936
± 1.67	$(\pm 2,0,0)$	0.69	8	294	32	75264
± 1.25	$(\pm 2,\pm 2,0)$	1.38	16	224	8	28672
± 1.25	$(\pm 4, 0, 0)$	2.76	8	329	32	84224

\star Nf=2+1+1 twisted mass fermions with a clover term;

[Extended Twisted Mass Collaboration, Phys. Rev. D 104, 074515 (2021), arXiv:2104.13408]

Name	β	N_{f}	$L^3 \times T$	$a~[{ m fm}]$	M_{π}	$m_{\pi}L$
cA211.32	1.726	u,d,s,c	$32^3 \times 64$	0.093	$260 { m MeV}$	4

★ Calculation of connected diagram

$P_3[{ m GeV}]$	$ec{q}[rac{2\pi}{L}]$	$-t[{ m GeV}^2]$	$N_{ m ME}$	$N_{ m confs}$	$N_{ m src}$	$N_{ m total}$
± 0.83	(0,0,0)	0	2	194	8	3104
± 1.25	(0,0,0)	0	2	731	16	23392
± 1.67	(0,0,0)	0	2	1644	64	210432
± 0.83	$(\pm 2,0,0)$	0.69	8	67	8	4288
± 1.25	$(\pm 2,0,0)$	0.69	8	249	8	15936
± 1.67	$(\pm 2,0,0)$	0.69	8	294	32	75264
± 1.25	$(\pm 2,\pm 2,0)$	1.38	16	224	8	28672
± 1.25	$(\pm 4, 0, 0)$	2.76	8	329	32	84224

Symmetric frame computationally

expensive

★ Nf=2+1+1 twisted mass fermions with a clover term;

[Extended Twisted Mass Collaboration, Phys. Rev. D 104, 074515 (2021), arXiv:2104.13408]

Name	β	N_{f}	$L^3 \times T$	$a~[{ m fm}]$	M_{π}	$m_{\pi}L$
cA211.32	1.726	u,d,s,c	$32^3 \times 64$	0.093	$260 { m MeV}$	4

★ Calculation of connected diagram

$P_3[{ m GeV}]$	$ec{q}[rac{2\pi}{L}]$	$-t[{\rm GeV}^2]$	$N_{ m ME}$	$N_{ m confs}$	$N_{ m src}$	$N_{ m total}$
± 0.83	(0,0,0)	0	2	194	8	3104
± 1.25	(0,0,0)	0	2	731	16	23392
± 1.67	(0,0,0)	0	2	1644	64	210432
± 0.83	$(\pm 2,0,0)$	0.69	8	67	8	4288
± 1.25	$(\pm 2,0,0)$	0.69	8	249	8	15936
± 1.67	$(\pm 2,0,0)$	0.69	8	294	32	75264
± 1.25	$(\pm 2,\pm 2,0)$	1.38	16	224	8	28672
± 1.25	$(\pm 4, 0, 0)$	2.76	8	329	32	84224

Symmetric frame computationally expensive

utended Twister

Suppressing gauge noise and reliably

extracting the ground state comes at a

significant computational cost

[C. Alexandrou et al., PRL 125, 262001 (2020)]

[C. Alexandrou et al., PRL 125, 262001 (2020)]

- **ERBL/DGLAP:** Qualitative differences
- $\star \ \xi = \pm x \text{ inaccessible}$ (formalism breaks down)
- ★ $x \rightarrow 1$ region: qualitatively comparison with power counting analysis [F. Yuan, PRD69 (2004) 051501, hep-ph/0311288]

[C. Alexandrou et al., PRL 125, 262001 (2020)]

- **ERBL/DGLAP:** Qualitative differences
- $\star \ \xi = \pm x \text{ inaccessible}$ (formalism breaks down)
- ★ $x \rightarrow 1$ region: qualitatively comparison with power counting analysis [F. Yuan, PRD69 (2004) 051501, hep-ph/0311288]
 - *t*-dependence vanishes at large-*x*
 - H(x,0) asymptotically equal to $f_1(x)$

[C. Alexandrou et al., PRL 125, 262001 (2020)]

- **ERBL/DGLAP:** Qualitative differences
- $\star \ \xi = \pm x \text{ inaccessible}$ (formalism breaks down)
- ★ $x \rightarrow 1$ region: qualitatively comparison with power counting analysis [F. Yuan, PRD69 (2004) 051501, hep-ph/0311288]
 - *t*-dependence vanishes at large-*x*
 - H(x,0) asymptotically equal to $f_1(x)$

[C. Alexandrou et al., PRL 125, 262001 (2020)]

- **ERBL/DGLAP:** Qualitative differences
- $\star \ \xi = \pm x \text{ inaccessible}$ (formalism breaks down)
- ★ $x \rightarrow 1$ region: qualitatively comparison with power counting analysis [F. Yuan, PRD69 (2004) 051501, hep-ph/0311288]
 - *t*-dependence vanishes at large-*x*

•
$$H(x,0)$$
 asymptotically equal to $f_1(x)$

Exploration of twist-3 GPDs

PHYSICAL REVIEW D 108, 054501 (2023)

Chiral-even axial twist-3 GPDs of the proton from lattice QCD

Shohini Bhattacharya^(D),^{1,2} Krzysztof Cichy,³ Martha Constantinou^(D),¹ Jack Dodson,¹ Andreas Metz^(D),¹ Aurora Scapellato,¹ and Fernanda Steffens⁴ K. Cichy, Wed@llam

Exploration of twist-3 GPDs

PHYSICAL REVIEW D 108, 054501 (2023)

Chiral-even axial twist-3 GPDs of the proton from lattice QCD

Shohini Bhattacharya[®],^{1,2} Krzysztof Cichy,³ Martha Constantinou[®],¹ Jack Dodson,¹ Andreas Metz[®],¹ Aurora Scapellato,¹ and Fernanda Steffens⁴

[F. Aslan et a., Phys. Rev. D 98, 014038 (2018), arXiv:1802.06243]

Exploration of twist-3 GPDs

PHYSICAL REVIEW D 108, 054501 (2023)

Chiral-even axial twist-3 GPDs of the proton from lattice QCD

Shohini Bhattacharya[®],^{1,2} Krzysztof Cichy,³ Martha Constantinou[®],¹ Jack Dodson,¹ Andreas Metz[®],¹ Aurora Scapellato,¹ and Fernanda Steffens⁴

K. Cichy, Wed@llam

$$F^{[\gamma^{\mu}\gamma_{5}]}(x,\Delta;P^{3}) = \frac{1}{2P^{3}}\bar{u}(p_{f},\lambda') \left[P^{\mu}\frac{\gamma^{3}\gamma_{5}}{P^{0}}F_{\tilde{H}}(x,\xi,t;P^{3}) + P^{\mu}\frac{\Delta^{3}\gamma_{5}}{2mP^{0}}F_{\tilde{E}}(x,\xi,t;P^{3}) + \Delta_{\perp}^{\mu}\frac{\gamma_{5}}{2m}F_{\tilde{E}+\tilde{G}_{1}}(x,\xi,t;P^{3}) + \gamma_{\perp}^{\mu}\gamma_{5}F_{\tilde{H}+\tilde{G}_{2}}(x,\xi,t;P^{3}) + \Delta_{\perp}^{\mu}\frac{\gamma^{3}\gamma_{5}}{P^{3}}F_{\tilde{G}_{3}}(x,\xi,t;P^{3}) + i\varepsilon_{\perp}^{\mu\nu}\Delta_{\nu}\frac{\gamma^{3}}{P^{3}}F_{\tilde{G}_{4}}(x,\xi,t;P^{3}) \right] u(p_{i},\lambda)$$

$$F^{(5,-r=0.69\,\text{GeV}^{2}}_{-r=0.69\,\text{GeV}^{2}}$$

$$-\frac{1}{r=0.69\,\text{GeV}^{2}}_{-r=0.69\,\text{GeV}^{2}}$$

$$-\frac{1}{r=0.69\,\text{GeV}^{2}}_{X}$$

$$F^{(5,-r=0.69\,\text{GeV}^{2}}_{-r=0.69\,\text{GeV}^{2}}$$

$$-\frac{1}{r=0.69\,\text{GeV}^{2}}_{X}$$

$$-\frac{1}{r=0.69\,\text{GeV}$$

Ĥ,

6

4

2

0

-2

-1.0

New parametrization of GPDs

PHYSICAL REVIEW D 106, 114512 (2022)

Generalized parton distributions from lattice QCD with asymmetric momentum transfer: Unpolarized quarks

Shohini Bhattacharya^(D),^{1,*} Krzysztof Cichy,² Martha Constantinou^(D),^{3,†} Jack Dodson,³ Xiang Gao,⁴ Andreas Metz,³ Swagato Mukherjee^(D),¹ Aurora Scapellato,³ Fernanda Steffens,⁵ and Yong Zhao⁴

Recent addition: Josh Miller (Temple University)

For latest updates see Miller's Lattice Conference 2023 talk here

 $\star \gamma^+$ inspired parametrization is prohibitively expensive

$$F^{[\gamma^0]}(x,\Delta;\lambda,\lambda';P^3) = \frac{1}{2P^0}\bar{u}(p',\lambda') \left[\gamma^0 H_{Q_1}(\lambda') + \frac{i\sigma^{0\mu}\Delta_{\mu}}{2M} E_{Q(0)}(x,\xi,t;P^3)\right] u(p,\lambda)$$

 $\star \gamma^+$ inspired parametrization is prohibitively expensive

$$F^{[\gamma^0]}(x,\Delta;\lambda,\lambda';P^3) = \frac{1}{2P^0}\bar{u}(p',\lambda') \left[\gamma^0 H_{Q'} (\lambda') \left[\gamma^0 H_{Q'} (\lambda') + \frac{i\sigma^{0\mu}\Delta_{\mu}}{2M} E_{Q(0)}(x,\xi,t;P^3)\right] u(p,\lambda) + \frac{i\sigma^{0\mu}\Delta_{\mu}}{2M} E_{Q(0)}(x,\xi,t;P^3) \right] u(p,\lambda)$$

$$F^{\mu}_{\lambda,\lambda'} = \bar{u}(p',\lambda') \left[\frac{P^{\mu}}{M} A_1 + z^{\mu} M A_2 + \frac{\Delta^{\mu}}{M} A_3 + i\sigma^{\mu z} M A_4 + \frac{i\sigma^{\mu \Delta}}{M} A_5 + \frac{P^{\mu} i\sigma^{z\Delta}}{M} A_6 + \frac{z^{\mu} i\sigma^{z\Delta}}{M} A_7 + \frac{\Delta^{\mu} i\sigma^{z\Delta}}{M} A_8 \right] u(p,\lambda)$$

 A_i : - Lorentz invariant amplitudes - have definite symmetries

 $\star \gamma^+$ inspired parametrization is prohibitively expensive

$$F^{[\gamma^0]}(x,\Delta;\lambda,\lambda';P^3) = \frac{1}{2P^0} \bar{u}(p',\lambda') \left[\gamma^0 H_{Q_1} \left(\frac{\lambda'}{2M} \right) + \frac{i\sigma^{0\mu}\Delta_{\mu}}{2M} E_{Q(0)}(x,\xi,t;P^3) \right] u(p,\lambda)$$

$$F^{\mu}_{\lambda,\lambda'} = \bar{u}(p',\lambda') \left[\frac{P^{\mu}}{M} A_1 + z^{\mu} M A_2 + \frac{\Delta^{\mu}}{M} A_3 + i\sigma^{\mu z} M A_4 + \frac{i\sigma^{\mu \Delta}}{M} A_5 + \frac{P^{\mu} i\sigma^{z\Delta}}{M} A_6 + \frac{z^{\mu} i\sigma^{z\Delta}}{M} A_7 + \frac{\Delta^{\mu} i\sigma^{z\Delta}}{M} A_8 \right] u(p,\lambda)$$

 A_i : - Lorentz invariant amplitudes - have definite symmetries

★ Two decompositions can be related

$${\cal H}^s_0(A^s_i;z) = A_1 + rac{z(\Delta_1^2+\Delta_2^2)}{2P_3}A_6\,,$$

$$\mathcal{E}_0^s(A_i^s;z) = -A_1 - \frac{m^2 z}{P_3} A_4 + 2A_5 - \frac{z \left(4E^2 + \Delta_1^2 + \Delta_2^2\right)}{2P_3} A_6$$

 $\star \gamma^+$ inspired parametrization is prohibitively expensive

$$F^{[\gamma^0]}(x,\Delta;\lambda,\lambda';P^3) = \frac{1}{2P^0} \bar{u}(p',\lambda') \left[\gamma^0 H_{Q_1} \left(\frac{\lambda'}{2M} \right) + \frac{i\sigma^{0\mu}\Delta_{\mu}}{2M} E_{Q(0)}(x,\xi,t;P^3) \right] u(p,\lambda)$$

$$F^{\mu}_{\lambda,\lambda'} = \bar{u}(p',\lambda') \left[\frac{P^{\mu}}{M} A_1 + z^{\mu} M A_2 + \frac{\Delta^{\mu}}{M} A_3 + i\sigma^{\mu z} M A_4 + \frac{i\sigma^{\mu \Delta}}{M} A_5 + \frac{P^{\mu} i\sigma^{z\Delta}}{M} A_6 + \frac{z^{\mu} i\sigma^{z\Delta}}{M} A_7 + \frac{\Delta^{\mu} i\sigma^{z\Delta}}{M} A_8 \right] u(p,\lambda)$$

 A_i : - Lorentz invariant amplitudes - have definite symmetries

 \star Two decompositions can be related

$$\mathcal{H}_0^s(A_i^s;z) = A_1 + rac{z(\Delta_1^2 + \Delta_2^2)}{2P_3}A_6\,,$$

$$\mathcal{E}_0^s(A_i^s;z) = -A_1 - \frac{m^2 z}{P_3} A_4 + 2A_5 - \frac{z \left(4E^2 + \Delta_1^2 + \Delta_2^2\right)}{2P_3} A_6$$

Light-cone GPDs using lattice correlators in non-symmetric frames

 $F^{\mu}_{\lambda,\lambda'} = \bar{u}(p',\lambda') \left[\frac{P^{\mu}}{M} A_1 + z^{\mu} M A_2 + \frac{\Delta^{\mu}}{M} A_3 + i\sigma^{\mu z} M A_4 + \frac{i\sigma^{\mu \Delta}}{M} A_5 + \frac{P^{\mu} i\sigma^{z\Delta}}{M} A_6 + \frac{z^{\mu} i\sigma^{z\Delta}}{M} A_7 + \frac{\Delta^{\mu} i\sigma^{z\Delta}}{M} A_8 \right] u(p,\lambda)$

Goals

- (A) A_i are to the standard H, E GPDs $\mathcal{H}_0^s(A_i^s; z) = A_1 + \frac{z(\Delta_1^2 + \Delta_2^2)}{2P_3}A_6$
- (B) Extraction of standard GPDs using A_i obtained from any frame
- (C) quasi-GPDs may be redefined (Lorentz covariant) inspired by light-cone:

 $F^{\mu}_{\lambda,\lambda'} = \bar{u}(p',\lambda') \left[\frac{P^{\mu}}{M} A_1 + z^{\mu} M A_2 + \frac{\Delta^{\mu}}{M} A_3 + i\sigma^{\mu z} M A_4 + \frac{i\sigma^{\mu \Delta}}{M} A_5 + \frac{P^{\mu} i\sigma^{z\Delta}}{M} A_6 + \frac{z^{\mu} i\sigma^{z\Delta}}{M} A_7 + \frac{\Delta^{\mu} i\sigma^{z\Delta}}{M} A_8 \right] u(p,\lambda)$

Goals

- (A) A_i are to the standard H, E GPDs $\mathcal{H}_0^s(A_i^s; z) = A_1 + \frac{z(\Delta_1^2 + \Delta_2^2)}{2P_3}A_6$
- (B) Extraction of standard GPDs using A_i obtained from any frame
- (C) quasi-GPDs may be redefined (Lorentz covariant) inspired by light-cone:

$$H(z \cdot P, z \cdot \Delta, t = \Delta^2, z^2) = A_1 + \frac{\Delta_{s/a} \cdot z}{P_{avg,s/a} \cdot z} A_3$$

$$E(z \cdot P, z \cdot \Delta, t = \Delta^2, z^2) = -A_1 - \frac{\Delta_{s/a} \cdot z}{P_{avg,s/a} \cdot z} A_3 + 2A_5 + 2P_{avg,s/a} \cdot zA_6 + 2\Delta_{s/a} \cdot zA_8$$

$$F^{\mu}_{\lambda,\lambda'} = \bar{u}(p',\lambda') \left[\frac{P^{\mu}}{M} A_1 + z^{\mu} M A_2 + \frac{\Delta^{\mu}}{M} A_3 + i\sigma^{\mu z} M A_4 + \frac{i\sigma^{\mu \Delta}}{M} A_5 + \frac{P^{\mu} i\sigma^{z\Delta}}{M} A_6 + \frac{z^{\mu} i\sigma^{z\Delta}}{M} A_7 + \frac{\Delta^{\mu} i\sigma^{z\Delta}}{M} A_8 \right] u(p,\lambda)$$

- Goals
- (A) A_i are to the standard H, E GPDs $\mathcal{H}_0^s(A_i^s; z) = A_1 + \frac{z(\Delta_1^2 + \Delta_2^2)}{2P_3}A_6$
- (B) Extraction of standard GPDs using A_i obtained from any frame
- (C) quasi-GPDs may be redefined (Lorentz covariant) inspired by light-cone:

$$H(z \cdot P, z \cdot \Delta, t = \Delta^2, z^2) = A_1 + \frac{\Delta_{s/a} \cdot z}{P_{avg,s/a} \cdot z} A_3$$

$$E(z \cdot P, z \cdot \Delta, t = \Delta^2, z^2) = -A_1 - \frac{\Delta_{s/a} \cdot z}{P_{avg,s/a} \cdot z} A_3 + 2A_5 + 2P_{avg,s/a} \cdot zA_6 + 2\Delta_{s/a} \cdot zA_8$$

- (A) Proof-of-concept calculation ($\xi = 0$):
 - symmetric frame: $\vec{p}_f^s = \vec{P} + \frac{\vec{Q}}{2}, \quad \vec{p}_i^s = \vec{P} \frac{\vec{Q}}{2} \quad -t^s = \vec{Q}^2 = 0.69 \, GeV^2$
 - asymmetric frame: $\vec{p}_f^a = \vec{P}$, $\vec{p}_i^a = \vec{P} \vec{Q}$ $t^a = -\vec{Q}^2 + (E_f E_i)^2 = 0.65 \, GeV^2$

★ Nf=2+1+1 twisted mass fermions with a clover term;

[Extended Twisted Mass Collaboration, Phys. Rev. D 104, 074515 (2021), arXiv:2104.13408]

Name	eta	N_{f}	$L^3 \times T$	$a~[{ m fm}]$	M_{π}	$m_{\pi}L$
cA211.32	1.726	u,d,s,c	$32^3 \times 64$	0.093	$260 { m MeV}$	4

frame	P_3 [GeV]	$\mathbf{\Delta}\left[rac{2\pi}{L} ight]$	$-t \; [{\rm GeV}^2]$	ξ	$N_{\rm ME}$	$N_{ m confs}$	$N_{ m src}$	$N_{ m tot}$
N/A	± 1.25	$(0,\!0,\!0)$	0	0	2	731	16	23392
symm	± 0.83	$(\pm 2,0,0), (0,\pm 2,0)$	0.69	0	8	67	8	4288
symm	± 1.25	$(\pm 2,0,0), (0,\pm 2,0)$	0.69	0	8	249	8	15936
symm	± 1.67	$(\pm 2,0,0), (0,\pm 2,0)$	0.69	0	8	294	32	75264
symm	± 1.25	$(\pm 2,\pm 2,0)$	1.39	0	16	224	8	28672
symm	± 1.25	$(\pm 4,0,0), (0,\pm 4,0)$	2.76	0	8	329	32	84224
asymm	± 1.25	$(\pm 1,0,0), (0,\pm 1,0)$	0.17	0	8	429	8	27456
asymm	± 1.25	$(\pm 1,\pm 1,0)$	0.33	0	16	194	8	12416
asymm	± 1.25	$(\pm 2,0,0), (0,\pm 2,0)$	0.64	0	8	429	8	27456
asymm	± 1.25	$(\pm 1,\pm 2,0), (\pm 2,\pm 1,0)$	0.80	0	16	194	8	12416
asymm	± 1.25	$(\pm 2,\pm 2,0)$	1.16	0	16	194	8	24832
asymm	± 1.25	$(\pm 3,0,0), (0,\pm 3,0)$	1.37	0	8	429	8	27456
asymm	± 1.25	$(\pm 1,\pm 3,0), (\pm 3,\pm 1,0)$	1.50	0	16	194	8	12416
asymm	± 1.25	$(\pm 4,0,0), (0,\pm 4,0)$	2.26	0	8	429	8	27456

\star Eight independent matrix elements needed to disentangle the A_i

asymmetric frame

 \star Eight independent matrix elements needed to disentangle the A_i

asymmetric frame

 \star Eight independent matrix elements needed to disentangle the A_i

 \star Eight independent matrix elements needed to disentangle the A_i

Eight independent matrix elements needed to disentangle the A_i

Comparison of A_i in two frames

Unpolarized GPDs

- ★ A_1, A_5 dominant contributions
- **★** Full agreement in two frames for both Re and Im parts of A_1, A_5
- ★ A_3, A_4, A_8 zero at $\xi = 0$
- ★ A_2, A_6, A_7 suppressed (at least for this kinematic setup and $\xi = 0$)

 $egin{array}{c} A_1^s \ A_1^a \ A_1^a \end{array}$

 A_5^s

 A_5^a

Comparison of A_i in two frames

Unpolarized GPDs

 $egin{array}{c} A_1^s \ A_1^a \ A_5^s \ A_5^a \ A_5^a \end{array}$

φ

⊳

H, E light-cone GPDs

- quasi-GPDs transformed to momentum space
- ★ Matching formalism to 1 loop accuracy level
- +/-x correspond to quark and anti-quark region

★ Anti-quark region susceptible to systematic uncertainties.

★ Similar analysis for helicity GPDs

How to lattice QCD data fit into the overall effort for hadron tomography

How to lattice QCD data fit into the overall effort for hadron tomography

★ Lattice data may be incorporated in global analysis of experimental data and may influence parametrization of t and ξ dependence

How to lattice QCD data fit into the overall effort for hadron tomography

★ Lattice data may be incorporated in global analysis of experimental data and may influence parametrization of t and ξ dependence

- 1. Theoretical studies of high-momentum transfer processes using perturbative QCD methods and study of GPDs properties
- 2. Lattice QCD calculations of GPDs and related structures
- 3. Global analysis of GPDs based on experimental data using modern data analysis techniques for inference and uncertainty quantification

Synergies: constraints & predictive power of lattice QCD

Summary

- ★ Lattice QCD data on GPDs will play an important role in the pre-EIC era and can complement experimental efforts of JLab@12GeV
- New proposal for Lorentz invariant decomposition has great advantages:
 significant reduction of computational cost
 - access to a broad range of t and ξ
- ★ Future calculations have the potential to transform the field of GPDs
- Synergy with phenomenology is an exciting prospect!
 QGT Collaboration will be instrumental in such effort

Summary

- ★ Lattice QCD data on GPDs will play an important role in the pre-EIC era and can complement experimental efforts of JLab@12GeV
- New proposal for Lorentz invariant decomposition has great advantages: * - significant reduction of computational cost
 - access to a broad range of t and ξ
- Future calculations have the potential to transform the field of GPDs X
- Synergy with phenomenology is an exciting prospect! $\mathbf{\star}$ **QGT** Collaboration will be instrumental in such effort

U.S. DEPARTMENT OF ENERGY Office O Science **QUARK-GLUON** TOMOGRAPHY **COLLABORATION**

Award Number: DE-SC0023646

Thank you

DOE Early Career Award (NP) Grant No. DE-SC0020405

Miscellaneous

Consistency checks

1 ★	Norms satisfied	d encoura	ging results		
GPD	$P_3 = 0.83 \; [{ m GeV}]$	$P_3 = 1.25 \; [{ m GeV}]$	$P_3=1.67~[{\rm GeV}]$	$P_3 = 1.25 \; [{ m GeV}]$	$P_3 = 1.25 \; [\text{GeV}]$
	$-t = 0.69 \; [\text{GeV}^2]$	$-t=0.69~[{\rm GeV^2}]$	$-t = 0.69 \; [\text{GeV}^2]$	$-t = 1.38 \; [\text{GeV}^2]$	$-t = 2.76 \; [\text{GeV}^2]$
\widetilde{H}	0.741(21)	0.712(27)	0.802(48)	0.499(21)	0.281(18)
$\widetilde{H} + \widetilde{G}_2$	0.719(25)	0.750(33)	0.788(70)	0.511(36)	0.336(34)

Consistency checks

★ I	Norms satisfied	d encoura	ging results		
GPD	$P_3 = 0.83 \; [{ m GeV}]$	$P_3 = 1.25 \; [{ m GeV}]$	$P_3 = 1.67 \; [{ m GeV}]$	$P_3 = 1.25 \; [{ m GeV}]$	$P_3 = 1.25 \; [{ m GeV}]$
	$-t = 0.69 \; [\text{GeV}^2]$	$-t=0.69~[{\rm GeV^2}]$	$-t = 0.69 \; [\text{GeV}^2]$	$-t=1.38~[{\rm GeV^2}]$	$-t=2.76~[{\rm GeV}^2]$
\widetilde{H}	0.741(21)	0.712(27)	0.802(48)	0.499(21)	0.281(18)
$\widetilde{H} + \widetilde{G}_2$	0.719(25)	0.750(33)	0.788(70)	0.511(36)	0.336(34)

★ Alternative kinematic setup can be utilized

[Fernanda Steffens]

$$F_{\widetilde{H}+\widetilde{G}_{2}} = \frac{1}{2m^{2}} \frac{z_{3}P_{0}^{2}(\Delta_{\perp})^{2}}{P_{3}} + A_{2} \qquad F_{\widetilde{G}_{3}} = \frac{1}{2m^{2}} \left(z_{3}P_{0}^{2}\Delta_{3} - z_{3}P_{3}P_{0}\Delta_{0} \right) A_{1} - z_{3}P_{3}A_{8}$$

$$F_{\widetilde{E}+\widetilde{G}_{1}} = \frac{2z_{3}P_{0}^{2}}{P_{3}} + 2A_{5} \qquad F_{\widetilde{G}_{3}} = \frac{1}{m^{2}} \left(z_{3}P_{0}P_{3}^{2} - z_{3}P_{0}^{3} \right) A_{1}$$

FIG. 10. z_{max} dependence of $F_{\tilde{H}+\tilde{G}_2}$ and $\tilde{H}+\tilde{G}_2$ (left), as well as $F_{\tilde{E}+\tilde{G}_1}$ and $\tilde{E}+\tilde{G}_1$ (right) at $-t = 0.69 \text{ GeV}^2$ and $P_3 = 1.25 \text{ GeV}$. Results are given in the $\overline{\text{MS}}$ scheme at a scale of 2 GeV.

FIG. 11. z_{max} dependence of $F_{\tilde{G}_4}$ and \tilde{G}_4 at $-t = 0.69 \text{ GeV}^2$ and $P_3 = 1.25 \text{ GeV}$. Results are given in $\overline{\text{MS}}$ scheme at a scale of 2 GeV.

Extension to twist-3 tensor GPDs

Extension to twist-3 tensor GPDs

M. Constantinou, SPIN 2023

Extension to twist-3 tensor GPDs

Parametrization [Meissner et al., JHEP 08 (2009) 056]

$$F^{[\sigma^{+-}\gamma_5]} = \bar{u}(p') \left(\gamma^+\gamma_5 \,\widetilde{H}_2' + \frac{P^+\gamma_5}{M} \,\widetilde{E}_2'\right) \, u(p)$$

M. Constantinou, SPIN 2023