systematic studies of beam-normal single spin asymmetries at MAMI

Michaela Thiel on behalf of the A1 collaboration Institut für Kernphysik, Johannes Gutenberg-Universität Mainz

25th International Spin Symposium SPIN2023 September 24 to 29, 2023 Durham, USA

elastic electron scattering

high-precision experiments >>> need to go beyond Born approximation

one-photon exchange

has imaginary part

e⁻

target

Y,

e

elastic electron scattering

high-precision experiments in need to go beyond Born approximation

interference of one- and two-photon exchange causes **beam-normal single spin asymmetry A**_n

De Rújula et al., Nucl. Phys. B35, 365 (1971)

 \rightarrow allows access of imaginary part of 2γ exchange amplitude

e⁻

target

theoretical treatment of A_n

consider contributions of elastic (scales as Z) AND inelastic intermediate states (scales as A/Z)

dispersion integral over intermediate excited states

theoretical treatment of A_n

consider contributions of elastic (scales as Z) AND inelastic intermediate states (scales as A/Z)

dispersion integral over intermediate excited states

 $\begin{array}{l} \mbox{focus on very low four-momentum transfer:} \\ \mbox{leading order} \ \sim C_0 \cdot log \left(\frac{Q^2}{m^2} \right) \cdot \frac{F_{Compton} \left(Q^2 \right)}{F_{ch} (Q^2)} \end{array}$

C₀ contains energy dependence

Gorchtein and Horowitz, Phys. Rev. C77, 044606 (2008)

experimental access to A_n

elastic electron-nucleus scattering + [NEW]

experimental access to A_n

elastic electron-nucleus scattering + [NEW] e⁻ polarization: vertical

 $A_n = \frac{\sigma^{\uparrow} - \sigma^{\downarrow}}{\sigma^{\uparrow} + \sigma^{\downarrow}} \approx 10^{-6} - 10^{-5}$

experimental access to A_n

elastic electron-nucleus scattering + [NEW]

NEW e⁻ polarization: vertical

 $A_n = \frac{\sigma^{\uparrow} - \sigma^{\downarrow}}{\sigma^{\uparrow} + \sigma^{\downarrow}} \approx 10^{-6} - 10^{-5}$

improve knowledge of TPE effects + benchmark theoretical models

can cause false asymmetry in high-precision parity-violating electron scattering experiments (neutron skin, weak charge of the proton)

how it all started

the whole nuclear chart in a small band

6/16

the whole nuclear chart in a small band

MAinz MICrotron (MAMI) up to E = 1.6 GeV

resolution $\sigma_{\rm E} < 0.1 \, \text{MeV}$ reliability85% (7000 h/a)polarizationup to 80% @ 40µA

polarimetry measure vertical transverse polarization

THE TOOLS:

Mott: horizontal transverse @ source

Møller: longitudinal @ target

THE TOOLS:

- Mott: horizontal transverse @ source
- Møller: longitudinal @ target

polarimetry measure ver

THE TOOLS:

Mott: horizontal transverse @ source

Møller: longitudinal @ target

B.S. Schlimme et al., Nucl. Instrum. Meth. A 850, 54 (2017)

THE METHOD:

- **MAXIMIZE** longitudinal polarization @ target
- MAXIMIZE horizontal transverse component @ source
- MINIMIZE longitudinal and transverse component @ source and target

experimental setup

magnetic spectrometer

fused-silica Cherenkov detectors

spectrometer mode

precise positioning of detectors

(e⁻)' (e⁻)'

e

10/16

instrumental asymmetries

beam related sources:

current

energy position and angle

stabilization system needed!

instrumental asymmetries

beam related sources:

current

energy position and angle

stabilization system needed!

non-beam related sources: ground noise gate length fluctuations electrical cross talk

A. Esser et al., PRL 121, 022503 (2018)

results – A dependence

A. Esser et al., PLB 808, 135664 (2020)

Q² dependence reconstructed from differential cross section for Compton scattering

$$\frac{d\sigma}{dq^2} \approx ae^{-\mathbf{B}|q^2|}F_{ch}^2(q^2) + \sigma_{inc}$$

Q² dependence reconstructed from differential cross section for Compton scattering

$$\frac{d\sigma}{dq^2} \approx ae^{-\mathbf{B}|q^2|}F_{ch}^2(q^2) + \sigma_{inc}$$

theory suggested approximate independence of $F_{compton}(Q^2)/F_{ch}(Q^2)$ from the target nucleus due to available high-energy Compton scattering data on ¹H and ⁴He for PRL 121 (022503) 2018 and PLB 808 (135664) 2020

Q² dependence reconstructed from differential cross section for Compton scattering

$$\frac{d\sigma}{dq^2} \approx ae^{-\mathbf{B}|q^2|}F_{ch}^2(q^2) + \sigma_{inc}$$

theory suggested approximate independence of $F_{compton}(Q^2)/F_{ch}(Q^2)$ from the target nucleus due to available high-energy Compton scattering data on ¹H and ⁴He for PRL 121 (022503) 2018 and PLB 808 (135664) 2020

measurements are available:

- at high energies, E ~ 3-5 GeV
 - for the targets ⁴He, ¹²C, ²⁷Al, ⁴⁹Ti, ⁶⁴Cu, ¹⁰⁹Ag, ¹⁹⁷Au

O. Koshchii et al., Phys. Rev. C 103, 064316 (2021)

Q² dependence reconstructed from differential cross section for Compton scattering

$$\frac{d\sigma}{dq^2} \approx ae^{-\mathbf{B}|q^2|}F_{ch}^2(q^2) + \sigma_{inc}$$

theory suggested approximate independence of $F_{compton}(Q^2)/F_{ch}(Q^2)$ from the target nucleus due to available high-energy Compton scattering data on ¹H and ⁴He for PRL 121 (022503) 2018 and PLB 808 (135664) 2020

measurements are available:

- at high energies, E ~ 3–5 GeV
 - for the targets ⁴He, ¹²C, ²⁷Al, ⁴⁹Ti, ⁶⁴Cu, ¹⁰⁹Ag, ¹⁹⁷Au

problems still existing:

O. Koshchii et al., Phys. Rev. C 103, 064316 (2021)

missing data for ²⁸Si, ⁹⁰Zr, ²⁰⁸Pb + limitation to forward scattering data

feasibility study to determine the Compton form factor with the high-resolution CATS detector

A. Hünger et al., Nucl. Phys. A 620 (1997) 385

conclusion

16/16

conclusion

determine Compton slope parameter (≥ ¹²C)

next steps

measure transverse asymmetry ²⁰⁸Pb

on the way to ²⁰⁸Pb

