Proton Polarizabilities

Recent Results from Compton Scattering at MAMI

David Hornidge, *Mount Allison University* Edoardo Mornacchi, *Johannes Gutenberg University*

SPIN 2023 Durham, NC

27 September 2023

1/36

Outline

3 Global Extraction

- Regime where the coupling is too strong and perturbative QCD (pQCD) is not appropriate.
- Very important for a thorough understanding of QCD.
- An understanding of the transition from non-pQCD (confinement) to pQCD (asymptotic freedom) is integral to the overall understanding of QCD.

"Can the theory of quark and gluon confinement quantitatively describe the detailed properties of hadrons?" *Perspectives on Subatomic Physics in Canada 2006–2016.*

- Theory: QCD describes the strong force in terms of quarks and gluons.
- Nobel Prize in 2004 for **Asymptotic Freedom** in the pQCD regime...
- However, in the non-perturbative region, QCD is still unsolved.

One of the top ten challenges for all of physics!

How do we test QCD in the non-perturbative regime?

High-precision measurements with polarization observables.

Hadron Polarizabilities

- Fundamental structure constants
- Response of internal structure to external fields
- Fertile meeting ground between theory and experiment
- Best measured via Compton scattering, both real and virtual

Theoretical Approaches

- Dispersion Relations (both subtracted and unsubtracted)
- Chiral Perturbation Theory
- Lattice QCD

Why else do we care about the nucleon polarizabilities?

Limit precision in other areas of physics:

- Lamb shift and hyperfine structure (proton radius)
- EM contribution to n p mass difference
- Neutron star properties

Scalar Polarizabilities - Conceptual

Electric Dipole Polarizability

- Apply an electric field to a composite system
- Separation of Charge, or "Stretchability"
- Proportionality constant between electric dipole moment and electric field is the electric dipole polarizability, α_{E1}.

Provides information on force holding system together.

Scalar Polarizabilities - Conceptual

Magnetic Dipole Polarizability

- Apply a magnetic field to a composite system
- Alignment of dipoles or "Alignability"
- Proportionality constant between magnetic dipole moment and magnetic field is the magnetic dipole polarizability, β_{M1}.
- Two contributions, paramagnetic and diamagnetic, and they cancel partially, giving $\beta_{M1} < \alpha_{E1}$.

Provides information on force holding system together.

Real Compton Scattering from the Nucleon

Low-energy outgoing photon plays the role of the applied EM field.

 \Rightarrow Nucleon Response

\Rightarrow POLARIZABILTIES!

Global response to internal degrees of freedom.

D. Hornidge (Mount Allison University)

Proton Polarizabilities

Real Compton Scattering – Hamiltonian

Expand the Hamiltonian in incident-photon energy.

0th order \longrightarrow charge, mass

1st order \longrightarrow magnetic moment

2nd order \longrightarrow scalar polarizabilities:

$$\mathcal{H}_{\mathsf{eff}}^{(2)} = -4\pi \left[\frac{1}{2} \alpha_{\boldsymbol{E1}} \vec{E}^2 + \frac{1}{2} \beta_{\boldsymbol{M1}} \vec{H}^2 \right]$$

3rd order \rightarrow spin (or vector) polarizabilities:

$$\begin{aligned} H_{\text{eff}}^{(3)} &= -4\pi \left[\frac{1}{2} \gamma_{E1E1} \vec{\sigma} \cdot (\vec{E} \times \dot{\vec{E}}) + \frac{1}{2} \gamma_{M1M1} \vec{\sigma} \cdot (\vec{H} \times \dot{\vec{H}}) \right. \\ &\left. -\gamma_{M1E2} E_{ij} \sigma_i H_j + \gamma_{E1M2} H_{ij} \sigma_i E_j \right] \end{aligned}$$

where $E_{ij} = \frac{1}{2} (\nabla_i E_j + \nabla_j E_i)$ and $H_{ij} = \frac{1}{2} (\nabla_i H_j + \nabla_j H_i)$

Low-Energy Expansion in Proton Compton Scattering

$$\frac{d\sigma}{d\Omega}(\nu,\theta) = \frac{d\sigma}{d\Omega}^{Born}(\nu,\theta) - \nu\nu'\left(\frac{\nu'}{\nu}\right)\frac{e^2}{2m}\left[\left(\alpha_{E1} + \beta_{M1}\right)\left(1+z\right)^2 + \left(\alpha_{E1} - \beta_{M1}\right)\left(1-z\right)^2\right]$$

Measure low energies and precise cross sections/asymmetries!

Proton Polarizabilities

Previous Results

Various α_{E1} and β_{M1} extractions:

- Different experimental inputs
- Different theoretical inputs
- Different fitting strategies

Previous Results

Various α_{E1} and β_{M1} extractions:

- Different experimental inputs
- Different theoretical inputs
- Different fitting strategies

New high-precision dataset needed!

The Mainzer Mikrotron (MAMI)

Run Conditions

Standard A2 Equipment was required:

- MAMI electrons
- Glasgow-Mainz Tagger
- CB-TAPS detector system
- Cryogenic Target

Run Parameter	Value	
Electron Beam Energy	883 MeV	
Target	LH_2	
Radiator	Diamond	
Tagged Energy Range	100 – 400 MeV	
Channel Energy Resolution	2 MeV	
Beam Polarization	linear	
Target Polarization	none	

Schematic of the A2 Hall

CB-TAPS Detector System

D. Hornidge (Mount Allison University)

CB-TAPS Detector System

Run Summary

- Ph.D. work of Edoardo Mornacchi.
- Phys. Rev. Lett. **128**, 132503 (2022).
- Low-energy Compton scattering.
- Linearly polarized beam, (unpolarized) LH₂ target.
- High-statistics cross sections, $d\sigma/d\Omega$, and beam asymmetry, Σ_3 . Most important data are below pion threshold.
- Upgraded tagger, improved systematic errors:
 - higher $\gamma\text{-flux}$ with better flux monitoring
 - improved linpol peak stability
 - improved background subtraction
- 1.2×10^6 events, an improvement of $\times 6$ compared to the pilot measurement.
- Approximately ×10 the statistics of the previous world best measurement with TAPS (also A2!) [OdL et al., EPJA 10 207 (2001)], which make up of about 50% of the existing world data.

Beam Asymmetry

The beam asymmetry can be **extracted** by measuring the polarized cross-section with two orthogonal orientation of the polarization plane:

$$A(\varphi) = \Sigma_{3} \cos(2\varphi) = \frac{N^{\parallel}(\omega_{\gamma}, \theta_{\gamma'}, \varphi) - N^{\perp}(\omega_{\gamma}, \theta_{\gamma'}, \varphi)}{p_{\gamma}^{\perp} N^{\parallel}(\omega_{\gamma}, \theta_{\gamma'}, \varphi) + p_{\gamma}^{\parallel} N^{\perp}(\omega_{\gamma}, \theta_{\gamma'}, \varphi)}$$

Beam Asymmetry

A2: Phys. Rev. Lett. **128** (2022) Systematic errors

Born contribution DR: Phys. Rev. C **76**, 015203 (2007)

 B_{χ} PT: Eur. Phys. J. C **65**, 195 (2010) HB $_{\chi}$ PT: Eur. Phys. J. A **49**, 12 (2013)

The unpolarized cross-section can be determined by precisely measuring the detection, reconstruction and tagging efficiencies:

$$\frac{d\sigma}{d\Omega}(\omega_{\gamma},\theta_{\gamma'}) = \frac{N_{\gamma'}(\omega_{\gamma},\theta_{\gamma'})}{d\Omega} \frac{1}{N_p} \frac{1}{\epsilon_{rec}(\omega_{\gamma},\theta_{\gamma'})} \frac{1}{N_{e^-}(\omega_{\gamma})\epsilon_{tagg}(\omega_{\gamma})}$$

The unpolarized cross-section can be determined by precisely measuring the detection, reconstruction and tagging efficiencies:

$$\frac{d\sigma}{d\Omega}(\omega_{\gamma},\theta_{\gamma'}) = \frac{N_{\gamma'}(\omega_{\gamma},\theta_{\gamma'})}{d\Omega} \frac{1}{N_{\rho}} \frac{1}{\epsilon_{rec}(\omega_{\gamma},\theta_{\gamma'})} \frac{1}{N_{e^{-}}(\omega_{\gamma})\epsilon_{tagg}(\omega_{\gamma})}$$

	Event selection and MC correction	2%
	Target density	1%
UCS	Flux normalization	2%
	Background	uncorr.
	TOTAL	3%
	Linear polarization	5%
Σ3	Background	uncorr.
	TOTAL	5%

Systematic Errors

- Higher for low ω_γ and forward θ_{γ'} (~ 17%)
- Lower for high ω_{γ} and backward $\theta_{\gamma'}$ (~ 0.5%)
- + Average $\sim 2\%$

HDPV		BChPT	HBChPT	
α _{E1} 11.23 ± 0.49		10.65 ± 0.50	11.10 ± 0.52	
β_{M1}	2.79 ± 0.32	3.28 ± 0.33	3.36 ± 0.38	
S_{σ}	1.011 ± 0.015	1.013 ± 0.015	1.043 ± 0.016	
SΣ	0.994 ± 0.015	0.996 ± 0.015	1.001 ± 0.015	
χ^2/DOF	82.10/93 = 0.89	82.96/93 = 0.89	83.16/93 = 0.89	

		HDPV	BChPT	HBChPT			
ĺ	α_{E1}	11.23 ± 0.49	10.65 ± 0.50	11.10 ± 0.52			
	$\beta_{\rm M1}$	2.79 ± 0.32	3.28 ± 0.33	3.36 ± 0.38			
ĺ	S_{σ}	1.011 ± 0.015	1.013 ± 0.015	1.043 ± 0.016			
	SΣ	0.994 ± 0.015	0.996 ± 0.015	1.001 ± 0.015			
ĺ	χ^2/DOF	82.10/93 = 0.89	82.96/93 = 0.89	83.16/93 = 0.89			

	HDPV	BChPT	HBChPT
α_{E1}	11.23 ± 0.49	10.65 ± 0.50	11.10 ± 0.52
β_{M1}	2.79 ± 0.32	3.28 ± 0.33	3.36 ± 0.38
Sσ	1.011 ± 0.015	1.013 ± 0.015	1.043 ± 0.016
SΣ	0.994 ± 0.015	0.996 ± 0.015	1.001 ± 0.015
χ^2/DOF	82.10/93 = 0.89	82.96/93 = 0.89	83.16/93 = 0.89

$$\begin{aligned} \alpha_{\rm E1} &= 10.99 \pm 0.16 \pm 0.47 \pm 0.17 \pm 0.34 \\ \beta_{\rm M1} &= 3.14 \pm 0.21 \pm 0.24 \pm 0.20 \pm 0.35 \end{aligned}$$

	HDPV	BChPT	HBChPT	
α_{E1}	11.23 ± 0.49	10.65 ± 0.50	11.10 ± 0.52	
β_{M1}	2.79 ± 0.32	3.28 ± 0.33	3.36 ± 0.38	
Sσ	1.011 ± 0.015	1.013 ± 0.015	1.043 ± 0.016	
SΣ	0.994 ± 0.015	0.996 ± 0.015	1.001 ± 0.015	
χ^2/DOF	82.10/93 = 0.89	82.96/93 = 0.89	83.16/93 = 0.89	

- Highest precision Compton scattering dataset below π -photoproduction threshold!
- Precise extraction of the scalar polarizabilities from one single dataset

Bootstrap Technique

- fixed-t Dispersion relation model
- Three different PWA solution used: MAID-2021, SAID-MA19, BnGA-2019
- All six polarizabilities are treated as free parameters
- Parametric bootstrap technique needed to include all possible sources of systematic uncertainties

$$e_{i,j}^{(0)} \rightarrow e_{i,j}^{(b)} = (1 + \delta_{j,b})(e_{i,j}^{(0)} + r_{i,j,b}\sigma_{i,j}^{(0)})$$

- · inclusion of common systematic uncertainties without any a priori distribution assumption
- probability distribution of the fit parameters obtained by the procedure
- uncertainties on nuisance model parameters are taken into account in the sampling procedure
- fit *p*-value is provided if goodness-of-fit distribution is not given by the χ^2

As many data points as possible were initially included in the fit!

- \cdot All existing unpolarized low-energy data ($E_{\gamma} <$ 150 MeV)
 - 14 datasets, 218 points¹
- + New-generation (a.k.a. photon-tagged) unpolarized high-energy data ($E_{\gamma} = [150 300]$ MeV)
 - 6 datasets, 156 points
- + Polarized ($\sigma_{\parallel},\,\sigma_{\perp},\,\Sigma_{2x},\,\Sigma_{2z},\,$ and $\Sigma_{3})$ data
 - 7 datasets, 137 points²

¹including 10 above-thr points from TAPS ²65 below- and 72 above-thr

Compton Scattering Datasets

First author # of points		$\theta_{\gamma'}$ [°]	E_{γ} [MeV]	
Unpolarized low-energy data				
Baranov	7	90,150	82 — 111	
Bernardini	2	135	120, 139	
de Leon	55	59 — 155	59 — 150	
Federspiel	16	60,135	30 - 70	
Goldansky	5	75 — 150	55	
Hallin	13	45 — 135	130 — 150	
Hyman	12	50,90	60 - 130	
Li	8	55,90,125	81	
MacGibbon	8	90,135	70 - 100	
MacGibbon	10	90,135	100 - 140	
Mornacchi	60	35 — 145	85 — 140	
Oxley	4	70 — 150	60	
Pugh	16	45,90,135	55 — 125	
Zieger	2	180	98,132	

First auth	or #ofp	oints	$\theta_{\gamma'}$ [°]	E_{γ} [MeV]
Unpolarized high-energy data				
Blanpied	57	7	51 — 126	213 — 298
Camen	5		136	210 — 293
Molinari	4		90 (cms)	250 - 289
Peise	8		75 (cms)	200 - 291
Wissmanr	n 6		131	199 — 295
Wolf	76	ò	48 — 148	264 - 294
First author	Observable	# of poi	nts $\theta_{\gamma'}$ [°]	$E_{\gamma} [MeV]$
	Polarize	d low-en	ergy data	
Li	σ_{\parallel}	5	55,90,12	25 83
Li	σ_{\perp}	3	55, 90, 12	25 83
Mornacchi	Σ_3	36	35 - 14	5 92, 108, 129
Sokhoyan	Σ_3	21	60 - 15	0 87, 109, 129
Polarized high-energy data				
Blanpied	Σ_3	58	65 - 13	5 213 - 298
Martel	Σ_{2x}	4	90 — 15	0 285
Paudyal	Σ_{2Z}	10	85 - 150	275, 295

Excluded Datasets

Inconsistencies among unpolarized high-energy data are known to exist, especially between the LARA (Wolf) and LEGS (Blanpied) datasets! A consistency check of the database was performed:

- Fit all 6 polarizabilities using MAID-2021 alternatively including LARA or LEGS.
- Using the polarizability best-values, the residuals were calculated.
- For every big dataset, the residual normal distribution was assessed using a probability plot.

All datasets had normally distributed residual, except both LARA and LEGS:

D. Hornidge (Mount Allison University)

LARA and LEGS DCS datasets were excluded from the fit!

The final database included

- $\cdot\,$ All existing unpolarized low-energy data ($E_{\gamma}<$ 150 MeV)
 - 14 datasets, 218 points³
- New-generation (a.k.a. photon-tagged) unpolarized high-energy data ($E_{\gamma} = [150 300]$ MeV)
 - 4 datasets, 23 points
- Polarized ($\sigma_{\parallel}, \sigma_{\perp}, \Sigma_{2x}, \Sigma_{2z}$, and Σ_{3}) data
 - 7 datasets, 137 points⁴

For a total of 388 data points divided in 25 datasets!

³including 10 above-thr points from TAPS ⁴65 below- and 72 above-thr

- Six free parameters
 - $\alpha_{\text{E1}} + \beta_{\text{M1}}, \alpha_{\text{E1}} \beta_{\text{M1}}, \gamma_{\text{E1E1}}, \gamma_{\text{M1M1}}, \gamma_0$, and $\gamma_{\pi}^{\text{disp}}$
- $N = 10^4$ bootstrap cycles
- Point-to-point systematic errors added in quadrature to statistical ones
- Common systematic errors are assumed to be uniform distributed (unless otherwise specified)
- Polarizability best-values are the mathematical average of the three results using the three different PWAs

Global Fitting Results

E.M., S. Rodini, B. Pasquini, P. Pedroni, Phys. Rev. Lett. 129, 102501 (2022).

Global Fitting Results

Global Fitting Results

 E.M. et al. (A2), Phys. Rev. Lett. 128, 132503 (2022)

$$\begin{split} \alpha_{\rm E1} &= 10.99 \pm 0.16 \pm 0.47 \pm 0.17 \pm 0.34 \\ \beta_{\rm M1} &= 3.14 \pm 0.21 \pm 0.24 \pm 0.20 \pm 0.35 \end{split}$$

 Li et al. (HIGS), Phys. Rev. Lett. 128, 132502 (2022)

$$\begin{split} \alpha_{\rm E1} &= 13.8 \pm 1.2 \pm 0.1 \pm 0.3 \\ \beta_{\rm M1} &= 0.2 \mp 1.2 \pm 0.1 \mp 0.3 \end{split}$$

• E.M., S. Rodini, B. Pasquini, and P. Pedroni, Phys. Rev. Lett. **129**, 102501 (2022) $\alpha_{E1} = 12.7 \pm 0.8 \pm 0.1$ $\beta_{M1} = 2.44 \pm 0.6 \pm 0.1$

Polarizabilities - Outlook and Plans

It's been a good couple of years for proton Compton scattering:

- The highest statistics Compton scattering dataset below pion threshold was finally published by the A2 Collaboration.
- Ompton@HIGS published a complemetary dataset at lower energy.
- Fixed-t DR Bootstrap technique extraction of 6 leading-order proton polarizabilities has been performed.

Also in other news:

- A high-pressure TPC target/detector has been for approved neutron polarizability (and threshold pion) experiments at MAMI.
- **②** The Primakoff effect has been measured with the GlueX at JLab with the goal of extracting $\alpha_{\pi} \beta_{\pi}$ for both the charged and neutral pion to high precision.