

25th International Spin Physics Symposium 24-29 September 2023, Durham, NC

Measurement of ³He Spin Sum Rules at Low Q²

Chao Peng (Argonne National Laboratory) For the saGDH (JLab E97-110) Collaboration

25 September 2023

Outline

- Spin Sum Rules
- Experiment E97-110 at Jefferson Lab
- Experimental Results for neutron and ³He

Gerasimov-Drell-Hearn (GDH) Sum Rule

- Relate photoabsorption cross sections to the target's static properties
 - Anomalous magnetic moment κ , spin *S*, mass *M*

$$I^{GDH} = \int_{\nu_{th}}^{\infty} \frac{d\nu}{\nu} \left(\sigma_P(\nu) - \sigma_A(\nu)\right) = 4\pi^2 \alpha \frac{\kappa^2}{M^2} S$$

- Prediction based on general principles
 - Dispersion relation
 - Unitarity
 - Lorentz and gauge invariance
- GDH sum rule can be tested experimentally

Experimental Tests of the GDH Sum Rule

• Valid for nucleon and nuclear targets $(S = \frac{1}{2}, 1, \frac{3}{2}, ...)$ with real photons (Q² = 0)

Target	$I^{GDH}~(\mu {\rm b})$	Measured Range (MeV) $$	$I_{exp}^{GDH}~(\mu {\rm b})$
Proton	204.8	200-2900	$254 \pm 5 \pm 12 - 17.5 \pm 5.6$
Neutron	233.2		
Deuteron	0.65	200-1800	$452\pm9\pm24$
³ He	497.9	200-500	$135\pm20\pm12$

- Proton: Verified in 10% Mainz, Bonn, LEGS
- Neutron (D and ³He): Mainz, Bonn, LEGS, HIGS
- Light nuclear target (D and ³He) measurements are interesting
 - GDH integrands and sums

Generalized GDH Sum Rules

- Virtual Compton amplitudes are connected with the moments of spin dependent structure functions
 - Connect moments of spin-dependent structure functions with the Compton amplitudes

$$I_{TT}(Q^2) = \frac{M^2}{4\pi^2 \alpha} \int_{v_{th}}^{\infty} \frac{K\sigma_{TT}(v,Q^2)}{v^2} dv$$
$$= \frac{2M^2}{Q^2} \int_0^{x_{th}} \left[g_1(x,Q^2) - \frac{4M^2 x^2}{Q^2} g_2(x,Q^2) \right] dx$$

- g_1 and g_2 are experimentally accessible, $I_{TT}(Q^2)$ predicted by theories — Chiral Effective Field Theory (ChEFT)
 - Lattice QCD (not available yet)

Generalized Spin Polarizabilities

Longitudinal-Transverse (LT) interference polarizability

$$\delta_{LT}(Q^2) = \frac{16\alpha M^2}{Q^6} \int_0^{x_{th}} [g_1(x, Q^2) + g_2(x, Q^2)] x^2 dx$$

- Quantifies the spin precession from LT interference (analogous in classical view)
- Arises because of virtual photon $(Q^2 \neq 0)$ can be longitudinally polarized
- "Gold-plated" observable for ChEFT because of suppression in $\Delta(1232)$ contributions
- Forward spin polarizability

$$\gamma_0(Q^2) = \frac{16\alpha M^2}{Q^6} \int_0^{x_{th}} \left[g_1(x,Q^2) - \frac{4M^2}{Q^2} x^2 g_2(x,Q^2) \right] x^2 dx$$

Other Spin Sum Rules

• First Moment of g₁

$$\Gamma_1(Q^2) = \int_0^1 g_1(x, Q^2) dx$$

- Connects to the total spin carried by the quarks
- Inelastic contribution: another generalized form of GDH sum

$$I_1(Q^2) = \frac{16\pi^2 \alpha}{Q^2} \int_0^{x_{th}} g_1(x, Q^2) dx = 2\pi^2 \alpha S_1(0, Q^2)$$

Ji and Osborne, J. Phys. G27, 127 (2001)

Bjorken Sum Rule

$$\Gamma_1^P(Q^2) - \Gamma_1^N(Q^2) = \frac{g_A}{6} + O(\alpha_s(Q^2)) + O(\frac{1}{Q^2})$$

- g_A , nucleon axial charge
- Consistent with experimental result within 10%

Importance of the Generalized GDH Sum Rule

χΡΤ	Lattice QCD	pQCD
$Q^2 = 0$		$Q^2 = \infty$
Hadronic		Partonic
GDH Sum Rule		Bjorken Sum Rule

- Constraints at two-ends
 - GDH sum for real photons $(Q^2 = 0)$
 - − Bjorken sum rule $(Q^2 \rightarrow \infty)$
- Tests the theoretical calculations for the Compton amplitudes at very low Q^2
 - Baryon Chiral Perturbation Theory (HBChPT, IRBChPT, RBChPT)
 - Future Lattice QCD
- Study the transition from non-perturbative to perturbative QCD

Outline

- Spin Sum Rules
- Experiment E97-110 at Jefferson Lab
- Experimental Results for neutron and ³He

Experiments Summary

Observable	H target	D target	³ He target
$g_1, g_2, \Gamma_1 \& \Gamma_2$	SLAC	SLAC	SLAC
at high Q^2			JLAB E97-117
	JLAB SANE		JLAB E01-012
			JLAB E06-014
g_1 & Γ_1 at high Q^2	SMC	SMC	
	HERMES	HERMES	HERMES
	JLAB EG1	JLAB EG1	
Γ_1 & Γ_2 at low Q^2	JLab RSS	JLab RSS	JLab E94-010
			JLab E97-103
Γ_1 at low Q^2	SLAC	SLAC	
	HERMES	HERMES	HERMES
	JLAB EG1	JLAB EG1	
$\Gamma_1, Q^2 << 1 \text{ GeV}^2$	JLab EG4	JLab EG4	JLab E97-110
$\Gamma_2, Q^2 << 1 \text{ GeV}^2$	JLab E08-027		JLab E97-110

Recent Low-Q experiments at JLab:

- 1. EG4 (CLAS): NH_3 and ND_3 to measure g_1
- 2. E08-027 (Hall A): NH_3 to measure g_2
- 3. E97-110 (Hall A): ³He to measure g₁ and g₂

All measurements down to at least $Q^2 \sim 0.02 \text{ GeV}^2$

Motivation for E97-110

- Precision measurement of the moments of spin structure functions at low Q2, 0.02 to 0.24 GeV² for the neutron (³He)
- Covered an unmeasured region of kinematics to test theoretical calculations (Chiral Perturbation theory)
- Complements data from experiment E94-010 covered region from 0.1 to 0.9 GeV²

Spokespersons: J.-P. Chen, A. Deur, F. Garibaldi

E94-010 Results

Measurement of SSF

- Experimental access to the spin-dependent structure functions
 - Doubly polarized inclusive scattering
 - Different polarization configurations _
 - Effective neutron target (³He) _

U.S. DEPARTMENT OF ENERGY Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

$$\sigma_{\parallel} = \frac{4\alpha^2}{M\nu Q^2} \frac{E'}{E} \left[(E + E'\cos\theta) g_1 - 2Mxg_2 \right]$$

$$\sigma_{\perp} = \frac{4\alpha^2}{M\nu O^2} \frac{E'^2}{E} \sin\theta [g_1 + \frac{2E}{\nu}g_2]$$

JLab Polarized ³He System

Kinematic Coverage

8 datasets covering 1.1 - 4.4 GeV @ 6° or 9°

- Quasi-elastic, resonances, and partially DIS
- Constant Q² interpolation based on the 5 low-Q datasets
- 3 high-Q datasets for constraining
- Q² values selected to minimize syst. from interpolation (close to real-data threshold region)

Target Cell	Angle	Beam Energy (MeV)
Penelope	6.10°	2134.2
Priapus	6.10°	2134.9
Priapus	6.10°	2844.8
Priapus	6.10°	4208.8
Priapus	9.03°	1147.3
Priapus	9.03°	2233.9
Priapus	9.03°	3318.8
Priapus	9.03°	3775.4
Priapus	9.03°	4404.2

Setup and Analysis

 $\sigma_{\rm o} = \frac{N_{\rm cuts}}{N_{\rm inc}\rho\varepsilon_{\rm det}LT} * Acc. - \frac{2\rho_{\rm N_2}}{\rho + \rho_{\rm N_2}}\sigma_{\rm N_2}$

Elastic Radiative Tail Subtraction

- Significant contribution to syst. in Q.E. at the lowest Q²
 - A dedicated simulation for elastic radiative tails
 - EM FF was based on Amroun et al. Nucl. Phys. A579, 596-626 (1994)
 - Radiative effects from different recipes evaluated Akushevich & Shumeiko (AS), Journal of Physics G, 20(4):513, 1994. Mo & Tsai (MT), Rev. Mod. Phys., 41:205–235, 1969.

Inelastic Radiative Correction

Iterative correction

- Build a pseudo-model with the experimental data
- Bilinear/bicubic interpolation for unmeasured points
- A few of points extrapolated with models
- Radiative effects calculated following POLRAD
 I. Akushevich et al., Comput. Phys. Commun. 104, 201-244 (1997)

Quasi-elastic Calculations

- Quasi-elastic contribution subtracted for neutron results
 - Faddeev calculations from Hannover or Golak
 - MAID model with ENPA plus Smearing for ³He
 - Separation of Q.E. and inelastic contributions with fits

Outline

- Spin Sum Rules
- Experiment E97-110 at Jefferson Lab
- Experimental Results for neutron and ³He

Neutron Results – First Moments

Nuclear corrections follow the recipe from C. Ciofi degli Atti and S. Scopetta (1997)

V. Sulkosky, J. Singh, C. Peng, J.-P. Chen, A. Deur *et al.*, Phys. Lett. B 805 (2020) 135428

Neutron Results – Spin Polarizabilities

V. Sulkosky, C. Peng, J.-P. Chen, A. Deur *et al.*, *Nature Physics* 17, p687–692 (2021)

U.S. DEPARTMENT OF U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

³He Spin-dependent Structure Functions

- Two lowest Q² point
 - Interpolated from
 1.1 GeV @ 9°
 2.1 GeV @ 6°
 2.8 GeV @ 6°
- $g_1 + g_2 \approx 0$ for $\Delta(1232)$

³He Spin-dependent Structure Functions

- Three higher Q² point
 - Interpolated from
 2.8 GeV @ 6°
 2.2 GeV @ 9°
 3.3 GeV @ 9°
 - Additional constraints from
 4.2 GeV @ 6°
 3.8 GeV @ 9°
 4.4 GeV @ 9°

³He First Moments Γ_1 , Γ_2

DEPARTMENT OF

Consistent with E94 results at overlapping Q^2 , trend is turning at < 0.1 GeV²

³He Results - Sum Rules I_{TT} , I_{LT}

A turning point observed at $< 0.1 \text{ GeV}^2$, data curve is approaching the real photon point.

Summary

- JLab E97-110 has measured the spin sum rules for neutron and ³He at low Q²
- Generalized spin polarizabilities of the neutron do not agree well with ChEFT predictions at Q² < 0.1 GeV²
 - Lattice QCD inputs will be important to understand the discrepancy on neutron result
- The turning point of ³He GDH sum rule is observed at around Q² = 0.1 GeV², correct trending to the real photon point

Thank you

This work is supported in part by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics, under Contract No. DE-AC02-06CH11357.

Data Table - δ_{LT}

Q^2	$ u_{max}(W_{max}) $	$\delta^{^{3}He, \ res}_{\mathrm{LT}}(Q^{2}) \pm (\mathrm{stat}) \pm (\mathrm{syst})$	$\delta_{\mathrm{LT}}^{n, \ res}(Q^2) \pm (\mathrm{stat}) \pm (\mathrm{syst})$	$\delta^n_{ m LT}(Q^2) \pm ({ m stat}) \pm ({ m syst})$
$[GeV^2]$	[GeV]	$[10^{-4} \text{ fm}^4]$	$[10^{-4} \text{ fm}^4]$	$[10^{-4} \text{ fm}^4]$
0.035	1.690 (2.00)	$-0.356 \pm 0.280 \pm 0.583$	$-0.379 \pm 0.326 \pm 0.677$	$-0.383 \pm 0.326 \pm 0.677$
0.057	1.700 (2.00)	$0.174 \pm 0.061 \pm 0.169$	$0.229 \pm 0.071 \pm 0.197$	$0.225 \pm 0.071 \pm 0.197$
0.079	1.710 (2.00)	$0.360 \pm 0.084 \pm 0.168$	$0.439 \pm 0.098 \pm 0.195$	$0.435 \pm 0.098 \pm 0.195$
0.100	2.885 (2.49)	$0.410 \pm 0.072 \pm 0.180$	$0.493 \pm 0.083 \pm 0.209$	$0.491 \pm 0.083 \pm 0.209$
0.150	2.910 (2.48)	$0.178 \pm 0.045 \pm 0.149$	$0.216 \pm 0.053 \pm 0.173$	$0.215 \pm 0.053 \pm 0.173$
0.200	2.655 (2.38)	$0.091 \pm 0.024 \pm 0.078$	$0.112 \pm 0.028 \pm 0.091$	$0.111 \pm 0.028 \pm 0.091$
0.240	2.320 (2.23)	$0.090 \pm 0.017 \pm 0.041$	$0.110 \pm 0.020 \pm 0.043$	$0.108 \pm 0.020 \pm 0.043$

Data Table - γ_0

Q^2	$ u_{max}(W_{max}) $	$\gamma_0^{^{^3}He, \ res}(Q^2) \pm (\text{stat}) \pm (\text{syst})$	$\gamma_0^{n, \ res}(Q^2) \pm (\text{stat}) \pm (\text{syst})$	$\gamma_0^n(Q^2) \pm (\text{stat}) \pm (\text{syst})$
$[GeV^2]$	[GeV]	$[10^{-4} \text{ fm}^4]$	$[10^{-4} \text{ fm}^4]$	$[10^{-4} \text{ fm}^4]$
0.035	1.690 (2.00)	$-2.590 \pm 0.111 \pm 0.225$	$-3.092 \pm 0.129 \pm 0.270$	$-3.094 \pm 0.129 \pm 0.270$
0.057	1.700 (2.00)	$-2.613 \pm 0.121 \pm 0.215$	$-3.115 \pm 0.141 \pm 0.259$	$-3.117 \pm 0.141 \pm 0.259$
0.079	1.710 (2.00)	$-2.274 \pm 0.121 \pm 0.226$	$-2.715 \pm 0.140 \pm 0.270$	$-2.717 \pm 0.140 \pm 0.270$
0.100	2.885 (2.49)	$-1.725 \pm 0.063 \pm 0.143$	$-2.070\pm 0.074\pm 0.170$	$-2.070 \pm 0.074 \pm 0.170$
0.150	2.910 (2.48)	$-1.135\pm 0.044\pm 0.105$	$-1.370 \pm 0.051 \pm 0.125$	$-1.370 \pm 0.051 \pm 0.125$
0.200	2.655 (2.38)	$-0.798 \pm 0.027 \pm 0.056$	$-0.964 \pm 0.032 \pm 0.065$	$-0.965 \pm 0.032 \pm 0.065$
0.240	2.320 (2.23)	$-0.612 \pm 0.022 \pm 0.043$	$-0.740 \pm 0.026 \pm 0.050$	$-0.742 \pm 0.026 \pm 0.050$

Data Table - *I*_{LT}

Q^2	$ u_{max}(W_{max}) $	$I_{\rm LT}^{^{3}He, \ res}(Q^{2})\pm({\rm stat})\pm({\rm syst})$	$I_{\rm LT}^{n, \ res}(Q^2) \pm ({ m stat}) \pm ({ m syst})$	$I_{ m LT}(Q^2)^n \pm ({ m stat}) \pm ({ m syst})$
$[GeV^2]$	[GeV]			
0.035	1.690 (2.00)	$-0.326 \pm 0.272 \pm 0.520$	$-0.294 \pm 0.316 \pm 0.604$	$-1.112 \pm 0.316 \pm 0.606$
0.057	1.700 (2.00)	$0.285 \pm 0.117 \pm 0.333$	$0.413 \pm 0.136 \pm 0.387$	$-0.862 \pm 0.136 \pm 0.389$
0.079	1.710 (2.00)	$0.610 \pm 0.128 \pm 0.268$	$0.786 \pm 0.149 \pm 0.312$	$-0.721 \pm 0.149 \pm 0.314$
0.100	2.885 (2.49)	$0.879 \pm 0.098 \pm 0.280$	$1.092 \pm 0.114 \pm 0.327$	$-0.126 \pm 0.114 \pm 0.329$
0.150	2.910 (2.48)	$0.339 \pm 0.049 \pm 0.198$	$0.458 \pm 0.057 \pm 0.231$	$-0.266 \pm 0.057 \pm 0.233$
0.200	2.655 (2.38)	$0.289 \pm 0.047 \pm 0.228$	$0.389 \pm 0.055 \pm 0.265$	$-0.345 \pm 0.055 \pm 0.267$
0.240	2.320 (2.23)	$0.391 \pm 0.057 \pm 0.163$	$0.511 \pm 0.067 \pm 0.190$	$-0.267 \pm 0.067 \pm 0.192$

Measurements of Γ_1

Proton

Neutron

MAID: phenomenological model with only resonance contributions.

The Bjorken Sum

Proton – **Neutron**

Proton Spin Polarizability: γ_0

$$\gamma_0 = \frac{16\alpha M^2}{Q^6} \int_0^{x_0} x^2 \left[g_1 - \frac{4M^2}{Q^2} x^2 g_2 \right]$$

Calculations also fail for proton γ_0

Neutron Forward Spin Polarizabilities

Heavy Baryon xPT Calculation

Kao, Spitzenberg, Vanderhaeghen PRD 67:016001(2003)

Relativistic Baryon xPT

Bernard, Hemmert, Meissner PRD 67:076008(2003)

Summary of Data Comparison with xPT

State of χ pt affairs (2006):

 $|\Gamma_1^{p+n}|$ $|\gamma_0^{p+n}|$ Γ_1^{p-n} γ_0^p γ_0^{p-n} Γ_1^p Γ_1^n γ_0^n δ_{LT}^n d_2^p d_2^n Ref. Bernard et al. X X X X X X X X Α Α _ X X X Ji et al. Α _ _ Kao et al. X X X X X A -_ _ Δ suppressed Δ suppressed Δ suppressed (expected) " δ_{IT} crisis"

no unmeasured low-x data

A: agree with data X: disagree with data

-: no calculation available

Recent Experimental Efforts at JLab

- 1. EG4 (CLAS): NH_3 and ND_3 to measure g_1
- 2. E08-027 (Hall A): NH_3 to measure g_2
- 3. E97-110 (Hall A): ³He to measure g_1 and g_2

All measurements down to at least $Q^2 \sim 0.02 \text{ GeV}^2$

Systematic Table (V. Sulkosky)

Source	Systematic Uncertainty $(\%)$
Target density	1.6
VDC tracking efficiency	1.0
Beam charge	1.0
Detector efficiencies	1.4-1.9
ν -dependent stability	0.0 - 1.25
Spectrometer acceptance	2.0-3.0
Beam polarization	3.5
Target polarization	3.0-5.2

E94-010 Results

Kao, Spitzenberg, Vanderhaeghen PRD 67:016001(2003)

PRD 67:076008(2003)

Theoretical developments

Radiative Correction

Born level cross sections are retrieved after radiative corrections

- External Energy loss
 - Bremsstrahlung _
 - Ionization
- Internal effects
 - Bremsstrahlung, energy loss _

 $\sigma_0^{Born} = \sigma_0^{exp} + \Delta \sigma_{RC},$

Virtual photon, no loss —

Elastic Radiative Tail

- Generated with Monte-Carlo simulation
 - 3He form factor parameterization from Amroun, Nuclear Physics A, 579(3):596 626, 1994
- Internal effects
 - Akushevich & Shumeiko (AS), Journal of Physics G, 20(4):513, 1994.
 - Mo & Tsai (MT), Rev. Mod. Phys., 41:205–235, 1969.
 - Main difference lies in Bremsstrahlung calculation, MT modified Bethe-Heitler formula, AS QED calculation
- External effects
 - Bremsstrahlung, Tsai's formula (SLAC-PUB-848)
 - Ionization, Landau theory

Faddeev Calculation Comparison

Good agreement at lowest Q²

ENERGY

Faddeev Calculation Comparison

Good agreement at lowest Q²

Faddeev Calculation Comparison

U.S. DEPARTMENT OF

Both Faddeev and PWIA are not working well at intermediate Q²

Spin-dependent Structure Function, 6 degree

• $g_1 + g_2 \approx 0$ for Delta resonance

Spin-dependent Structure Function, 9 degree

Interpolation to Constant Q2 (He3 results)

 $Q^2 = 0.032 \sim 0.23 \text{ GeV}^2$

