Experiments with Ultracold Neutrons at PSI

Dieter Ries dieter.ries@psi.ch

SPIN 2023 Durham, NC

September 26, 2023

Ultracold Neutrons - UCN

Subatomic Particles at Human Velocities

$E_{\rm kin} \lesssim 335 \, {\rm neV}$

⇔

$v < 8 \,\mathrm{m\,s^{-1}} \simeq 30 \,\mathrm{km\,h^{-1}} \simeq 18.6 \,\mathrm{mph}$

18.6 mph

18.6 mph

n2EDM 00000000000000000

UCN Interactions

- Strong Interaction
 - Neutron Optical Potential (Fermi Potential):
 - $V_F \propto \rho b_{\rm coh}$
 - ⁵⁸Ni: ~335 neV, Stainless steel: ~190 neV, Al: ~54 neV

n2EDM 00000000000000000

UCN Interactions

- Strong Interaction
 - Neutron Optical Potential (Fermi Potential):
 - $V_F \propto \rho b_{\rm coh}$
 - ⁵⁸Ni: ~335 neV, Stainless steel: ~190 neV, Al: ~54 neV
- Gravity
 - 102.5 neV m⁻¹

n2EDM 00000000000000000

UCN Interactions

- Strong Interaction
 - Neutron Optical Potential (Fermi Potential):
 - $V_F \propto \rho b_{\rm coh}$
 - ⁵⁸Ni: ~335 neV, Stainless steel: ~190 neV, Al: ~54 neV
- Gravity
 - 102.5 neV m⁻¹
- Magnetism
 - Spin polarization with strong magnetic fields.
 - $\mu_n = -60.3 \,\mathrm{neV}\,\mathrm{T}^{-1}$

What for?

- Free neutron lifetime
- Neutron electric dipole moment
- Gravitationally bound quantum states
- Neutron to mirror-neutron oscillations

τSPECT ••••••

Why Neutron Lifetime?

a) Big Bang Nucleosynthesis (He abundance)

[Cyburt et al., doi:10.1103/RevModPhys.88, 2016]

Big Bang Nucleosynthesis

$$@t = 2 min: n/p \simeq 1/6$$

@t = 4 min: n/p
$$\simeq 1/7$$

Neutron Lifetime

Why n-lifetime?

a) Big Bang Nucleosynthesis (He abundance) [Cyburt et al., doi:10.1103/RevModPhys.88, 2016]

b) CKM Unitarity (V_{ud})

[Czarnecki, Marciano, Sirlin, doi:10.1103/PhysRevD.100.073008, 2019]

Cabibbo-Kobayashi-Maskawa matrix

$$\begin{bmatrix} |V_{ud}| & |V_{us}| & |V_{ub}| \\ |V_{cd}| & |V_{cs}| & |V_{cb}| \\ |V_{td}| & |V_{ts}| & |V_{tb}| \end{bmatrix}$$

JItracold Neutrons

n2EDM 0000000000000000

Cabibbo–Kobayashi–Maskawa matrix

$$\begin{bmatrix} |V_{ud}| & |V_{us}| & |V_{ub}| \\ |V_{cd}| & |V_{cs}| & |V_{cb}| \\ |V_{td}| & |V_{ts}| & |V_{tb}| \end{bmatrix}$$

[Hardy and Towner, doi:10.48550/arXiv.1807.01146, 2018]

D. Ries (SPIN 2023 Durham, NC)

UCN @ PSI

n2EDM 000000000000000

The Lifetime Puzzle

 n2EDM 0000000000000000

Neutron Lifetime

Why n-lifetime?

a) Big Bang Nucleosynthesis (He abundance) [Cyburt et al., doi:10.1103/RevModPhys.88, 2016]

b) CKM Unitarity (V_{ud})

[Marciano and Sirlin, doi:10.1103/PhysRevLett.96.032002, 2006]

c) "It's 2023. We cannot agree on τ_n to better than 10s?!"

$$\tau_{n,beam} = 887.7 \pm 1.2 \pm 1.9s$$

$$\neq$$

$$\tau_{n,stored} = 877.75 \pm 0.28 \pm 0.22s$$

Concept:

- 3-D magnetic storage
 - Two solenoids + Octupole

τSPECT

 τ SPECT

Concept:

- 3-D magnetic storage
 - Two solenoids + Octupole
- Spinflip-loading
 - Holding field polarizes neutrons
 - Fast adiabatic spinflip as loading mechanism

τSPECT

 τ SPECT

- 3-D magnetic storage
 - Two solenoids + Octupole
- Spinflip-loading
 - Holding field polarizes neutrons
 - Fast adiabatic spinflip as loading mechanism
- In-situ UCN detection
 - Minimizes extraction losses
 - High detector requirements wrt temp. & B-field

 n2EDM

τ SPECT fields

 n2EDM

τ SPECT fields

n2EDM 0000000000000000

τ SPECT fields

D. Ries (SPIN 2023 Durham, NC)

UCN @ PSI

September 26, 2023 12/45

τSPECT

- 1. Fill UCN into τ SPECT Magnet from the left
 - Polarization due to high Magnetic Field, SF on
 - Simultaneously: Intensity Monitoring (non-trappable UCN)

τSPECT

- 1. Fill UCN into τ SPECT Magnet from the left
 - Polarization due to high Magnetic Field, SF on
 - Simultaneously: Intensity Monitoring (non-trappable UCN)
- 2. Remove SF from storage region

τSPECT

- 1. Fill UCN into τ SPECT Magnet from the left
 - Polarization due to high Magnetic Field, SF on
 - Simultaneously: Intensity Monitoring (non-trappable UCN)
- 2. Remove SF from storage region
- 3. Detector to cleaning position and back

τSPECT

- 1. Fill UCN into τ SPECT Magnet from the left
 - Polarization due to high Magnetic Field, SF on
 - Simultaneously: Intensity Monitoring (non-trappable UCN)
- 2. Remove SF from storage region
- 3. Detector to cleaning position and back
- 4. Wait ...

τSPECT

Measurement Procedure

- 1. Fill UCN into τ SPECT Magnet from the left
 - Polarization due to high Magnetic Field, SF on
 - Simultaneously: Intensity Monitoring (non-trappable UCN)
- 2. Remove SF from storage region
- 3. Detector to cleaning position and back
- 4. Wait ...
- 5. Count UCN

τSPECT

n2EDM 0000000000000000

A look at the data

JItracold Neutrons

τSPECT

τ SPECT@TRIGA Mainz

τSPECT

n2EDM 000000000000000

- Gaps: $\rightarrow 0 \checkmark$
- Wall losses: → 0 ✓
- Depolarisation: << 0.1 s ✓
- Rest gas interactions: $\leq 0.1 \, \text{s} \checkmark$
- Marginally trapped neutrons: Spectrum cleaning necessary!

τSPECT

Countermeasures

D. Ries (SPIN 2023 Durham, NC)

UCN @ PSI

September 26, 2023 17/45

K. Ross

τSPECT

Counter**measure**s

τSPECT

Systematics Control

- Marginally trapped neutrons:
 - Clean spectrum with active detector before t = 0
 - Demonstrated to work
 - 2 parameters: position and duration
 - Too aggressive cleaning \rightarrow lower statistics
 - Introduce asymmetry: τ SPECT at a small tilt angle

JItracold Neutrons

τSPECT

Without Energy Spectrum Cleaning

K. U. Roß

τSPECT

With Energy Spectrum Cleaning

K. U. Roß

τSPECT

n2EDM

PSI UCN area

τSPECT ○○○○○○○○○○○○○○

τ SPECT at PSI

τSPECT ○○○○○○○○○○○○○○ n2EDM

τ SPECT at PSI

τSPECT

n2EDM

τ SPECT at PSI

τSPECT ○○○○○○○○○○○○○○ n2EDM

τ SPECT at PSI

τSPECT

n2EDM

τ SPECT at PSI

τSPECT

- τ SPECT has been fully commissioned at TRIGA Mainz
- Move and setup to PSI are being concluded
- First pump-down / cool-down successfully done
- First neutrons in the trap expected every day now!

τSPECT

- τ SPECT has been fully commissioned at TRIGA Mainz
- Move and setup to PSI are being concluded
- First pump-down / cool-down successfully done
- First neutrons in the trap expected every day now!

Goal: Show statistical reach and systematics control for a physics run aiming for a precision of 0.1 s in the next years.

τSPECT

n2EDM

+ W. Heil & P. Blümler

τSPECT

J. Auler¹, P. Blümler¹, M. Engler², M. Fertl¹, K. Franz², W. Heil¹, S. Kaufmann², N. Pfeifer¹, D. Ries³, N. Yazdandoost²

¹ Institute of Physics, Johannes Gutenberg University Mainz, Germany

² Institute of Nuclear Chemistry, Johannes Gutenberg University Mainz, Germany

³ Paul Scherrer Institute, Villigen, Switzerland

Supported by the Cluster of Excellence "Precision Physics, Fundamental Interactions, and Structure of Matter" (PRISMA+ EXC 2118/1) funded by the German Research Foundation within the German Excellence Strategy (Project ID 39083149)

n2EDM ••••••••

nEDM motivation

Sakharov Conditions

- Baryon number violation
- C and CP symmetry violation
- Thermal non-equilibrium

undesarchiv, 8 145 Bild-F088809-0001 oto: Thum, Joachim F. | 25. Juli 1991

> [Bundesarchiv, B 145 Bild-F088809-0001 / Thurn, Joachim F. / CC-BY-SA 3.0]

CP symmetry violating EDM

 $\mathcal{H} = -\mu \frac{\vec{\sigma}}{|\vec{\sigma}|} \vec{B} - d \frac{\vec{\sigma}}{|\vec{\sigma}|} \vec{E}$

n2EDM

CP symmetry violating EDM

n2EDM

CP symmetry violating EDM

n2EDM

CP symmetry violating EDM

n2EDM

How do we measure an EDM?

$$2\pi f = \frac{2\mu}{\hbar}B$$

n2EDM

How do we measure an EDM?

$$2\pi f = \frac{2\mu}{\hbar}B + \frac{2d}{\hbar}E$$

n2EDM

How do we measure an EDM?

How do we measure an EDM?

$$f(\uparrow\uparrow) - f(\uparrow\downarrow) = \frac{2}{\pi\hbar} dE$$

How do we measure an EDM?

n2EDM

$$f(\uparrow\uparrow) - f(\uparrow\downarrow) = \frac{2}{\pi\hbar} dE$$

'Never measure anything but frequency!' Arthur Schawlow

Ramsey's method of separated oscillatory fields

In which system do we measure an EDM?

The ideal system for EDM measurements:

- simple
- spin = 1/2
- neutral

n2EDM

High Precision

$$d_n = 0.0 \pm 1.1_{\text{stat}} \pm 0.2_{\text{syst}} \times 10^{-26} \,\text{e} \cdot \text{cm}$$

 $|d_n| < 1.8 \times 10^{-26} \,\text{e} \cdot \text{cm}$ (90% CL)

[Phys. Rev. Lett. 124, 081803 (2020)]

High Precision

$$d_n = 0.0 \pm 1.1_{\text{stat}} \pm 0.2_{\text{syst}} \times 10^{-26} \,\text{e} \cdot \text{cm}$$

 $|d_n| < 1.8 \times 10^{-26} \,\text{e} \cdot \text{cm}$ (90% CL)

[Phys. Rev. Lett. 124, 081803 (2020)]

n2EDM

Image Credit: NASA

D. Ries (SPIN 2023 Durham, NC)

UCN @ PSI

High Precision

$$d_n = 0.0 \pm 1.1_{\text{stat}} \pm 0.2_{\text{syst}} \times 10^{-26} \,\text{e} \cdot \text{cm}$$

 $|d_n| < 1.8 \times 10^{-26} \,\text{e} \cdot \text{cm}$ (90% CL)

[Phys. Rev. Lett. 124, 081803 (2020)]

n2EDM

Image Credit: NASA

D. Ries (SPIN 2023 Durham, NC)

UCN @ PSI

September 26, 2023 32/45

High Precision

$$d_n = 0.0 \pm 1.1_{\text{stat}} \pm 0.2_{\text{syst}} \times 10^{-26} \,\text{e} \cdot \text{cm}$$

 $|d_n| < 1.8 \times 10^{-26} \,\text{e} \cdot \text{cm}$ (90% CL)

[Phys. Rev. Lett. 124, 081803 (2020)]

Statistical sensitivity:

$$\sigma = \frac{\hbar}{2E\alpha T\sqrt{N}}$$

With:

- E: Electric field strength
- α : Visibility of pattern, $\alpha = \frac{N_1 N_1}{N_1 + N_1}$
- T: Free precession time
- N: Number of neutrons

nEDM apparatus

Photo: Zema Chowdhuri, PSI

Reminder

$$2\pi f(\uparrow\uparrow) = \frac{2\mu}{\hbar}B + \frac{2d}{\hbar}E$$
$$2\pi f(\uparrow\downarrow) = \frac{2\mu}{\hbar}B - \frac{2d}{\hbar}E$$

$$f(\uparrow\uparrow) - f(\uparrow\downarrow) = \frac{2}{\pi\hbar} dE$$

n2EDM

Reminder

$$2\pi f(\uparrow\uparrow) = \frac{2\mu}{\hbar}B + \frac{2d}{\hbar}E$$
$$2\pi f(\uparrow\downarrow) = \frac{2\mu}{\hbar}B - \frac{2d}{\hbar}E$$

$$f(\uparrow\uparrow)-f(\uparrow\downarrow)=\frac{2}{\pi\hbar}dE$$

only if:
$$\frac{2\mu}{\hbar}(B(t \triangleq \uparrow\uparrow) - B(t \triangleq \uparrow\downarrow)) = 0$$

[Phys. Rev. Lett. 124, 081803 (2020)]

D. Ries (SPIN 2023 Durham, NC)

UCN @ PSI

September 26, 2023 35/45

n2EDM

Co-magnetometry

D. Ries (SPIN 2023 Durham, NC)

September 26, 2023 35/45

Systematic effects

$$\mathcal{R} = \left| \frac{\gamma_n}{\gamma_{\rm Hg}} \right| (\mathbf{1} + \delta_{\rm EDM})$$

 $+\delta_{\mathsf{EDM}}^{\mathsf{false}} + \delta_{\mathsf{quad}} + \delta_{\mathsf{grav}} + \delta_{\mathcal{T}} + \delta_{\mathsf{Earth}} + \delta_{\mathsf{light}} + \delta_{\mathsf{inc}} + \delta_{\mathsf{other}})$

n2EDM

Systematic effects

$$\mathcal{R} = \left| \frac{\gamma_n}{\gamma_{\rm Hg}} \right| (\mathbf{1} + \delta_{\rm EDM})$$

 $+\delta_{\mathsf{EDM}}^{\mathsf{false}} + \delta_{\mathsf{quad}} + \delta_{\mathsf{grav}} + \delta_{\mathcal{T}} + \delta_{\mathsf{Earth}} + \delta_{\mathsf{light}} + \delta_{\mathsf{inc}} + \delta_{\mathsf{other}})$

- δ_{Earth} : Earth rotation
 - $\gamma_n < 0 < \gamma_{Hg}$.
 - PSI not at Earth's equator.
 - \mathcal{R} depends on direction of B_0 .
 - luckily, ω_{Earth} well known.

n2EDM

Systematic effects

$$\mathcal{R} = \left|\frac{\gamma_n}{\gamma_{\rm Hg}}\right| (\mathbf{1} + \delta_{\rm EDM})$$

 $+\delta_{\text{FDM}}^{\text{false}} + \delta_{\text{guad}} + \delta_{\text{grav}} + \delta_{\text{T}} + \delta_{\text{Earth}} + \delta_{\text{light}} + \delta_{\text{inc}} + \delta_{\text{other}})$

- δ_{Farth} : Earth rotation
 - $\gamma_n < 0 < \gamma_{Hq}$.
 - PSI not at Earth's equator.
 - \mathcal{R} depends on direction of B_0 .
 - luckily, ω_{Farth} well known.

n2EDM Overview

n2EDM

n2EDM Magnetically Shielded Room

< 100 pT in inner m^3 shielding factor 10⁵ at 0.01 Hz

D. Ries (SPIN 2023 Durham, NC)

UCN @ PSI

September 26, 2023 38/45

Active Magnetic Shielding

- 8 independent Coils
 - 3 currents each
- 490 wire paths
- 55 km wires
- 3.2 t of wire
- 780 m cable trays
- Several kW heat

n2EDM

JItracold Neutrons

n2EDM

2023: UCN Switch and Detetectors

2023: UCN Switch and Detetectors

n2EDM

Precession Chamber

D. Ries (SPIN 2023 Durham, NC)

Precession Chamber

n2EDM

D. Ries (SPIN 2023 Durham, NC)

- n2EDM has entered its commissioning with neutrons phase
- Neutron optics / switch / shutters, DAQ / Control, spin analysing detectors, spin transport coils already working, being optimized.
- Up next: Spin flippers, Hg co-magnetometry, Cs vapor magnetometers, high voltage.
- Stay tuned for the first Ramsey measurements and EDM results!

τSPECT

n2EDM

n2EDM

Thank you for your attention!

D. Ries (SPIN 2023 Durham, NC)

UCN @ PSI

Backup

D. Ries (SPIN 2023 Durham, NC)

UCN Detection

Slow neutrons are fundamentally hard to detect (= to generate an electric signal)

UCN Detection

Slow neutrons are fundamentally hard to detect (= to generate an electric signal)

- Neutron capture on ¹⁰B
- Subsequent decay into $\alpha + {}^{7}$ Li back-to-back
- Charged particle generates light in scintillator
- Detect light in Silicon Photomultiplier (SiPM)

UCN Detection

Slow neutrons are fundamentally hard to detect (= to generate an electric signal)

- Neutron capture on ¹⁰B O(100 nm)
- Subsequent decay into $\alpha + {}^{7}$ Li back-to-back
- Charged particle generates light in scintillator O(10 $\mu\text{m})$
- Detect light in Silicon Photomultiplier (SiPM)

nEDM schematic

[Phys. Rev. Lett. 124, 081803 (2020)]

D. Ries (SPIN 2023 Durham, NC)

UCN @ PSI

September 26, 2023 48/45

nEDM numbers

- Applied electric field: 11 kV cm⁻¹
- Average visibility α : 0.76
- Time of free precession: 180 s
- Average # of UCN in chamber: 11400
- Sensitivity per cycle: $\sigma = 2 \times 10^{-24} \,\mathrm{e} \cdot \mathrm{cm/c}$

- Data taken: 2015 & 2016
- Total measurement cycles: 54068

t SPECT

nFDM #

Systematics: Marginally Trapped Neutrons

Populated closed orbits:

- Counted in short storage time runs
- Lost in long runs

\Rightarrow Systematic shift towards small $\tau_n!$

D. Ries (SPIN 2023 Durham, NC)

UCN @ PSI

t SPect

Data Blinding

Precision measurement with a long history Expected zero result \Rightarrow Blind analysis necessary!

How to blind a clock comparison experiment?

More results: Dark matter

Another question for the Standard Model:

What is dark matter made of?

Axions, or Axion like particles (ALPs):

• Proposed in 1977 to solve the strong CP problem.

[R. Peccei and H. Quinn, Phys. Rev. Lett. 38, 1440 (1977)]

- Very low mass ALPs: Good dark matter candidate.
- Could form coherently oscillating field permeating the universe.
- Coupling to gluons \rightarrow nucleons \rightarrow oscillating EDM.
- Analyses on EDM data looking for oscillations: Limits on axion couplings etc.

nEDM axion result

[Abel et al., Phys. Rev. X 7, 041034 (2017)]