

MEASUREMENT OF THE DEUTERON ELECTRIC DIPOLE MOMENT USING A STORAGE RING

SPIN'23, DURHAM CONVENTION CENTER 09/25/2023

VERA SHMAKOVA

SPIN'23/ Measurement of the deuteron electric dipole moment using a storage ring

Vera Shmakova

2

- Why Universe Matter dominated?
 - Experiment: *V. Barger, et al, Phys.Lett.B566, 8 (2003)* • Expectation from SCM: *W. Bernreuther, Lect. Notes Phys.591, 237 (2002)* $\frac{n_b - n_{\bar{b}}}{n_{\gamma}} \sim 10^{-18}$
- Preference of matter (A. Sakharov criteria, 1967)
 CP violation
- CP violation in SM is not sufficient

ELECTRIC DIPOLE MOMENT

• EDM violates both T, P symmetries

• EDM violates CP symmetry (if CPT conserved)

• EDM may possibly contain the missing cornerstone to explain the matter-antimatter asymmetry

 $\begin{aligned} \mathcal{P}: \quad H &= -\mu \vec{\sigma} \cdot \vec{B} + d\vec{\sigma} \cdot \vec{E} \\ \mathcal{T}: \quad H &= -\mu \vec{\sigma} \cdot \vec{B} + d\vec{\sigma} \cdot \vec{E} \end{aligned}$

Vera Shmakova

 $\vec{s} \vec{u}$

Ρ

EDM AT STORAGE RINGS

THOMAS - BMT EQUATION:

$$\frac{d\vec{S}}{dt} = [\vec{\Omega}_{MDM} - \vec{\Omega}_{cycl} + \vec{\Omega}_{EDM}] \times \vec{S}$$
$$\vec{\Omega}_{MDM} - \vec{\Omega}_{cycl} = -\frac{q}{m} \{ G\vec{B} - (G - \frac{1}{\gamma^2 - 1}) \frac{\vec{\beta} \times \vec{E}}{c} \} \swarrow \vec{\Omega}_{EDM} = -\frac{\eta q}{2mc} \{ \vec{E} + c \vec{\beta} \times \vec{B} \}$$

EDM AT STORAGE RINGS

THOMAS - BMT EQUATION:

$$\frac{d\vec{S}}{dt} = [\vec{\Omega}_{MDM} - \vec{\Omega}_{cycl} + \vec{\Omega}_{EDM}] \times \vec{S}$$
$$\vec{\Omega}_{MDM} - \vec{\Omega}_{cycl} = -\frac{q}{m} \{\vec{G}\vec{E} - (\vec{G} - \frac{1}{\gamma^2 - 1}) \frac{\vec{\beta} \times \vec{E}}{\rho}\} \bigvee \vec{\Omega}_{EDM} = -\frac{\eta q}{2mc} \{\vec{E} + c \vec{\beta} \times \vec{B}\}$$

"Frozen spin": in the absence of EDM spin stay aligned to momentum

In case of purely electric ring:

- magnetic field is absent
- momentum is chosen that term $(G \frac{1}{v^2 1}) = 0$ •

radial electric field causes the spin to precess out of the plane linearly

EDM FOR CHARGED PARTICLE IN 3 STAGES

* F. Abusaif et al., "Storage Ring to Search for Electric Dipole Moments of Charged Particles - Feasibility Study," 2019.https://arxiv.org/abs/1912.07881

PRECURSOR EXPERIMENT AT COSY

COoler SYnchrotron COSY:

- magnetic storage ring
- polarized protons and deuterons
- momenta p = 0.3 3.7 GeV/c
- starting point for EDM measurement

EDM AT MAGNETIC RING

THOMAS - BMT EQUATION:

MDM causes fast spin precession in horizontal plane

RF WIEN FILTER

RF WIEN FILTER

RF Wien filter

Heberling, Hölscher and J. Slim

J. Slim et al. Nucl. Instrum. Methods Phys. Res. A 828, 116 (2016)

- Lorentz force $\vec{F}_L = q(\vec{E} + \vec{v} \times \vec{B}) = 0$ $\vec{B} = (0, B_y, 0)$ And $\vec{E} = (E_x, 0, 0)$ provides $\vec{E} \times \vec{B}$ by design

phase lock between spin precession and RF Wien filter

EFFECT ON INVARIANT SPIN AXIS

 $y \uparrow y' \parallel \vec{c}$ EDM absent z (beam) $\vec{p}(t)$ $u' \parallel \vec{c}$ Pure EDM effect z (beam) $\vec{p}(t)$ $\| \vec{c}$ EDM + magnetic misalignments z (beam) \boldsymbol{x} $\vec{p}(t)$

r

MEASUREMENT OF THE EDM EFFECT

How the EDM effect actually measured:

- The RF Wien filter is rotated about beam axis:
 - it generates radial magnetic field, which allows to compensate to radial tilt of invariant spin axis
- Solenoid introduces longitudinal magnetic field:
 - It change the invariant spin axis direction longitudinally

PRINCIPLE OF MEASUREMENTS

 Coherent ensembles in ring plane spin coherence time has to be longer then a measurement

• SCT > 1000 s.

PRINCIPLE OF MEASUREMENTS

- Coherent ensembles in ring plane spin coherence time has to be longer then a measurement
- SCT > 1000 s.
- Beam emittance and chromaticity was optimized to achieve long SCT

SPINTUNE MEASUREMENT

- Spin precesses with 120 kHz
- With event rates of ~ 15000 s⁻¹, there is 1 hit per 10 precessions.
- Not possible to resolve horizontal oscillation directly
- Spintune is determined in each time bin with monitoring phase of measured horizontal asymmetry with fixed spin tune:

$$v_s(n) = v_s^{fix} + \frac{1}{2\pi} \frac{d\phi}{dn} = v_s^{fix} + \Delta v_s(n)$$

D. Eversmann et al. Phys. Rev. Lett. 115, 094801 (2015)

SPINTUNE MEASUREMENT

- Spin precesses with 120 kHz
- With event rates of ~ 15000 s⁻¹, there is 1 hit per 10 precessions.
- Not possible to resolve horizontal oscillation directly
- Spintune is determined in each time bin with monitoring phase of measured horizontal asymmetry with fixed spin tune:

$$v_s(n) = v_s^{fix} + \frac{1}{2\pi} \frac{d\phi}{dn} = v_s^{fix} + \Delta v_s(n)$$

Spintune is a crucial precision tool used for

- horizontal polarization analysis and feedback system
- snake calibration
- study systematics effects in a ring

PRINCIPLE OF MEASUREMENTS

- Coherent ensembles in ring plane spin coherence time has to be longer then a measurement
- SCT > 1000 s.
- Spin precesses with 120 kHz.
- Wien filter operates on resonance: $f = f_{COSY} + f_{spin pres} = 871.430 \text{ kHz}$
- Phase lock between spin precession and Wien filter RF

Vera Shmakova

Feedback: the basic workflow:

PRINCIPLE OF MEASUREMENTS

- Feedback monitors spin precession phase and adjust WF frequency to maintain the relative phase between spin precession and Wien filter
- Adjustment uncertainty of 0.2 rad

Feedback: the basic workflow

SELECTED BUNCH MANIPULATION

JEDI

- Two bunches are stored in the ring
- In order to manipulate spin of one selected bunch, six high-speed RF switches were installed to gate the WF power for one of two bunches
- Capable of short switch time ~ few ns
- Bunch (2) gets the RF Wien filter power and oscillate
- Bunch ^① is used for phase locking with feedback system

SPIN'23/ Measurement of the deuteron electric dipole moment using a storage ring

Vera Shmakova

100

-0.2

500

400

- Both vertical and horizontal asymmetries dependencies for each Wien filter and snake setting were fit together in a combined fit.
- For horizontal asymmetry only absolute value is available
- Spin oscillation frequency depending on the Wien filter and snake settings is going to the resonance strength map

-0.015

JEDI

- Both vertical and horizontal asymmetries dependencies as well as a phase dependencies for each Wien filter and snake setting were fit together in a combined fit.
- For horizontal asymmetry only absolute value is available.
- Spin oscillation frequency depending on the Wien filter and snake settings is going to the resonance strength map.
- Including all three dependencies in the combined fit increases the accuracy of the results.

SPIN'23/ Measurement of the deuteron electric dipole moment using a storage ring

Vera Shmakova

Residual 1e-10

SPIN'23/ Measurement of the deuteron electric dipole moment using a storage ring

Vera Shmakova

24

-0.015

RESONANCE STRENGTH MAP

Parametric resonance strength defined as:

 $\varepsilon^{EDM} = \frac{\Omega^{P_y}}{\Omega^{rev}}$

Minimum of the surface shows orientation of invariant spin axis:

 $\phi_0^{\text{wf}} = 2.51 \pm 0.04 \text{ mrad}$

 $X_0^{\rm sol}$ = -3.93 ± 0.06 mrad

Orientation of precession axis without EDM will come out of spin tracking calculations

$$\varepsilon = \frac{\chi_{WF}}{4\pi} \sqrt{\left(A_{WF}^2 \left(\phi_0^{WF} - \phi^{WF}\right)^2 + A_{Sol}^2 \left(\frac{\chi_0^{Sol}}{2\sin\left(\pi\nu_s\right)} - \chi^{Sol}\right)^2\right) + \varepsilon_0}$$

SUMMARY AND OUTLOOK

- Charged hadron EDMs: Possibility to find sources of CP violation and to explain matter-antimatter asymmetry in the universe.
- Precursor experiments performed as a proof-of-principle of EDM measurement at storage rings.
- New method of manipulating the polarization of the selected bunch out of two bunches in the ring was developed and performed.
- CERN Yellow Report prepared by CPEDM collaboration. F. Abusaif et al., "Storage Ring to Search for Electric Dipole Moments of Charged Particles - Feasibility Study," 2020 https://arxiv.org/abs/1912.07881
- Work on Design Report for PTR ongoing.
- See Frank Rathmann's talk for more information on JEDI program, Thursday 18:00