New Developments in Di-Hadron Theory and Phenomenology

(Andreas Metz, Temple University)

Part 1 Definition, interpretation and evolution of di-hadron fragmentation functions (DiFFs)
 (D. Pitonyak, C. Cocuzza, A. Metz, A. Prokudin, N. Sato, 2305.11995)

Part 2 Simultaneous global analysis of DiFFs, transversity PDFs, and tensor charges
(C. Cocuzza, A. Metz, D. Pitonyak, A. Prokudin, N. Sato, R. Seidl, 2306.12998 / 2308.14857)

Motivation

- In spin physics, DiFFs relevant for extraction of transversity h_{1}^{q}
- Access to transversity using chiral-odd spin-dependent FFs
- Single-hadron fragmentation (Collins effect) (Collins, 1992)

$$
h_{1}^{q} \otimes H_{1}^{\perp h / q}
$$

correlation btw transverse quark spin and transverse momentum of hadron, TMD factorization

- Single-hadron fragmentation using collinear twist-3 factorization (Kang, Yuan, Zhou, 2010 / Metz, Pitonyak, 2012)
- Di-hadron fragmentation (Collins, Heppelmann, Ladinsky, 1993)

$$
h_{1}^{q} \otimes H_{1}^{\varangle h_{1} h_{2} / q}
$$

correlation btw transverse quark spin and relative transverse momentum of $\left(h_{1}, h_{2}\right)$, collinear twist-2 factorization

- Previous work on di-hadron production related to spin physics almost exclusively by Pavia Group
- Extraction of h_{1}^{q} from global analysis of di-hadron data (Radici, Bacchetta, 2018)
- tensor charge

$$
\delta q=\int_{0}^{1} d x\left(h_{1}^{q}(x)-h_{1}^{\bar{q}}(x)\right) \quad g_{T}=\delta u-\delta d
$$

figure modified from arXiv:2205.00999
(JAM-3D)
for δu, some tension between di-hadron channel on the one hand, and single-hadron channel and lattice QCD on the other

- Independent numerical analysis of di-hadron channel well motivated
- We also revisited the definition, interpretation and evolution of DiFFs

Lessons from Single-Hadron Fragmentation Functions

- Process and frames

$$
q(k) \rightarrow h\left(P_{h}\right)+X \quad P_{h}^{-}=z k^{-} \text {large }
$$

hadron frame: $\vec{P}_{h T}=0 \quad \vec{k}_{T} \neq 0$

$$
\text { parton frame: } \vec{P}_{h \perp} \neq 0 \quad \vec{k}_{\perp}=0 \quad\left(\vec{P}_{h \perp}=-z \vec{k}_{T}\right)
$$

- Definition and interpretation

$$
\begin{aligned}
D_{1}^{h / q}\left(z, z^{2} \vec{k}_{T}^{2}\right) & =\frac{1}{4 z} \int \frac{d \xi^{+} d^{2} \vec{\xi}_{T}}{(2 \pi)^{3}} e^{i k \cdot \xi} \operatorname{Tr}\left[\langle 0| \psi_{q}(\xi)|h, X\rangle\langle h, X| \bar{\psi}_{q}(0)|0\rangle \gamma^{-}\right]_{\xi^{-}=0} \\
& =D_{1}^{h / q}\left(z, \vec{P}_{h \perp}^{2}\right)
\end{aligned}
$$

- $D_{1}^{h / q}\left(z, \vec{P}_{h \perp}^{2}\right)$ is number density (see, e.g., Collins, Foundations of Perturbative $Q C D$)
- $D_{1}^{h / q}\left(z, \vec{P}_{h \perp}^{2}\right) d z d^{2} \vec{P}_{h \perp}$ is number of hadrons h in $[z, z+d z],\left[\vec{P}_{h \perp}, \vec{P}_{h \perp}+d^{2} \vec{P}_{h \perp}\right]$
- factor $1 / 4 z$ is crucial for interpretation as number density
- Collinear FF

$$
D_{1}^{h / q}(z)=\int d^{2} \vec{P}_{h \perp} D_{1}^{h / q}\left(z, \vec{P}_{h \perp}^{2}\right)
$$

- Number of hadrons in quark q

$$
\sum_{h} \int d z D_{1}^{h / q}(z)=\left\langle N^{q}\right\rangle
$$

- Momentum sum rule (Collins, Soper, 1981 / Meissner, Metz, Pitonyak, 2010)

$$
\sum_{h} \int d z z D_{1}^{h / q}(z)=1
$$

- Leading-order cross section for $e^{-} e^{+} \rightarrow h X$

$$
\frac{d \sigma}{d z}=\sum_{q, \bar{q}} \hat{\sigma}^{q} D_{1}^{h / q}(z) \quad \text { with } \hat{\sigma}^{q}=\hat{\sigma}^{\bar{q}}=\hat{\sigma}\left(e^{-} e^{+} \rightarrow \gamma^{(*)} \rightarrow q \bar{q}\right)=\frac{4 \pi e_{q}^{2} \alpha_{\mathrm{em}}^{2} N_{c}}{3 Q^{2}}
$$

- Recent work on sum rules for FFs (Collins, Rogers, 2023)
- does not put into question the definition of FFs

Definition and Interpretation of DiFFs

- Process and frames

$$
\begin{array}{rc}
q(k) \rightarrow h_{1}\left(P_{1}\right)+h_{2}\left(P_{2}\right)+X & P_{h}^{-}=z k^{-} \text {large } \\
P_{h}=P_{1}+P_{2} \quad R=\frac{1}{2}\left(P_{1}-P_{2}\right) & P_{1,2}^{-}=z_{1,2} k^{-} \quad z=z_{1}+z_{2}
\end{array}
$$

$$
\text { hadron frame: } \vec{P}_{h T}=0 \quad \vec{k}_{T} \neq 0
$$

$$
\text { parton frame: } \vec{P}_{h \perp} \neq 0 \quad \vec{k}_{\perp}=0 \quad\left(\vec{P}_{h \perp}=-z \vec{k}_{T}\right)
$$

- Definition and interpretation

$$
\begin{aligned}
& \frac{1}{64 \pi^{3} z_{1} z_{2}} \int \frac{d \xi^{+} d^{2} \vec{\xi}_{T}}{(2 \pi)^{3}} e^{i k \cdot \xi} \operatorname{Tr}\left[\langle 0| \psi_{q}(\xi)\left|h_{1}, h_{2}, X\right\rangle\left\langle h_{1}, h_{2}, X\right| \bar{\psi}_{q}(0)|0\rangle \gamma^{-}\right]_{\xi^{-}=0} \\
& =D_{1}^{h_{1} h_{2} / q}\left(z_{1}, z_{2}, \vec{P}_{1 \perp}, \vec{P}_{2 \perp}\right) \equiv D_{1}^{h_{1} h_{2} / q}\left(z_{1}, z_{2}, \vec{P}_{1 \perp}^{2}, \vec{P}_{2 \perp}^{2}, \vec{P}_{1 \perp} \cdot \vec{P}_{2 \perp}\right) \\
& -D_{1}^{h_{1} h_{2} / q}\left(z_{1}, z_{2}, \vec{P}_{1 \perp}, \vec{P}_{2 \perp}\right) \text { is number density for hadron pairs }\left(h_{1}, h_{2}\right)
\end{aligned}
$$

- factor $1 / 64 \pi^{3} z_{1} z_{2}$ is crucial for interpretation as number density
- previously defined/used DiFFs in spin physics have no number density interpretation (starting from pioneering work by Bianconi, Boffi, Jakob, Radici, 1999)
- Collinear DiFFs (see also, Majumder, Wang, 2004)

$$
D_{1}^{h_{1} h_{2} / q}\left(z_{1}, z_{2}\right)=\int d^{2} \vec{P}_{1 \perp} d^{2} \vec{P}_{2 \perp} D_{1}^{h_{1} h_{2} / q}\left(z_{1}, z_{2}, \vec{P}_{1 \perp}, \vec{P}_{2 \perp}\right)
$$

- Number of hadron pairs in quark q

$$
\sum_{h_{1}, h_{2}} \int d z_{1} d z_{2} D_{1}^{h_{1} h_{2} / q}\left(z_{1}, z_{2}\right)=\left\langle N^{q}\left(N^{q}-1\right)\right\rangle
$$

- Momentum sum rule
$\sum_{h_{1}} \int_{0}^{1-z_{2}} d z_{1} \int d^{2} \vec{P}_{1 \perp} z_{1} D_{1}^{h_{1} h_{2} / q}\left(z_{1}, z_{2}, \vec{P}_{1 \perp}, \vec{P}_{2 \perp}\right)=\left(1-z_{2}\right) D_{1}^{h_{2} / q}\left(z_{2}, \vec{P}_{2 \perp}^{2}\right)$
- sum rule after $\int d^{2} \vec{P}_{2 \perp}$ already in previous literature (de Florian, Vanni, 2003 / ...)
- similar (integrated) sum rule for double-parton distributions (Gaunt, Stirling, 2009 / ...)
- Leading-order cross section for $e^{-} e^{+} \rightarrow\left(h_{1} h_{2}\right) X$

$$
\frac{d \sigma}{d z_{1} d z_{2}}=\sum_{q, \bar{q}} \hat{\sigma}^{q} D_{1}^{h_{1} h_{2} / q}\left(z_{1}, z_{2}\right) \quad \text { with } \quad \hat{\sigma}^{q}=\frac{4 \pi e_{q}^{2} \alpha_{\mathrm{em}}^{2} N_{c}}{3 Q^{2}}
$$

Definition and Interpretation of Extended DiFFs

- More on kinematics
- invariant mass of di-hadron pair, and alternative variable for longitudinal momentum

$$
M_{h}^{2}=P_{h}^{2}=\left(P_{1}+P_{2}\right)^{2} \quad \zeta=\frac{z_{1}-z_{2}}{z}
$$

- momenta P_{1} and P_{2} in hadron frame $\left(\vec{P}_{h T}=0\right)$

$$
P_{1}=\left(\frac{M_{1}^{2}+\vec{R}_{T}^{2}}{(1+\zeta) P_{h}^{-}}, \frac{1+\zeta}{2} P_{h}^{-}, \vec{R}_{T}\right) \quad P_{2}=\left(\frac{M_{2}^{2}+\vec{R}_{T}^{2}}{(1-\zeta) P_{h}^{-}}, \frac{1-\zeta}{2} P_{h}^{-},-\vec{R}_{T}\right)
$$

- important relation

$$
\vec{R}_{T}^{2}=\frac{1-\zeta^{2}}{4} M_{h}^{2}-\frac{1-\zeta}{2} M_{1}^{2}-\frac{1+\zeta}{2} M_{2}^{2}
$$

- Extended DiFFs (extDiFFs)
- in contrast to $D_{1}^{h_{1} h_{2} / q}\left(z_{1}, z_{2}\right)$, extDiFFs (also) depend on M_{h} (or \vec{R}_{T})
- extDiFFs appear in transversity-related observables
- Number density interpretation for (properly defined) extDiFFs
- when changing variables, include Jacobian of transformation in definition of DiFFs
- example

$$
D_{1}^{h_{1} h_{2} / q}\left(z, \zeta, \vec{k}_{T}, \vec{R}_{T}\right)=\frac{z^{3}}{2} D_{1}^{h_{1} h_{2} / q}\left(z_{1}, z_{2}, \vec{P}_{1 \perp}, \vec{P}_{2 \perp}\right)
$$

- further extDiFFs

$$
\begin{aligned}
D_{1}^{h_{1} h_{2} / q}\left(z, M_{h}\right) & =\int d \zeta D_{1}^{h_{1} h_{2} / q}\left(z, \zeta, M_{h}\right) \\
& =\int d \zeta \frac{\pi}{2} M_{h}\left(1-\zeta^{2}\right) D_{1}^{h_{1} h_{2} / q}\left(z, \zeta, \vec{R}_{T}^{2}\right)
\end{aligned}
$$

- experimental information on $D_{1}^{h_{1} h_{2} / q}\left(z, M_{h}\right)$ from Belle (Seidl et al, 2017)
- Leading-order cross section for $e^{-} e^{+} \rightarrow\left(h_{1} h_{2}\right) X$ (example)

$$
\frac{d \sigma}{d z d M_{h}}=\sum_{q, \bar{q}} \hat{\sigma}^{q} D_{1}^{h_{1} h_{2} / q}\left(z, M_{h}\right) \quad \text { with } \quad \hat{\sigma}^{q}=\frac{4 \pi e_{q}^{2} \alpha_{\mathrm{em}}^{2} N_{c}}{3 Q^{2}}
$$

Evolution of DiFFs

- Homogeneous and in-homogeneous contributions to evolution (sample diagrams)

- Evolution of extDiFFs (quark non-singlet)

$$
\frac{\partial}{\partial \ln \mu^{2}} D_{1}^{h_{1} h_{2} / q}\left(z, \zeta, \vec{R}_{T}^{2} ; \mu\right)=\int_{z}^{1} \frac{d w}{w} D_{1}^{h_{1} h_{2} / q}\left(\frac{z}{w}, \zeta, \vec{R}_{T}^{2} ; \mu\right) P_{q \rightarrow q}(w)
$$

- evolution of extDiFFs only contains homogeneous term (standard DGLAP) (see also Ceccopieri, Bacchetta, Radici, 2007)
- corresponding evolution equation for $H_{1}^{\varangle h_{1} h_{2} / q}\left(z, \zeta, \vec{R}_{T}^{2} ; \mu\right)$
- Upon $\int d^{2} \vec{R}_{T}$, we recover evolution of $D_{1}^{h_{1} h_{2} / q}\left(z_{1}, z_{2} ; \mu\right)$ where in-homogeneous term contributes as well (de Florian, Vanni, 2003 / ...)

Simultaneous Extraction of DiFFs and Transversity PDFs

- Main observables/input for DiFFs
- unpolarized cross section in $e^{-} e^{+} \rightarrow\left(h_{1} h_{2}\right) X$ (data from Belle)

$$
\frac{d \sigma}{d z d M_{h}}=\frac{4 \pi \alpha_{\mathrm{em}}^{2} N_{c}}{3 Q^{2}} \sum_{q, \bar{q}} e_{q}^{2} D_{1}^{q}\left(z, M_{h}\right)
$$

- PYTHIA event generator
- Artru-Collins asymmetry in $e^{-} e^{+} \rightarrow\left(h_{1} h_{2}\right)\left(\bar{h}_{1} \bar{h}_{2}\right) X$ (data from Belle)

$$
A^{e^{-} e^{+}}\left(z, M_{h}, \bar{z}, \bar{M}_{h}\right)=\frac{\sin ^{2} \theta \sum_{q, \bar{q}} e_{q}^{2} H_{1}^{\varangle, q}\left(z, M_{h}\right) H_{1}^{\varangle, \bar{q}}\left(\bar{z}, \bar{M}_{h}\right)}{\left(1+\cos ^{2} \theta\right) \sum_{q, \bar{q}} e_{q}^{2} D_{1}^{q}\left(z, M_{h}\right) D_{1}^{\bar{q}}\left(\bar{z}, \bar{M}_{h}\right)}
$$

- Further constraints on DiFFs from transverse single-spin asymmetries in semi-inclusive DIS and proton-proton collisions (simultaneous analysis)
- Observables for transversity PDFs
- transverse SSA in SIDIS (data from HERMES and COMPASS)

$$
A_{U T}^{\mathrm{SIDIS}}=c(y) \frac{\sum_{q, \bar{q}} e_{q}^{2} h_{1}^{q}(x) H_{1}^{\varangle, q}\left(z, M_{h}\right)}{\sum_{q, \bar{q}} e_{q}^{2} f_{1}^{q}(x) D_{1}^{q}\left(z, M_{h}\right)}
$$

- transverse SSA in $p p$ collisions (data from STAR)

$$
\begin{gathered}
A_{U T}^{p p}=\frac{\mathcal{H}\left(M_{h}, P_{h T}, \eta\right)}{\mathcal{D}\left(M_{h}, P_{h T}, \eta\right)} \\
\mathcal{H}=2 P_{h T} \sum_{i} \sum_{a, b, c} \int_{x_{a}^{\min }}^{1} \mathrm{~d} x_{a} \int_{x_{b}^{\min }}^{1} \frac{\mathrm{~d} x_{b}}{z} h_{1}^{a}\left(x_{a}\right) f_{1}^{b}\left(x_{b}\right) \frac{\mathrm{d} \Delta \hat{\sigma}_{a} \uparrow}{\mathrm{~d} \hat{t}}{ }_{b c^{\uparrow}} H_{1}^{\varangle, c}\left(z, M_{h}\right) \\
\mathcal{D}=2 P_{h T} \sum_{i} \sum_{a, b, c} \int_{x_{a}^{\min }}^{1} \mathrm{~d} x_{a} \int_{x_{b}^{\min }}^{1} \frac{\mathrm{~d} x_{b}}{z} f_{1}^{a}\left(x_{a}\right) f_{1}^{b}\left(x_{b}\right) \frac{\mathrm{d} \hat{\sigma}_{a}{ }^{\uparrow}{ }_{b \rightarrow c^{\uparrow}}}{\mathrm{d} \hat{t}} D_{1}^{c}\left(z, M_{h}\right)
\end{gathered}
$$

- Quality of fit: unpolarized cross section for $e^{-} e^{+} \rightarrow\left(h_{1} h_{2}\right) X$

(data from Belle, 2017)
- Quality of fit: Artru-Collins asymmetry

(data from Belle, 2011)
- Quality of fit: $A_{U T}^{\text {SIDIS }}$ (data from HERMES, 2008 / COMPASS, 2023)

$\boldsymbol{A}_{U T}^{\mathrm{SIDIS}}$
† Hermes
\ddagger Compass p
\ddagger Compass D
垔 $\operatorname{JAMDiFF}(\mathrm{w} / \mathrm{LQCD})$

- Quality of fit: $A_{U T}^{p p}$ (sample data for $\sqrt{s}=200 \mathrm{GeV}$ from STAR, 2015)

- Quality of fit: $A_{U T}^{p p}$ (sample data for $\sqrt{s}=500 \mathrm{GeV}$ from STAR, 2017)

- Extracted DiFFs $D_{1}^{\pi^{+} \pi^{-} / a} \quad(a=q, g)$

$$
D_{1}^{u}=D_{1}^{d}=D_{1}^{\bar{u}}=D_{1}^{\bar{d}} \quad D_{1}^{s}=D_{1}^{\bar{s}} \quad D_{1}^{c}=D_{1}^{\bar{c}} \quad D_{1}^{b}=D_{1}^{\bar{b}} \quad D_{1}^{g}
$$

- with our new definition of DiFFs we can compute $\left\langle M_{h}\right\rangle$ and $\langle z\rangle$
- Extracted DiFF $H_{1}^{\varangle \pi^{+} \pi^{-} / u}$

$$
H_{1}^{\varangle u}=-H_{1}^{\varangle d}=-H_{1}^{\varangle \bar{u}}=H_{1}^{\varangle \bar{d}} \quad H_{1}^{\varangle q}=0 \text { for } q=s, c, b
$$

- Extracted transversity PDFs
- fit of $h_{1}^{u} v, h_{1}^{d}, h_{1}^{\bar{u}}=-h_{1}^{\bar{d}}$ large- N_{c} constraint for antiquarks (Pobylitsa, 2003)

- Soffer bound (Soffer, 1995)

$$
h_{1}^{q}(x) \leq \frac{1}{2}\left|f_{1}^{q}(x)+g_{1}^{q}(x)\right|
$$

- small-x constraint (Kovchegov, Sievert, 2019)

$$
h_{1}^{q} \xrightarrow{x \rightarrow 0} x^{\alpha_{q}} \quad \alpha_{q} \approx 0.17 \pm 0.085
$$

- JAM3D* $=$ JAM3D-22 (no LQCD)
+ antiquarks with $h_{1}^{\bar{u}}=-h_{1}^{\bar{d}}$
+ small- x constraint
- agreement between all three analyses within errors

Extraction of Tensor Charges

- Tensor charges and comparison with results from LQCD

- for δu, we find 3.2σ discrepancy with ETMC, 3.9σ discrepancy with PNDME
- what happens if LQCD results for δu and δd are included in the fit?
- Quality of fit: χ^{2} values for various data sets

		$\chi_{\text {red }}^{2}$	
Experiment	$N_{\text {dat }}$	w/ LQCD	no LQCD
Belle (cross section) [63]	1094	1.01	1.01
Belle (Artru-Collins) [92]	183	0.74	0.73
HERMES [72]	12	1.13	1.10
COMPASS $(p)[71]$	26	1.24	0.75
COMPASS (D) [71]	26	0.78	0.76
STAR (2015) [94]	24	1.47	1.67
STAR (2018) [64]	106	1.20	1.04
ETMC $\delta u[28]$	1	0.71	-
ETMC $\delta d[28]$	1	1.02	-
PNDME $\delta u[25]$	1	8.68	-
PNDME $\delta d[25]$	1	0.04	-
Total $\chi_{\text {red }}^{\mathbf{2}}\left(N_{\text {dat }}\right)$		$\mathbf{1 . 0 1}(1475)$	$\mathbf{0 . 9 8}(1471)$

- successful fit after inclusion of LQCD tensor charges
- Extracted transversity PDFs (w/ LQCD)
- Soffer bound (Soffer, 1995)

$$
h_{1}^{q}(x) \leq \frac{1}{2}\left|f_{1}^{q}(x)+g_{1}^{q}(x)\right|
$$

- small-x constraint (Kovchegov, Sievert, 2019)

$$
h_{1}^{q} \xrightarrow{x \rightarrow 0} x^{\alpha} q \quad \alpha_{q} \approx 0.17 \pm 0.085
$$

- after inclusion of LQCD tensor charges:
(1) increase of $h_{1}^{u} v$ for $x \gtrsim 0.3$
(2) h_{1}^{d} tends to become negative
- JAM3D* $=$ JAM3D-22 (w/ LQCD)
+ antiquarks with $h_{1}^{\bar{u}}=-h_{1}^{\bar{d}}$
+ small-x constraint
$+\delta u, \delta d$ from ETMC \& PNDME
- agreement between two analyses within errors
- Extracted transversity PDFs: comp. no LQCD and w/ LQCD fits (with antiquarks)

- $h_{1}^{u} v$ is by far the largest distribution
- Soffer bound implies $h_{1}^{\bar{q}} \approx 0$ for $x \gtrsim 0.4$
- Tensor charges (no LQCD vs w/ LQCD)

- noticeable shift for δu after including LQCD results

Overall finding: universal nature of all available information on h_{1}^{q} (1) data for di-hadron production, (2) data for single-hadron production, (3) LQCD results for tensor charge, (4) Soffer bound, (5) small-x constraint

Need for New Data

- Unpolarized data for di-hadron production in SIDIS and $p p$ collision would help to constrain $D_{1}^{\pi^{+}} \pi^{-} / a$
- (Precise) data for $A_{U T}$ at any x would better constrain $h_{1}^{q_{v}}(x), h_{1}^{\bar{q}}(x)$
- For the tensor charge δq, (new) data for $x \gtrsim 0.2$ seems most important

Summary

- For both quarks and gluons, we propose a field-theoretic definition of DiFFs which have an interpretation as number densities
- Number density interpretation can be obtained for different variables of interest (including extDiFFs)
- Operator definition of DiFFs also allows one to "easily" obtain their evolution
- New numerical study of data on di-hadron production: Simultaneous global analysis of DiFFs, transversity PDFs, and tensor charges
- Main differences compared to previous analyses of di-hadron data: (1) inclusion of Belle cross section data, STAR 500 GeV data, all binnings for Artru-Collins and SIDIS asymmetries, (2) simultaneous fit of DiFFs and transversity PDFs,
(3) small- x theory constraint, (4) improved functional form for DiFF fit functions,
(5) inclusion of LQCD results for tensor charges, (6) fit of antiquark transversities
- We find compatibility of all available information on transversity PDFs

