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Problem Specification
• You have a lattice system that fits the following model:

• Finite Number of Sites (Sources and Sinks)
• Allocation of quarks and anti-quarks of specific 

flavors to each site.
• Per flavor, # of quarks = # of anti-quarks

• You have already computed the quark propagator via 
your giant eigenvalue computation.
• You have already decomposed the interpolating field to 

a low rank linear combinations of anti-symmetric 
product of propagators.
• We could adopt this to other pre-processing schemes.

• You want to measure things: 
• how do you quickly write down and evaluate the 

correlator?



Prior Work
• Computer Science: Tiramisu (High Performance DSL)
• Physics: Efficient algorithms for specific correlators
• Synthesis of Physics and CS
• Evaluation of hexaquark and dibaryon correlation functions

• Outstanding Problems in the synthesis
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Prior Work: Tiramisu  (tiramisu-compiler.org)
• A polyhedral compiler: exploits that many loop nests look like polyhedra of integers
• Designed for optimizing loop nests manipulating arrays
• C++ API for expressing algorithms and optimizations
• Separates Algorithm from Optimization Commands:

• Separate set of commands for loop manipulation, explicit hardware features, data layout, and data 
movement

1. Declare loop computations (unoptimized).

2. Declare optimization commands:
1. Iteration space/Data layout/Precomputation transformations

2. Use of hardware parallelism (threads, blocks, atomics, etc..)

3. Use of different memory technologies (cache, registers, …)

4. Communication to make this work…
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out.parallelize(x);
out.vectorize(y, 4);

for x in 0 … N
for y in 0 … N

out[x, y] = 0;
Pseudocode

var x(0, N), y(0, N);

computation out(x, y);

out(x, y) = 0;

Tiramisu



Tiramisu Example
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input c_B({i, j}, Float64);
input c_C({i, j}, Float64);
computation c_T1_init({i, k}, 0);
computation c_T1({i, j, k}, Float64);
c_T1.set_expression(c_T1(i, j, k) + c_A(i, j) * c_B(j, k));

Polyhedra

c_T1.interchange(j, k);

c_T1_init.gpu_tile(i, k, 16, 16, i0, k0, i1, k1);

c_T1.gpu_tile(i, k, 16, 16, i0, k0, i1, k1);

Level 1

copy_A_to_device.then(copy_B_to_device, 

computation::root).then(copy_C_to_device, 

computation::root).then(c_T1_init, computation::root).then(c_T1, k1);

Level 2

c_A.store_in(&b_A_gpu);

c_B.store_in(&b_B_gpu);

c_T1_init.store_in(&b_T1_gpu);

c_T1.store_in(&b_T1_gpu, {i, k});

Level 3



Tiramisu Example                 (There is also Halide)
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input c_B({i, j}, Float64);
input c_C({i, j}, Float64);
computation c_T1_init({i, k}, 0);
computation c_T1({i, j, k}, Float64);
c_T1.set_expression(c_T1(i, j, k) + c_A(i, j) * c_B(j, k));

Polyhedra

conv.compute_at(relu, xo)

.store_in(MemoryType::Register)

.gpu_lanes(c)

.unroll(x)

.unroll(y)

.update()

.split(r.x, rxo, rxi, 16)

.split(rxi, rxi, rxii, 2)

.reorder(c, rxii, x, y, r.y,      

r.z, rxi, rxo)

.gpu_lanes(c)

.unroll(x)

Schedule

copy_A_to_device.then(copy_B_to_device, 

computation::root).then(copy_C_to_device, 

computation::root).then(c_T1_init, 

computation::root).then(c_T1, k1);

Level 2

c_A.store_in(&b_A_gpu);

c_B.store_in(&b_B_gpu);

c_T1_init.store_in(&b_T1_gpu);

c_T1.store_in(&b_T1_gpu, {i, k});

Level 3

conv(c, x, y, n) = bias(c);

conv(c, x, y, n) += filter(c, r.y, r.z, r.x) * 

input(r.x, x + r.y, y + r.z, n);

relu(c, x, y, n) = max(0, conv(c, x, y, n));

Functions

c_T1.interchange(j, k);

c_T1_init.gpu_tile(i, k, 16, 16, i0, k0, i1, k1);

c_T1.gpu_tile(i, k, 16, 16, i0, k0, i1, k1);

Level 1



Physics: Efficient algorithms (1) 
(Roughly Delivered)
• First, the propagators can be post-

processed to eliminate redundancy in the 
tensor product of the propagator’s spin 
color space:

• Critically,          will have a product of  
permutation groups structure.
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Detmold, W., & Orginos, K. (2013). Nuclear 
correlation functions in lattice QCD. In 
Physical Review D (Vol. 87, Issue 11). 
American Physical Society (APS). 
https://doi.org/10.1103/physrevd.87.114512



Physics: Efficient algorithms (2) 
• Second, the computation induced via this form 

sometimes allows a pre-compute that reduces the 
time complexity, making a few cases tractable.

• We want to compute (very roughly) things like:

• So this might be useful:
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Detmold, W., & Orginos, K. (2013). Nuclear 
correlation functions in lattice QCD. In 
Physical Review D (Vol. 87, Issue 11). 
American Physical Society (APS). 
https://doi.org/10.1103/physrevd.87.114512



Synthesis
• Appendix C: Pre-compute

• For a more complex contraction, the one 
induced via the hexa-quark, precomputes 
required more care.

• The naïve size was 8TBs.
• To eliminate this, they precompute on the fly 

via fusing loop nested together.
• This sometimes creates redundant work.

• Trying various versions of this without Tiramisu 
would be rather intensive.

• More generally: Portable-ish Parallelism. 
• Allowed GPU/Multicore targets.
• Allowed easily messing around with loop order 

and data layout.
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Amarasinghe, S., Baghdadi, R., Davoudi, Z., 
Detmold, W., Illa, M., Parreno, A., ... & 
Wagman, M. L. (2021). A variational study of 
two-nucleon systems with lattice QCD. arXiv
preprint arXiv:2108.10835.

Roughly starting with:
for x in 0 … N

for y in 0 … N
for a in 0… N
precompute[x, y, a] = …; //expensive computation

For z in 0…N
for x in 0.. N

for y in 0… N:
for a in 0..N:

out[z] = compute(precompute[x,y,a],z,a)

Go to:
For z in 0…N

for x in 0.. N
for y in 0… N:

for a in 0..N:
precompute[a] = …

for a in 0..N:
out[z] = compute(precompute[a],z,a)



New Problem: Scalability of this approach.
• First, someone needs to figure out a 

good precomputation structure.
• Doing this by hand will get labor 

intensive quickly.
• And then someone needs to code it.

• Second, the amount of code to 
implement and optimize this in 
Tiramisu grows alarmingly quickly:
• Though this is much better than how 

the equivalent C/Cuda code grows…
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See https://github.com/Tiramisu-
Compiler/tiramisu/tree/master/benchmarks/tensors
(With much thanks to Mike)

https://github.com/Tiramisu-Compiler/tiramisu/tree/master/benchmarks/tensors


Solution: (Bold is Done, roughly)

• Automatic generation of a correlator index expression 
from the specification
• (Efficient) Representation of these programs

• Automatic Transformation of the index expression to 
discover efficient algorithms
• Efficient search of the program space

• Automatic Transformation of index expressions to 
Tiramisu
• Semi-Automatic optimization Tiramisu code.
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Automatic generation of a correlator index 
expression from the specification

• We take a specific of:
• List of Sites: Sources + Sinks
• Allocation of quarks + Anti-quarks of specific flavors to sites.

• Based on these:
• Number of sources + sinks determines number of space loops
• Number of sources/sinks determines wave function arguments
• We loop over source/sink weights
• We loop over the permutations.
• We compute a product for each permutation.
• For each source/sink quark pairing, we accumulate into our 

product, using spin/color indices induced by the permutation.
• We accumulate the production into our sum.
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For x in srcs //_source 1
For x’ in snks //snk 1

phisrc = WaveFunc(y in x)
phisnk = Wavefunc(y in x’)^{\star}

For a_src in range(0, nweights)
For a_snk in range(0, nweights)
For perms in S_{num[flv1]}\times …
r = 1.0
For flv in range(0, nflvs):
perm = perms[flv]
For  quark in range(0, num[flv])

r *=S(flv, x[quark], 
spinColor[a_src, quark],
x’_{site[perm[quark]]},
spinColor’[a_src, perm[quark]])

out+= r* phisrc*phisnk
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Automatic generation of a correlator index 
expression from the specification

• We take a specific of:
• List of Sites: Sources + Sinks
• Allocation of quarks + Anti-quarks of specific flavors to sites.

• We could represent the outputs via contractor graphs:

• But this might be pre-mature……
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Solution: (Bold is Done, roughly)

• Automatic generation of a correlator index expression 
from the specification
• (Efficient) Representation of these programs

• Automatic Transformation of the index expression to 
discover efficient algorithms
• Efficient search of the program space

• Automatic Transformation of index expressions to 
Tiramisu
• Semi-Automatic optimization of Tiramisu code.
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(Efficient) Representation of these 
programs

• We augment a modified Einstein Index Notation language: 
• Some very standard augmentations:

• Allow for indirect access:
• Allow for complex number support.
• Distinguished tensors for the propagator and wave functions

• Somewhat less standard:
• We allow for a pre-computation to be represented:
• Compare:

• And: Let                                                     IN 

• Even less standard but critical for space efficiency:
• Sums over products of permutation groups and subgroups:
• Sign of permutations + Permutations as arrays. 
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• Automatic generation of a correlator index expression 
from the specification
• (Efficient) Representation of these programs

• Automatic Transformation of the index expression to 
discover efficient algorithms
• Efficient search of the program space

• Automatic Transformation of index expressions to 
Tiramisu
• Semi-Automatic optimization of Tiramisu code.
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Automatic Transformation of the index 
expression to discover efficient algorithms
• We will use rewrite rules to discover equivalent versions of 

the correlation contraction. 
• Example rewrite rules:
• Start:
• To: Let                                     in 
• Start: x+y
• To: y+x

• We will need a more specialized collection of rules.
• We will need to search it in a scalable way
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Rewrite rules, roughly

• Physics Rules:
• Flavor Symmetry
• Gamma-5 

Hermiticity:
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• Standard Loop 
rewrite rules:
• Loop invariant 

code motion
• Pre computations
• Loop reordering
• Unrolling
• Constant Prop

• In-between:
• Basic Math

• Complex numbers

• Permutation Groups:

We believe these three categories combined should allow 
us to identified similar pre-computation strategies to 
those identified in previous papers but for new operators.
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Efficient search I: E-graphs 
• Rewrite Rules produce lots of duplicate/overlapping results
• E-Graphs are a data structure for storing these results
• We borrow from:
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Max Willsey, Chandrakana Nandi, Yisu Remy Wang, Oliver Flatt, Zachary 
Tatlock, and Pavel Panchekha. 2021. Egg: Fast and extensible equality 
saturation. Proc. ACM Program. Lang. 5, POPL, Article 23 (January 
2021), 29 pages. https://doi-org.libproxy.mit.edu/10.1145/3434304



Efficient search I: E-graphs 
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Efficient search I: E-graphs 
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Efficient search I: E-graphs 
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Efficient search II: Limiting Rules
• Number of variants: 
• O(!(Nloops) * (NExprs) * 

2^(Num_sub_exprs_per_expr) 
* Nloops …)
• It is a more complex 

combinatorial problem…
• But Other similar approaches 

have run into this:
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Humphrey, N., Detmold, W., Young, R. D., & 
Zanotti, J. M. (2022). Novel Algorithms for 
Computing Correlation Functions of Nuclei. arXiv
preprint arXiv:2201.04269.

For x … 
For y…

For z….
For c …

For a … 
For b…

lhs += expr2[a,b,c] * expr3[x,yz] *expr4[x,a,c]

For x … 
For y…

For z….
For a …

For b … 
For c…

lhs += expr2[a,b,c] * expr3[x,yz] *expr4[x,a,c]



Efficient search II: Limiting Rules
• We want to restrain this search:
• Key technical difficulty 

• We believe:
• Many loop re-orderings are pointless – only a few needed
• Precomputes that produce too much intermediate memory are 

pointless.
• Permutation Splitting guided by potential use of symmetries and 

pre-computations
• Build on the intuition of how you might manually find these
• Even if it is not perfect.
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Solution: (Bold is Done, roughly)
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Automatic Transformation of index 
expressions to Tiramisu 

• This is straightforward:
• We wrote python bindings: 

https://github.com/wraith1995/tiramisu/tree/new-
halide%2Bllvm/python_bindings

• The programs are reasonable looping structures.
• Let Statements are a bit tricky: they amount to placing 

computations at the right loop levels
• Permutations require tricks: representing permutations of k 

things as integers (O(k log k ) bits)
36

https://github.com/wraith1995/tiramisu/tree/new-halide%2Bllvm/python_bindings
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Optimization of Tiramisu code. 
• A Few Possible Approaches:
• Use Tiramisu Auto-scheduling:
• Scaling is unclear.

• Take sane guesses:
• (e.g. storage order can just be 

chosen from loop order sometimes)
• Expose saner scheduling templates to 

the user
• Allow scheduling
• but in a simpler interface.

• Some Hybrid
38

Baghdadi, R., Merouani, M., Leghettas, M.-H., 
Abdous, K., Arbaoui, T., Benatchba, K., & 
Amarasinghe, S. (2021). A Deep Learning Based 
Cost Model for Automatic Code Optimization. Στο 
A. Smola, A. Dimakis, & I. Stoica Proceedings of 
Machine Learning and Systems



Questions?
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• Automatic generation of a correlator index expression 
from the specification
• (Efficient) Representation of these programs

• Automatic Transformation of the index expression to 
discover efficient algorithms
• Efficient search of the program space

• Automatic Transformation of index expressions to Tiramisu
• Semi-Automatic optimization of low level Tiramisu code.


