Automatic Generation of LQCD Correlator

—valuation Code from a High Level
Specification (WIP)

Presented by Teo Collin

Working with:

Ryan William Abbott, Saman Amarasinghe,

Riyadh Baghdadi, Will Detmold, Andrew Pochinsky,
Phiala Shanahan, Richard Sollee, Michael L. Wagman

SciDAC 2022
2022-12-2

Problem Specification

* You have a lattice system that fits the following model:
* Finite Number of Sites (Sources and Sinks)

» Allocation of quarks and anti-quarks of specific
flavors to each site.

* Per flavor, # of quarks = # of anti-quarks
* You have already computed the quark propagator via
your giant eigenvalue computation.

* You have already decomposed the interpolating field to
a low rank linear combinations of anti-symmetric
product of propagators.

* We could adopt this to other pre-processing schemes.

e You want to measure things:

* how do you quickly write down and evaluate the
correlator?

Proton

Nucleus

Neutron

Prior Work

 Computer Science: Tiramisu (High Performance DSL)
* Physics: Efficient algorithms for specific correlators
* Synthesis of Physics and CS

e Evaluation of hexaquark and dibaryon correlation functions
* OQutstanding Problems in the synthesis

Prior Work: Tiramisu (tiramisu-compiler.org)

A polyhedral compiler: exploits that many loop nests look like polyhedra of integers

Designed for optimizing loop nests manipulating arrays

C++ API for expressing algorithms and optimizations

Separates Algorithm from Optimization Commands:

e Separate set of commands for loop manipulation, explicit hardware features, data layout, and data
movement

1.

2
3.
4

Declare loop computations (unoptimized).
Pseudocode

Declare optimization commands:

Iteration space/Data layout/Precomputation transformations - _
iramisu

Use of hardware parallelism (threads, blocks, atomics, etc..)

Use of different memory technologies (cache, registers, ...)

Communication to make this work...

for x in © .. N
for y in @ .. N
out[x, y] = 0;

var x(@, N), y(o, N);
computation out(x, y);

out(x, y) = 0;

out.parallelize(x);
out.vectorize(y, 4);

iramisu Example

input c_B({i, j}, Float64);
Polyhedra input c_C({i, j}, Float64);
computation c_T1_init({i, k}, 0);
computation c_T1({i, j, k}, Float64);
c_T1l.set_expression(c_T1(i, j, k) + c_A(i, j) * c_B(j, k));

c_Tl.interchange(j, k);

Level 1 o)))]

c T1 init.gpu _tile(i, k, 16, 16, i@, ko, i1, k1);
c Tl.gpu_tile(i, k, 16, 16, i@, ko, il, ki1);
copy A to _device.then(copy B to device,

Level 2 computation::root).then(copy C to device,
computation::root).then(c_T1 init, computation::root).then(c_T1, k1);
c_A.store_in(&b_A gpu);

Level 3

c_B.store_in(&b B gpu);
c_ Tl init.store _in(&b_T1 gpu);
c_ Tl.store in(& T1 gpu, {i, k});

Polyhedra input c_C({i, j}, Float64); Functions

iramisu Example

input c_B({i, j}, Float64);

computation c_T1_init({i, k}, 0);
computation c_T1({i, j, k}, Float64);
c_T1l.set_expression(c_T1(i, j, k) + c_A(i, j) * c_B(j, k));

here is also Halide)

conv(c, X, y, n) = bias(c);
conv(c, X, y, n) += filter(c, r.y, r.z, r.x) *

input(r.x, X + r.y, y + r.z, n);

relu(c, x, y, n) = max(@, conv(c, X, y, n));

c_Tl.interchange(j, k);

Level 1

Level 2

Level 3

c T1 init.gpu _tile(i, k, 16, 16, i@, ko, i1, k1);
c Tl.gpu_tile(i, k, 16, 16, i@, ko, il, ki1);

copy A to _device.then(copy B to device,
computation::root).then(copy C to device, Schedule
computation::root).then(c_T1 init,

computation::root).then(c_T1, kl1);

c_A.store_in(&b_A gpu);
c_B.store_in(&b B gpu);

c_ Tl init.store_in(&b _T1 gpu);

c Tl.store in(&b T1 gpu, {i, k});

conv.compute_at(relu, xo)

.store_in(MemoryType: :Register)

.gpu_lanes(c)

.unroll(x)

.unroll(y)

.update()

.split(r.x, rxo, rxi, 16)
.split(rxi, rxi, rxii, 2)
.reorder(c, rxii, x, y, r.y,
r.z, rxi, rxo)

.gpu_lanes(c)

.unroll(x)

Physics: Efficient algorithms (1)
(Roughly Delivered)

* First, the propagators can be post-
processed to eliminate redundancy in the
tensor product of the propagator’s spin
color space:

N(b) = Z Way .- |

al:(xayazafasac),"'an:(w7y7zafasac)

N(b) = 3 S we Y o(i)

ai=(z,y,2), - ,a!, =(z,y,z) k=1 1€l

e Critically, ID will have a product of
permutation groups structure.

Detmold, W., & Orginos, K. (2013). Nuclear
correlation functions in lattice QCD. In
Physical Review D (Vol. 87, Issue 11).
American Physical Society (APS).
https://doi.org/10.1103/physrevd.87.114512

anS(aflabl) T S(anabn)

S(a'llaila bl) Tt S(a’;q,)i'n,a bn)

Physics: Efficient algorithms (2)

. : : : : Detmold, W., & Orginos, K. (2013). Nuclear
Second, the computation induced via this form correlation functions in lattice QCD. In

sometimes allows a pre-compute that reduces the Physical Review D (Vol. 87, Issue 11).

time complexity, making a few cases tractable. American Physical Society (APS).
https://doi.org/10.1103/physrevd.87.114512

N(b) = S S w3 0(0)S(al, i, by) - S(als,in b)

a',lz(may)z)a"' ,afnz(a:,y,z) k=1 ZEIR:
 We want to compute (very roughly) things like:

< N,N >4y
* So this might be useful:
Nw’,y’,z’(37c7f7b27"' ’ Y kazo- a17i17x,7ylazlasl7cl7f’)"'S(a’;q,)in7bn)

a’ k=1 ’LEIk,

Synt h es | S Amarasinghe, S., Baghdadi, R., Davoudi, Z.,

Detmold, W., llla, M., Parreno, A., ... &
Wagman, M. L. (2021). A variational study of

* Appendix C: Pre-compute two-nucleon systems with lattice QCD. arXiv

 For a more complex contraction, the one preprint arXiv:2108.10835.

induced via the hexa-quark, precomputes Roughly starting with:

required more care. for x in @ .. N
for y in @ .. N

* The naive size was 8TBs. for a in @.. N
* To eliminate this, they precompute on the fly precompute(x, y, a] = ..; //expensive computation
via fusing loop nested together. For 7z in O.N
* This sometimes creates redundant work. for x in @.. N

for y in @.. N:

* Trying various versions of this without Tiramisu for a in B N:

would be rather intensive. out[z] = compute(precompute[x,y,al,z,a)
* More generally: Portable-ish Parallelism. Go to:
For z in @.N
* Allowed GPU/Multicore targets. for x in @.. N

* Allowed easily messing around with loop order for y in @.. N:
for a in @..N:

and data layout. precompute[a] = ..

for a in @..N:
out[z] = compute(precompute[a],z,a)

9

New Problem: Scalability of this approach.

* First, someone needs to figure out a
good precomputation structure.

* Doing this by hand will get labor
intensive quickly.

e And then someone needs to code it.

SLOC vs. Program

4000

3000

e Second, the amount of code to g 2000
implement and optimize this in ? o
Tiramisu grows alarmingly quickly:
) Though thls IS mUCh better than hOW ° Fused Baryon Fused Baryon Fused DiBaryon Fused DiBaryon Fused DiBaryon
the equivalent C/Cuda code grows... Block Block GPU Blocks JBlocks " Blocks GPU

Program

See https://github.com/Tiramisu-
Compiler/tiramisu/tree/master/benchmarks/tensors
(With much thanks to Mike)

10

https://github.com/Tiramisu-Compiler/tiramisu/tree/master/benchmarks/tensors

Solution: (Bold is Done, roughly)

* Automatic generation of a correlator index expression
from the specification
* (Efficient) Representation of these programs

e Automatic Transformation of the index expression to
discover efficient algorithms
* Efficient search of the program space

* Automatic Transformation of index expressions to
Tiramisu

* Semi-Automatic optimization Tiramisu code.

11

Automatic generation of a correlator index
expression from the specification

* We take a specific of:

 List of Sites: Sources + Sinks
* Allocation of quarks + Anti-quarks of specific flavors to sites.

12

Automatic generation of a correlator index
expression from the specification

* We take a specific of:

* List of Sites: Sources + Sinks For x in srcs //_source 1

* Allocation of quarks + Anti-quarks of specific flavors to sites. For x* in snks //snk 1

phisrc
* Based on these: phisnk

WaveFunc(y in x)
Wavefunc(y in x’)~{\star}

* Number of sources + sinks determines number of space loops
* Number of sources/sinks determines wave function arguments

13

Automatic generation of a correlator index
expression from the specification

* We take a specific of:

List of Sites: Sources + Sinks

* Allocation of quarks + Anti-quarks of specific flavors to sites.

* Based on these:

Number of sources + sinks determines number of space loops
Number of sources/sinks determines wave function arguments
We loop over source/sink weights

We loop over the permutations.

For x in srcs // _source 1
For x’ in snks //snk 1

WaveFunc(y in x)
Wavefunc(y in x’)~{\star}

phisrc
phisnk

For a_src in range(9, nweights)
For a_snk in range(@, nweights)

For perms in S_{num[flvl]}\times ..

14

Automatic generation of a correlator index
expression from the specification

* We take a specific of:

List of Sites: Sources + Sinks
Allocation of quarks + Anti-quarks of specific flavors to sites.

* Based on these:

Number of sources + sinks determines number of space loops
Number of sources/sinks determines wave function arguments
We loop over source/sink weights

We loop over the permutations.

We compute a product for each permutation.

For each source/sink quark pairing, we accumulate into our
product, using spin/color indices induced by the permutation.

For x in srcs // _source 1
For x’ in snks //snk 1

phisrc
phisnk

WaveFunc(y in x)
Wavefunc(y in x’)~{\star}

For a_src in range(9, nweights)
For a_snk in range(@, nweights)
For perms in S_{num[flvl]}\times ..
r=1.0
For flv in range(@, nflvs):
perm = perms[flv]
For quark in range(@, num[flv])
r *=S(flv, x[quark],
spinColor[a_src, quark],
x’ {site[perm[quark]]},
spinColor’[a_src, perm[quark]])

15

Automatic generation of a correlator index
expression from the specification

* We take a specific of:

List of Sites: Sources + Sinks

* Allocation of quarks + Anti-quarks of specific flavors to sites.

* Based on these:

Number of sources + sinks determines number of space loops
Number of sources/sinks determines wave function arguments
We loop over source/sink weights

We loop over the permutations.

We compute a product for each permutation.

For each source/sink quark pairing, we accumulate into our
product, using spin/color indices induced by the permutation.

We accumulate the production into our sum.

For x in srcs // _source 1
For x’ in snks //snk 1

WaveFunc(y in x)
Wavefunc(y in x’)~{\star}

phisrc
phisnk

For a_src in range(9, nweights)
For a_snk in range(@, nweights)
For perms in S_{num[flvl]}\times ..
r=1.0
For flv in range(@, nflvs):
perm = perms[flv]
For quark in range(@, num[flv])
r *=S(flv, x[quark],
spinColor[a_src, quark],
x’ {site[perm[quark]]},
spinColor’[a_src, perm[quark]])
out+= r* phisrc*phisnk

16

Automatic generation of a correlator index
expression from the specification

* We take a specific of:
* List of Sites: Sources + Sinks

* Allocation of quarks + Anti-quarks of specific flavors to sites.

* We could represent the outputs via contractor graphs:

aq el aq 4 (gnk:1) aq 1) sqagnky 29 @l aqdfsnkl) aq el
1@l q 4 Ehk:1) Q3@ q &k 1) LEL S8 q & (snk:1) LEL e
a2 @) 20 2c0) a2@e0) 2 2)c:0) a2 @0 aq 2{c:0) a2 @0
q 1 {sgc:0) aq 1 {src:0) q 1 {sk:0) aq-l {src:0) q 1 (5e:0) aq L {&rc:0) 91@c0
9 0@k:0) aq Offye:0) a0 @0 wqolgeo 0@ 29 offyc:0) a0 @k:0)
aq @) aqafenk:1) 9 P aq 4 {snk:1) aq el
aq Wye1) aq 4 (snk:1) a2 @) q 4 (Shk:1) LET S8 q &'(snk:1) a3l
a3 @t g & (snk:1) o2 @0l 23 2c) 42 @E:0) 29 2c:0) a2 @e:0)
a2 @0 0 2{ye0) a1 {ste:0) ag Lfrc:0) q 1 {sre:0) aq 1 {src:0) q 1 {src:0)
al@er R 1@=0) q 0‘:0:. s ofgeo) 0@ 29 offfye:0) a0 @0
q0@k:0) aq Offyc:0)
P 2 4@nk:1) aq ’.11 aq 4 1snk'1.| aq .3.(1 aq 4 1?nk"{l an 3.11
1@ o EhcD) LEY S q & '(snk:1) LEY SN q 4 (snk:1) LEL S8
" .: . q ‘ q 2.;-0) ag 2.('0] q 2.:-0] aq 2.('0] q 2‘:0)
Q2@ 2 2ei0) q 1 {sre:6) ag‘l {Src:0) ql{sc:0) ag'L{src:0) q 1 {src:0)
q 1 {sc:0) ag 1 {src:0) .)) o i . -
G0 @0 w0 0l q0 @0 aq offyc:0) 9.0 @) aq Offfyc:0) q0 @0

e But this might be pre-mature

aq 4 {snk:1)
q 4 (snk:1)
aq 2.(,-01
aq 1{src:0)
ag Offfyc:0)
aq 4 {snk:1)

q &'(snk:1)

g e

ag'1 {src:0)

ag f.‘.c:m

aq 4 {snk:1)
q4 (snk:1)

aq Z.c-m

ag 1 {src:0)

T ag C.(:D]

For x in srcs // _source 1
For x’ in snks //snk 1

phisrc
phisnk

WaveFunc(y in x)
Wavefunc(y in x’)~{\star}

For a_src in range(9, nweights)
For a_snk in range(@, nweights)
For perms in S_{num[flv1l]}\times ..
r=1.0
For flv in range(@, nflvs):
perm = perms[flv]
For quark in range(@, num[flv])
r *=S(flv, x[quark],
spinColor[a_src, quark],
x’ {site[perm[quark]]},
spinColor’[a_src, perm[quark]])
out+= r* phisrc*phisnk

17

Solution: (Bold is Done, roughly)

A a aa oAajala a a a a a a a : a a :

: | P

* (Efficient) Representation of these programs

e Automatic Transformation of the index expression to
discover efficient algorithms
* Efficient search of the program space
* Automatic Transformation of index expressions to
Tiramisu

* Semi-Automatic optimization of Tiramisu code.

18

(Efficient) Representation of these

programs

We augment a modified Einstein Index Notation language: aijk — Z bz’jklcl
Some very standard augmentations:

* Allow for indirect access: by — C; l

e Allow for complex number support.

* Distinguished tensors for the propagator and wave functions

Somewhat less standard:
* We allow for a pre-computation to be represented:

 Compare: DZ] — Aszlel]
* And:let [7.] = Af,«-k;Bkl IN Dz] — P’ilclj

Even less standard but critical for space efficiency:

e Sums over products of permutation groups and subgroups: E , E

* Sign of permutations + Permutations as arrays.
ceSkx Sk geSk 0(1)=1

Solution: (Bold is Done, roughly)

A a aa oAajala a a a a a a a : a a :

: | P
Efficiont) R . e

e Automatic Transformation of the index expression to
discover efficient algorithms
* Efficient search of the program space
* Automatic Transformation of index expressions to
Tiramisu

* Semi-Automatic optimization of Tiramisu code.

20

Automatic Transformation of the index

expression to discover efficient algorithms

* We will use rewrite rules to discover equivalent versions of
the correlation contraction.

* Example rewrite rules:
e start: Djj = Aix BriClj

e To:Let Py = A, By in Dz’j — Pilclj

e Start: x+y

* TO: y+X
* We will need a more specialized collection of rules.
* We will need to search it in a scalable way

21

Rewrite rules, roughly

Rewrite rules, roughly

e Standard Loop
rewrite rules:
* Loop invariant

code motion

Pre computations
Loop reordering

Unrolling

* Constant Prop

Rewrite rules, roughly

e Standard Loop * Physics Rules:

rewrite rules: * Flavor Symmetry
* Loop invariant * Gamma-5
code motion Hermiticity:

Pre computations §(z, sc, y, sc’) —
_Loop reordering 55(5

/
Yy, sc’, x, sc)y

Unrolling

* Constant Prop

Rewrite rules, roughly

e Standard Loop * Physics Rules: ¢ In-between:

rewrite rules: * Flavor Symmetry * Basic Math
* Loop invariant * Gamma-5 rxl=x
code motion Hermiticity: * Complex numbers
* Pre computations §(x, sc, v, Sc’) — aa = |a\2

» Loop reordering 55(g Permutation Groups:

/
* Unrolling Y, s¢, 2, 5¢)Y Yo=> >

cSk i=0 geS*,o(0)=i
* Constant Prop 7 T o=t

Rewrite rules, roughly

e Standard Loop * Physics Rules: ¢ In-between:

rewrite rules: * Flavor Symmetry * Basic Math
* Loop invariant * Gamma-5 rxl=x
code motion Hermiticity: * Complex numbers
* Pre computations §(x, sc, v, Sc’) — aa = |a\2

» Loop reordering 55(g Permutation Groups:

/
* Unrolling ¥ 5 ’Z’SC)W Z :Z Z

€Sk i=0 g€8k,0(0)=i
e Constant Pro i ’
P We believe these three categories combined should allow

us to identified similar pre-computation strategies to
those identified in previous papers but for new operators.

Solution: (Bold is Done, roughly)

/\ a
discover-efficient algorithms
* Efficient search of the program space:
* (E-graphs, Rule Application strategies)
* Automatic Transformation of index expressions to
Tiramisu

* Semi-Automatic optimization of Tiramisu code.

27

Efficient search |. E-graphs

* Rewrite Rules produce lots of duplicate/overlapping results
* E-Graphs are a data structure for storing these results
* We borrow from:

Max Willsey, Chandrakana Nandi, Yisu Remy Wang, Oliver Flatt, Zachary
Tatlock, and Pavel Panchekha. 2021. Egg: Fast and extensible equality
saturation. Proc. ACM Program. Lang. 5, POPL, Article 23 (January
2021), 29 pages. https://doi-org.libproxy.mit.edu/10.1145/3434304

28

Efficient search |. E-graphs

(a) Initial e-graph
contains (a X 2)/2.

29

Efficient search |. E-graphs

(a) Initial e-graph (b) After applying rewrite
contains (a X2)/2. xX2-ox<1.

30

Efficient search |. E-graphs

(a) Initial e-graph
contains (a X 2)/2.

(b) After applying rewrite
XX2—x K1

(c) After applying rewrite
(x X y)/z — x X (y/2).

31

Solution: (Bold is Done, roughly)

/\ a
discover-efficient algorithms
* Efficient search of the program space:

e (Egraphs, Rule Application strategies)
* Automatic Transformation of index expressions to

Tiramisu

* Semi-Automatic optimization Tiramisu code.

32

Efficient search Ill: Limiting Rules

* Number of variants: .
* O(!(Nloops) * (NExprs) * Fory...
27 (Num_sub_exprs_per_expr) ot
* Nloops ...) Flc:)rb...
or C...

lhs += expr2[a,b,c] * expr3[x,yz] *exprd[x,a,c]

* [t is @ more complex
combinatorial problem...
For x ...

* But Other similar approaches For y...

. . For z....
have run into this: fore
Humphrey, N., Detmold, W., Young, R. D., & Fora ...

For b.

Zanotti, J. M. (2022). Novel Algorithms for
Computing Correlation Functions of Nuclei. arXiv
preprint arXiv:2201.04269.

lhs += expr2[a,b,c] * expr3[x,yz] *exprd[x,a,c]

33

Efficient search Ill: Limiting Rules

e \We want to restrain this search:
* Key technical difficulty

 \We believe:

 Many loop re-orderings are pointless — only a few needed

* Precomputes that produce too much intermediate memory are
pointless.

* Permutation Splitting guided by potential use of symmetries and
pre-computations

* Build on the intuition of how you might manually find these
e Even if it is not perfect.

34

Solution: (Bold is Done, roughly)

A AYAA a A Y) AN a A Ava Aavara a a a ANa A
\J \.J (J (J \.J (J \.J \.J \J NS \.J \.J
° af ol ° L
d_l_rnn\lar officiont Alaonrit S
JCUVCT CTiTCrCcricargotTTortTi
rr
o Etticiont canrce nfthoa nronacgram cnacno
| - ITCGIGCIITIUVU JGGCUT GIT I CI T\ PIUbIUIII JPU\;\—

* Automatic Transformation of index expressions to
Tiramisu

* Semi-Automatic optimization of Tiramisu code.

35

Automatic Transformation of index
expressions to Tiramisu

* This is straightforward:

* We wrote python bindings:
https://github.com/wraith1995/tiramisu/tree/new-
halide%2Bllvm/python bindings

* The programs are reasonable looping structures.

* Let Statements are a bit tricky: they amount to placing
computations at the right loop levels

* Permutations require tricks: representing permutations of k
things as integers (O(k log k) bits)

36

https://github.com/wraith1995/tiramisu/tree/new-halide%2Bllvm/python_bindings

Solution: (Bold is Done, roughly)

Lcinont n|n'nri+|ﬁm5
IGINGIT IO U|6U| | IR BB

af okl

d_i_rnn\lar o
@ AL W A" A Wy | =

JPUU\—-

A\ 2 I) I) rJIUbIUIII

IViwCITIVU JGCGUT Wi

Py E”irian'l- canrch nftho nronacram cnaco:

37

* Semi-Automatic optimization of low level Tiramisu code.

Optimization of Tiramisu code.

Baghdadi, R., Merouani, M., Leghettas, M.-H.,

* A Few Possible Approaches: Abdous, K., Arbaoui, T., Benatchba, K., &
. . _ . . Amarasinghe, S. (2021). A Deep Learning Based
* Use Tiramisu Auto schedullng. Cost Model for Automatic Code Optimization. Zto

A. Smola, A. Dimakis, & |. Stoica Proceedings of
Machine Learning and Systems

* Take sane guesses: L

* Scaling is unclear.

* (e.g. storage order can just be Explore: ting, unroling tie?
chosen from loop order sometimes) R
* Expose saner scheduling templates to mtss T~ oy 28
the user unrol? [eiietie.n] [eeiieGae]

* Allow scheduling I . |
C.tile(16,8).unroll() C.tile(16,8)
e but in a simpler interface. 2 4
° Some Hyb”d c.tile(16,8).unroll(2) | [c.tile(16,8).unroll(4) |

20

Questions?

* Automatic generation of a correlator index expression
from the specification
* (Efficient) Representation of these programs

e Automatic Transformation of the index expression to
discover efficient algorithms
* Efficient search of the program space

* Automatic Transformation of index expressions to Tiramisu
* Semi-Automatic optimization of low level Tiramisu code.

39

