Towards scalable preconditioners

Sherry Li Lawrence Berkeley National Laboratory LQCD SciDAC-5 kickoff, December 1-2, 2022

Proposal subteam

- Eloy Romero
- Sherry Li
- Andreas Stathopoulos

- Development & deployment in SuperLU framework
 - Existing capabilities
 - New features for LQCD problems

Existing Capabilities

- Multi-node GPU support for NVIDIA, AMD and Intel GPUs
- Communication-avoiding 3D sparse LU factorization and sparse triangular solves
- Use of one-sided MPI and NVSHMEM / ROCSHMEM to mitigate communication cost in sparse triangular solves
- Mixed-precision algorithms
- Batch of multiple linear solvers on GPUs
- Integrated in multiple upstream math libraries as their building blocks
 Hypre, PETSc, SUNDIALS, Trilinos, …
- Softtware dependencies
 - MPI, OpenMP, CUDA / HIP / SYCL, NVSHMEM / ROCSHMEM
 - BLAS, LAPACK, (Par)METIS

Sparse triangular solve: reduce communication

- Preconditioner time is dominated by two repeated SpTRSVs (L-solve and U-Solve w/ 1 RHS)
- Each can be viewed as walking a DAG ...
 - Nodes are small (<< 128x128) GEMVs/TRSVs
 - Edges are small (<< 1KB) MPI messages
- Performance is highly dependent on...
 - MPI Overhead (messaging rate)
 - DAG Critical Path
- One-sided communication (foMPI) can improve SpTRSV by 2.2x on Cori KNL
- Performance model highlights nuances

Nan Ding, Samuel Williams, Yang Liu, Xiaoye S. Li, "Leveraging One-Sided Communication for Sparse Triangular Solvers", SIAM Conference on Parallel Processing for Scientific Computing, 2020.

SuperLU

Sparse triangular solve: multi-GPUs

- Created a single-GPU SpTRSV solvers for NVIDIA (CUDA) and AMD (HIP) GPUs
 - Works best if entire L & U can fit on one GPU
- Extended with one-sided GPU libraries (NVSHMEM, ROCSHMEM*)
 - > Enables scalable, distributed memory, GPU-accelerated solvers
 - > With 18 GPUs, up to 6x speedup over Nvidia cusparse_csrsv2()
 - > Performance and scalability are highly dependent on matrix sparsity and inter-node communication performance
- Modeled alternative process mappings for GPUs
 - Potential 2x speedup over default 1D block cyclic mapping using 6 GPUs

*AMD evaluation delayed due to waiting for AMD software updates

Nan Ding, Yang Liu, Samuel Williams, Xiaoye S. Li, "A Message-Driven, Multi-GPU Parallel Sparse Triangular Solver", SIAM Conference on Applied and Computational Discrete Algorithms (ACDA21), 2021.

HMC needs

- Time to compute the approximate L and U factors is critical because the preconditioners are not reused much
- Explore techniques to construct factors iteratively or asynchronously for better strong scaling
 - E.g.: Use fixed-point iteration to compute each entry of L and U (Chow)
 - Works particularly well for ILU(0) preconditioners because of their predetermined sparsity pattern
- Chow et al. (2015) demonstrated its effectiveness on a single GPU, but there is no large-scale multi-GPU or distributed-memory implementation

"Automatic" performance tuning with GPTune

- Performance depends on input, machines, software stack ...
- Find optimal parameter configuration using small number of runs

- I. choose a promising parameter configuration
- 2. run the app for the chosen parameter configuration

GPTune tuning workflow on parallel machines

Parallel execution model

GPTune advanced features

- History database
- Multi-objective optimization
- Multi-fidelity optimization
- Hybrid model (MCST + GP) for mixed input space
- Clustered GP for non-smooth function surface
- Users' performance models or hardware performance counters to guide tuning

Applications: Hypre, MFEM, STRUMPACK, SuperLU_DIST, PLASMA, SLATE, ScaLAPACK, NIMROD, M3D-C1, IMPACT-Z, CNN, GCN, KRR, sketching-based linear least-square solvers

GPTune: Multitask Learning for Autotuning Exascale Applications, Proc. of Principles and Practice of Parallel Programming, 2021. GPTuneBand: Multi-task and Multi-fidelity Autotuning for Large-scale High Performance Computing Applications, SIAM PP22. Non-smooth Bayesian Optimization in Tuning Problems, arXiv preprint arXiv:2109.07563 Enhancing Autotuning Capability with a History Database, McSOC-2021, Special Session: Autotuning for Multicore & GPU.

Multi-fidelity tuning for hypre

parallel multigrid solver

- Multi-armed bandit strategy (MAB)
- · Each arm corresponds to a fidelity
 - Use more samples at low fidelity to reduce space
 - Use fewer samples at high fidelity
- LCM is built across arms and tasks

• 3d convection-diffusion equation in a k^3 grid, 10 < k < 100 $-c \Delta u + a \nabla \cdot u = f$, $a, c \in [0,1]$

Zhu, Liu, Ghysels, Bindel, L, SIAM PP2020 Proceedings

Multi-fidelity tuning for hypre

parallel multigrid solver

- $\mathbb{IS} = [a, c], \mathbb{PS} = 12$ integer/real/categorical, $\mathbb{OS} = [time]$
- Fidelity / budget ~ k^3
- 2 Cori nodes @ NERSC, 32 cores

Comparison of GPTuneBand vs GPTune & HpBandster

Tuning ITER tokamak design for fusion energy

- Being constructed in St. Paul-lez-Durance, France
- Cost \$20B+
- NIMROD and M3D-C1 modeling codes
 - GMRES to solve 3D, SuperLU_DIST for each 2D plane preconditioner
- Transfer learning (TLA) aided by database

NIMROD (fusion simulation)