Towards scalable preconditioners

Sherry Li
Lawrence Berkeley National Laboratory
LQCD SciDAC-5 kickoff, December 1-2, 2022



Proposal subteam

* Eloy Romero
» Sherry Li
» Andreas Stathopoulos

» Development & deployment in SuperLU framework
— Existing capabilities
— New features for LQCD problems



Existing Capabilities

Multi-node GPU support for NVIDIA, AMD and Intel GPUs
Communication-avoiding 3D sparse LU factorization and sparse triangular solves

Use of one-sided MPl and NVSHMEM / ROCSHMEM to mitigate communication
cost in sparse triangular solves

Mixed-precision algorithms

Batch of multiple linear solvers on GPUs

Integrated in multiple upstream math libraries as their building blocks
— Hypre, PETSc, SUNDIALS, Trilinos, ...

Softtware dependencies
— MPI, OpenMP, CUDA/ HIP / SYCL, NVSHMEM / ROCSHMEM
— BLAS, LAPACK, (Par)METIS
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Sparse triangular solve: reduce communication Ny

» Preconditioner time is dominated by two repeated
SpTRSVs (L-solve and U-Solve w/ 1 RHS)
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« Each can be viewed as walking a DAG ... RO}
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Triangular Solvers", SIAM Conference on Parallel Processing for Scientific Computing, 2020.



Sparse triangular solve: multi-GPUs O;LI

SuperLU

» Created a single-GPU SpTRSV solvers for NVIDIA (CUDA) and AMD (HIP) GPUs
« Works best if entire L & U can fit on one GPU

» Extended with one-sided GPU libraries (NVSHMEM, ROCSHMEM?)
> Enables scalable, distributed memory, GPU-accelerated solvers
> With 18 GPUs, up to 6x speedup over Nvidia cusparse_csrsv2()
» Performance and scalability are highly dependent on matrix sparsity and inter-node communication performance
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HMC needs

» Time to compute the approximate L and U factors is critical because the preconditioners are not
reused much

» Explore techniques to construct factors iteratively or asynchronously for better strong scaling
- E.g.: Use fixed-point iteration to compute each entry of L and U (Chow)
— Works particularly well for ILU(0) preconditioners because of their predetermined sparsity pattern

* Chow et al. (2015) demonstrated its effectiveness on a single GPU, but there is no large-scale
multi-GPU or distributed-memory implementation



“Automatic” performance tuning with GPTune

» Performance depends on input, machines, software stack ...
 Find optimal parameter configuration using small number of runs
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machine learning-based
performance model

1. choose a promising parameter configuration
2. run the app for the chosen parameter configuration




GPTune tuning workflow on parallel machines

Parallel execution model GPTune advanced features
Python (1 MPI) * History database
Spawn desired MPI/OMP combinition ° Multi_objective Optimization
MPI o

OpenMP Multi-fidelity optimization
CUDA, *  Hybrid model (MCST + GP)
Spawn at most € MPls HIP, ... for mixed input Space
Parallel over LC ®*  Clustered GP for non-smooth
function surface

Users’ performance models
Parallel over aaks or hardware performance
counters to guide tuning

* Spawn at most 6 MPIs °

(a) MPI spawning mode Applications: Hypre, MFEM, STRUMPACK, SuperLU_DIST,
PLASMA, SLATE, ScaLAPACK, NIMROD, M3D-C1, IMPACT-Z,
CNN, GCN, KRR, sketching-based linear least-square solvers

GPTune: Multitask Learning for Autotuning Exascale Applications, Proc. of Principles and Practice of Parallel Programming, 2021.
GPTuneBand: Multi-task and Multi-fidelity Autotuning for Large-scale High Performance Computing Applications, SIAM PP22.
Non-smooth Bayesian Optimization in Tuning Problems, arXiv preprint arXiv:2109.07563

Enhancing Autotuning Capability with a History Database, McSOC-2021, Special Session: Autotuning for Multicore & GPU.



Multi-fidelity tuning for hypre

parallel multigrid solver
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@ @ b=3
 Multi-armed bandit strategy (MAB) s
. . @
« Each arm corresponds to a fidelity A b-9
— Use more samples at low fidelity to reduce space
— Use fewer samples at high fidelity s b=27

 LCM is built across arms and tasks

« 3d convection-diffusion equation in a k3 grid, 10 <k < 100
—cAu+aV-u=f, a,c €[0,1]

Zhu, Liu, Ghysels, Bindel, L, SIAM PP2020 Proceedings



Multi-fidelity tuning for hypre

parallel multigrid solver

« IS =[a,c], PS = 12 integer/real/categorical, OS = [time]
« Fidelity / budget ~ k3

» 2 Cori nodes @ NERSC, 32 cores

Comparison of GPTuneBand vs GPTune & HpBandster
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Tuning ITER tokamak design for fusion energy

Source: 32 Haswell nodes. Target: 64 Haswell nodes

» Being constructed in St. Paul-lez-Durance, France <= : ,
—— Default choice (11.68)
13 1
) —4— SLA (10th: 10.88, 20th: 10.21)
° COSt $2OB+ 124 ¢— TLA: Regression Sum (10th: 9.69, 20th: 9.54)

 NIMROD and M3D-C1 modeling codes

- GMRES to solve 3D, SuperLU_DIST for each 2D
plane preconditioner
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BCST tuning result (ume (s))
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