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The Electron-Ion Collider
A machine that will unlock the secrets of the strongest force in Nature

!  Call for Collaboration Proposals for Detectors at the Electron-Ion Collider

The computers and smartphones we use every day depend on
what we learned about the atom in the last century. All
information technology—and much of our economy today—
relies on understanding the electromagnetic force between the
atomic nucleus and the electrons that orbit it. The science of
that force is well understood but we still know little about the
microcosm within the protons and neutrons that make up the
atomic nucleus. That’s why Brookhaven Lab is building a new
machine—an Electron-Ion Collider, or EIC—to look inside the
nucleus and its protons and neutrons.

The EIC will be a particle accelerator that collides electrons
with protons and nuclei to produce snapshots of those
particles’ internal structure—like a CT scanner for atoms. The
electron beam will reveal the arrangement of the quarks and
gluons that make up the protons and neutrons of nuclei. The
force that holds quarks together, carried by the gluons, is the
strongest force in Nature. The EIC will allow us to study this
“strong nuclear force” and the role of gluons in the matter
within and all around us. What we learn from the EIC could
power the technologies of tomorrow.

GOALS
The Electron-Ion Collider will be a
discovery machine for unlocking the
secrets of the "glue" that binds the
building blocks of visible matter in the
universe.

THE MACHINE
The Electron-Ion Collider will consist of
two intersecting accelerators, one
producing an intense beam of
electrons, the other a beam of protons
or heavier atomic nuclei which are
steered into head-on collisions.

BENEFITS
Beyond sparking scientiLc discoveries
in a new frontier of fundamental
physics, the Electron-Ion Collider will
trigger technological breakthroughs
that have broad-ranging impact on
human health and national challenges.

EIC SCIENCE
The unique and powerful tools of the
Electron-Ion Collider will cast fresh light
on the forces that bind protons and
neutrons together to form nuclei.

Brookhaven National Lab's EIC Directorate coordinates with domestic and international partners to deliver the EIC construction project.

Brookhaven National Laboratory advances fundamental research in nuclear and particle physics to gain a deeper
understanding of matter, energy, space, and time; applies photon sciences and nanomaterials research to energy
challenges of critical importance to the nation; and performs cross-disciplinary research on climate change,
sustainable energy, and Earth’s ecosystems.

IMAGESIMAGESNEWSNEWSSCIENCESCIENCEBENEFITSBENEFITSTHE MACHINETHE MACHINEGOALSGOALSElectron-Ion ColliderElectron-Ion Collider

taken from https://www.bnl.gov/eic/



Lattice QCD
Defined on a Euclidean Lattice
• Lattice QCD: QCD on discrete Euclidean space time


• The lattice regulates UV divergences


• QCD: the continuum limit of Latice QCD


• Provides a numerical, non-perturbative method for computing correlation 
functions : Monte Carlo evaluation of integralsThe Path Integral

�O⇥ =
1
Z

�
D[U ]D[�̄]D[�] O(�̄, �, U) e��̄D(U)��Sg(U)

First integrate out the  fermions

Z =
�
D[U ]D[�̄]D[�] e��̄D(U)��Sg(U)

Z =
�
D[U ]D[�̄]D[�] e��̄D(U)��Sg(U)Z =

�
D[U ]D[�̄]D[�] e��̄D(U)��Sg(U)

If Nf flavor each one will give a power of Nf to the 
determinant

Thursday, June 3, 2010



Monte Carlo calculation
LQCD

〈O〉 =
1

Z

∫
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µ,x

dUµ(x) O[U, D(U)−1] det
(

D(U)†D(U)
)nf /2

e−Sg(U)



Monte Carlo calculation
LQCD

〈O〉 =
1

Z

∫

∏

µ,x

dUµ(x) O[U, D(U)−1] det
(

D(U)†D(U)
)nf /2

e−Sg(U)



Monte Carlo calculation
LQCD

〈O〉 =
1

Z

∫

∏

µ,x

dUµ(x) O[U, D(U)−1] det
(

D(U)†D(U)
)nf /2

e−Sg(U)



Monte Carlo calculation
LQCD

〈O〉 =
1

Z

∫

∏

µ,x

dUµ(x) O[U, D(U)−1] det
(

D(U)†D(U)
)nf /2

e−Sg(U)



Monte Carlo calculation
LQCD

〈O〉 =
1

Z

∫

∏

µ,x

dUµ(x) O[U, D(U)−1] det
(

D(U)†D(U)
)nf /2

e−Sg(U)



Monte Carlo calculation
LQCD

• Gauge field configuration generation
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Monte Carlo calculation
LQCD

• Gauge field configuration generation

• Can be used for several observables
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Monte Carlo calculation
LQCD

• Gauge field configuration generation

• Can be used for several observables

• Correlation function calculation 
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Monte Carlo calculation
LQCD

• Gauge field configuration generation

• Can be used for several observables

• Correlation function calculation 

• Observable specific

• Allows for non-perturbative computations in QCD

〈O〉 =
1

Z

∫

∏

µ,x

dUµ(x) O[U, D(U)−1] det
(

D(U)†D(U)
)nf /2

e−Sg(U)



Computation of equal time matrix elements
LQCD

Typical matrix element computation

Ratios of two and three point functions

Disconnected diagrams usually ignored

Isovector quantities are easier

Dynamical fermions (2 and 2+1 flavors) are 
now the standard

�
dxHT (x, �, t) = gT (t) (9)

⇤P, S|O|P, S⌅ (10)

⇤P, S|O|P ⇥, S ⇥⌅ (11)
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Two point function 

Three point function 

C2pt = hN(p, s, T )N̄(p, s, 0)i = h0|N, p, sie
�EpT

2Ep
hN, p, s, |0i

<latexit sha1_base64="Mnh58VdrtQerFRm5YHg71yyrWOs=">AAACXnicbVFbS8MwGE3rbc7bvIHgy4dDUJijHYq+CEMRfJIJmwp2ljRLZzBtQ5IKoxb/nn/BN1/8H2ZbRZx+EDjfOefL5SQQnCntOO+WPTU9MztXmi8vLC4tr1RW125UkkpCOyThibwLsKKcxbSjmeb0TkiKo4DT2+DpfKjfPlOpWBK39UDQboT7MQsZwdpQfuX13M8aQudwCh7HcZ9TuNoTNVVr74MXYFl0junkWP4xOvACVzUjf0vghRKTjD5kBxe+gHaeZw0wKP/Ze2ivmTmnmPErVafujAr+ArcAVVRUy6+8eb2EpBGNNeFYqXvXEbqbYakZ4TQve6miApMn3KfZKJ4cdg3VgzCRZsUaRuwvH46UGkSBcUZYP6pJbUj+p92nOjzpZiwWqaYxGR8Uphx0AsOsocckJZoPDMBEMnNDII/YRKTNj5TN093Jh/4FN426e1g/uj6sNs+KEEpoG+2gPeSiY9REl6iFOoigT2vB2rA2rQ971l6yV8ZW2ypm1tGvsre+ACyKr64=</latexit>

C3pt = h0|N, p, si
e�Ep(T�t)

2Ep
hN, p, s|O|N, p0, s0i

e�E0
pt

2E0
p

hN, p0, s0, |0i

<latexit sha1_base64="fXzvJRVmS0lC12KxuVGVI4lpm3E="></latexit>

Computation  of ground state energy and overlap factors 

Computation of ground state matrix elements 

At sufficiently large T and t we get 

In practice we need to account for contributions from excited states

Energies and equal matrix elements are the same as those in Minkowski space Briceno et al arXiv:1703.06072



Pseudo-PDFs
An alternative point of view

z 0

p p

A. Radyushkin Phys.Lett. B767 (2017)

Unpolarized PDFs proton:

3

III. QUASI-DISTRIBUTIONS

A. Definition and relation to TMDs

Since one cannot arrange light-like separations on the
lattice, it was proposed [2] to consider spacelike separa-
tions z = (0, 0, 0, z3) [or, for brevity, z = z3]. Then, in the
p = (E, 0?, P ) frame, one can introduce the quasi-PDF
Q(y, P ) through a parametrization

hp|�(0)�(z3)|pi =

Z
1

�1

dy Q(y, P ) eiyPz3 . (8)

Following this definition, the function Q(y, P ) describes
the probability that the the fraction y of the hadron’s
third momentum component P is carried by the parton.
Returning to the idea to treat the matrix element as a
function of the variables ⌫ and �z2 (which in this case
are given by Pz3 and z2

3), we have

M(⌫, z2
3) =

Z
1

�1

dy Q(y, P ) eiy⌫ . (9)

Since z2
3 = ⌫2/P 2, the inverse Fourier transformation

reads as follows

Q(y, P ) =
1

2⇡

Z
1

�1

d⌫ e�iy⌫
M(⌫, ⌫2/P 2) . (10)

It shows that Q(y, P ) tends to f(y) in the P ! 1 limit,
since formally M(⌫, ⌫2/P 2) ! M(⌫, 0) when P ! 1.

Therefore, the deviation of the quasi-PDF Q(y, P )
from the PDF f(y) is controlled by the dependence of
M(⌫, z2

3) on its second argument. By virtue of Eq. (7),
this dependence is related to the dependence of the TMD
F(x,2) on 2 (its second arguement). Consequently, the
difference between Q(y, P ) and f(y) is associated to the
transverse momentum dependence of the TMDs.

The explicit relation was derived in Ref. [7]

Q(y, P )/P =

Z
1

�1

dk1

Z 1

�1
dx F(x, k2

1 + (y � x)2P 2) .

(11)

It is a mere consequence of Lorentz invariance, but it
tells us that the distribution of the parton k3 momentum
is affected by the same physics that generates the k?-
dependence of the TMDs!

B. Quantum chromodynamics (QCD) case

The formulae that were derived previously can be di-
rectly applied to the non-singlet parton densities of QCD.
Here, one is considering matrix elements of the following
type

M
↵(z, p) ⌘ hp| ̄(0) �↵ Ê(0, z; A) (z)|pi , (12)

where Ê(0, z; A) is the standard 0 ! z straight-line
gauge link in the quark (fundamental) representation. By
Lorentz invariance, these matrix elements can actually be
decomposed into p↵ and z↵ part

M
↵(z, p) =2p↵Mp(�(zp), �z2) + z↵Mz(�(zp), �z2) .

(13)

The Mp(�(zp), �z2) part gives the twist-2 distribution
when z2

! 0, compared to Mz(�(zp), �z2) which is a
purely higher-twist contamination, and one may wish to
make an effort to eliminate it from definitions of TMDs
and quasi-PDFs.

Introducing TMDs, one takes z = (z�, z?) and the
↵ = + component of M

↵. Hence, the z↵-part drops
out, and one gets a TMD F(x, k2

?
) that is related to

Mp(⌫, z2
?

) by the scalar formulas (2), (7). Defining
quasi-distributions, the easiest path that avoids the z↵

contamination is by considering the time component of
M

↵(z = z3, p) and define

M
0(z3, p) = 2p0

Z 1

�1
dy Q(y, P ) eiyPz3 . (14)

Then, the scalar formula (11) connects the quasi-PDF
Q(y, P ) and the TMD F(x, k2

?
).

It should be emphasized that the operator defining
M

↵(z, p) includes a 0 ! z straight-line link instead of
a stapled link which is common in most of the definitions
of TMDs which appear ias part of the description of semi-
inclusive DIS and Drell-Yan processes. It is well known
that the stapled links reflect initial or final state inter-
actions specific to these processes. The “straight-link”
TMDs, in this sense, describe the structure of a hadron
when it is in its non-disturbed or “primordial” state. One
may argue that such a TMD cannot be directly measured
in a scattering experiment, however, it is a well-defined
QFT object, and its study on the lattice could be per se,
an interesting idea.

C. Factorized models

A very popular idea is that the nonperturbative (or
soft) part of the TMDs F(x, k2

?
) may be represented by

a product

F(x, k2
?

) = f(x)K(k2
?

) (15)

of the collinear parton distribution f(x) and a
k2
?

-dependent factor K(k2
?

), usually modeled by a Gaus-
sian. For the Ioffe-time distribution M(⌫, �z2), this
Ansatz corresponds to the factorization assumption

M
soft(⌫, z2

3) = M
soft(⌫, 0)M(0, z2

3) (16)

Still, even if the TMD factorizes, the quasi-PDF has the
convolution structure of Eq. (11). Taking, for illustra-
tion, a Gaussian form

KG(k2
?

) =
1

⇡⇤2
e�k2

?/⇤2

, (17)

Ê(0, z;A) = P exp


�ig

Z z

0
dz0µ A

µ
↵(z

0)T↵

�

space-like separation of quarks
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?/⇤2

, (17)

Lorentz decomposition:
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Isovector quark and anti-quark distributions
Comparison with phenomenology

Figure 28. The results of the AICc weighted average of the models of Sec. 6.3.
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Figure 29. A comparison of the AICc averaged results to the global fit PDFs, CT18 [124], NNPDF
3.1 [127], MSHT’20 [125], and JAM20 [126]. The upper plots are the parton distributions and the
lower plots are the distributions weighted by x to emphasize the large x region.
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Statistical noise

C2p(P, t) = hON (P, t)O†
N (P, 0)i ⇠ Ze

�E(P )t

var [C2p(P, t)] = hON (P, t)ON (P, t)†ON (P, 0)O†
N (P, 0)i ⇠ Z3⇡e

�3m⇡t

Nucleon with momentum P two-point function: 

Variance of nucleon two-point function: 

Variance is independent of the momentum

Statistical accuracy drops exponentially with the increasing momentum limiting the 
maximum achievable momentum.

var [C2p(P, t)]
1/2

Cap(P, t)
⇠ Z

Z 3⇡
e[E(P )�3/2m⇡ ]t
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We need to find a way to 
increase statistics


















