
HPC Storage Service Autotuning Using
Variational-Autoencoder-Guided Asynchronous
Bayesian Optimization

PRASANNA BALAPRAKASH

M. Dorier, R. Egele, P. Balaprakash, J. Koo, S. Madireddy, S. Ramesh, A. D. Malony, and R. Ross. "HPC Storage
Service Autotuning Using Variational-Autoencoder-Guided Asynchronous Bayesian Optimization." In 2022 IEEE
International Conference on Cluster Computing (CLUSTER), pp. 381-393. IEEE, 2022.

IT ALL STARTED WITH
A HIGH ENERGY PHYSICS APPLICATION…

THE HEPnOS DATA SERVICE
● Motivated by scalability issues with

filesystem-based storage strategies
● Designed to store “events” from HEP

experiments (many small C++ objects)
● Transient storage system, in-memory or

using local storage (e.g. SSDs)
● Developed using the Mochi suite of libraries

for composable HPC data services
○ https://www.mcs.anl.gov/research/projects/mochi

● Provides lots of optimizations and lots of
configuration knobs

https://www.mcs.anl.gov/research/projects/mochi

The HEP Event Selection Workflow
and its Parameter Space

MANUAL TUNING (IT’S HARD!)

Callpath ancestry appended to RPCs
allows tracking and ranking distributed
callpaths (e.g., by time in the callpath)

Performance
variables exported
by Mercury in
conjunction with ULT
data allow detailed
analysis of timing.

AUTOMATE: BLACK-BOX TUNING
WITH DEEPHYPER!

Parallel Asynchronous Bayesian Optimization

● Many instances evaluated in parallel
● Asynchronous updates

https://deephyper.readthedocs.io

https://deephyper.readthedocs.io

Bayesian Optimization

https://en.wikipedia.org/wiki/Bayesian_optimization

Surrogate Model Fitted to Sampled Performance
(iterative refinement improves the learning model)

https://en.wikipedia.org/wiki/Bayesian_optimization

Acquisition Functions

Expected improvement

Probability of improvement

Upper confidence bound

How to Scale?

Asynchronous Multipoint Evaluation:
Kriging believer (aka liar strategy)
• Model M

• Ensemble of regression trees
• mixed integer input space
• scalability due to parallelization
• minimal tuning

• Given a model M and an acquisition function u
• Repeat K times (for K configurations)

• select a point x that maximizes acquisition function
with M

• sampling instead of optimization
• mixed integer space
• faster

• predict the mean (mu) of x using M
• clone the model M to M’
• refit M’ with x and mu (lie)

• std.dev -> 0
• set M’ to M

Each worker can use multiple nodes

TRASNFER LEARNING: REUSING PREVIOUS
TUNING RESULTS TO SPEED UP BAYESIAN
OPTIMIZATION

Transfer Learning
▪ Why? Data service tuning is compute and resource

intensive
– Large search spaces – (continuous/discrete)
– Large/expensive black-box models

▪ Transfer learning: transfer the information gained from a
previous related search to a new one
– improve either the search efficiency or accuracy, or

both

▪ High-performing configurations and their neighborhood from
the previous (related) search
– potentially high-performing configurations

▪ Define informative prior distributions for the parameter
instead of typical non-informative (uniform distribution) prior

12

Transfer Learning with Variational Autoencoder

Tabular-VAE

Hypothesis: High-performing configurations
from one search can be used to bias a related
search

Problem: Learn the distribution of high-
performing configurations?

Solution: Density estimation

Algorithm
○ Select high-performing configurations from

previous experiments
○ Fit a Tabular-VAE to learn model the density of

the high-performing configurations
■ p(z|x) (encoder)
■ p(x|z) (decoder)

○ Execute BO with p(x|z) instead of p(x)
Xu, Lei, et al. "Modeling tabular data using conditional GAN." Advances in Neural Information Processing Systems 32 (2019).

VAE – ABO: Algorithm

▪ Sampling configurations in the
initialization phase of BO

▪ Select candidates for evaluation in the
iterative phase of BO

▪ Sampled configurations in the BO are
biased toward the high-performing
configurations from the previous run

Generate Samples using Decoder

! !

"

#

$ ∘%Encoder Decoder

&' Continuous

Discrete

14

15

VAE – ABO: Algorithm

VAE – ABO: Algorithm

16

VAE – ABO: Algorithm

! !

"

#

$ ∘%Encoder Decoder

&' Continuous

Discrete

17

! !

"

#

$ ∘%Encoder Decoder

&' Continuous

Discrete

18

VAE – ABO: Algorithm

EXPERIMENTS

FIVE WAYS TO EVALUATE AN APPROACH

● Best-performing configuration
○ How good is it after 1h of autotuning?

● Mean best-performing configuration
○ Integrated best-performing time over 1h

● Number of evaluations
○ The more evaluations, the better

● Worker utilization
○ Idle workers are a waste of resources

● Search speedup
○ How much faster are we than pure luck (random sampling)?

PLATFORM: THETA
Architecture Intel-Cray XC40

Speed 11.7 petaflops

Processors per node 64 core, 1.3 GHz Intel
Xeon Phi 7230

Nodes 4,392

Cores 281,088

Memory 843 TB

High-bandwidth memory 70 TB

Interconnect Aries network with
Dragonfly topology

FIVE EXPERIMENTAL SETUPS
1. Initial: only the first step of the workflow, on 4 nodes per instance

○ 11 parameters
2. Full workflow: 2-steps workflow on 4 nodes per instance

○ 16 parameters, w/ and w/o transfer-learning from setup 1
3. More parameters: 2-steps workflow on 4 nodes with more parameters

○ 20 parameters, w/ and w/o transfer-learning from setup 2
4. Full workflow with 8 nodes per instance

○ 20 parameters, w/ and w/o transfer-learning from setup 3
5. Full workflow with 16 nodes per instance

○ 20 parameters, w/ and w/o transfer-learning from setup 4

INITIAL EXPERIMENT

● Single-step workflow instances
● 4 nodes per instance
● 11 tuning parameters
● DeepHyper uses 128 nodes
● 32 instances evaluated in parallel
● Experiment repeated 5 times

10min to converge

TRANSFER-LEARNING
From small to larger search space

From 1-step to 2-step workflow
(11 to 16 parameters) on 4 nodes per instance

2-step workflow on 4 nodes per instance
From 16 to 20 parameters

TRANSFER-LEARNING
From small to larger instances

From 4 nodes to 8 nodes per instance
(20 parameters)

From 8 nodes to 16 nodes per instance
(20 parameters)

CONCLUSION

CONCLUSION: USE TRANSFER LEARNING!
Contributions
● We developed a TVAE-based transfer-learning technique
● We integrated it into the DeepHyper framework
● We enabled autotuning of a HEP workflow and its storage service

Results
● Transfer-learning enables finding better configurations faster
● Our framework outperforms state-of-the-art autotuning GPtune and HiPerBOt

Future work
● Provide a generic autotuning framework for Mochi-based storage services
● Handle complex service configuration (e.g., hierarchical/conditional parameter

spaces)

THIS WORK IS IN PART SUPPORTED BY THE DIRECTOR, OFFICE OF
ADVANCED SCIENTIFIC COMPUTING RESEARCH, OFFICE OF SCIENCE, OF
THE U.S. DEPARTMENT OF ENERGY UNDER CONTRACT NO. DE-AC02-
06CH11357; IN PART SUPPORTED BY THE EXASCALE COMPUTING PROJECT
(17-SC-20-SC); AND IN PART SUPPORTED BY THE U.S. DEPARTMENT OF
ENERGY, OFFICE OF SCIENCE, OFFICE OF ADVANCED SCIENTIFIC
COMPUTING RESEARCH, SCIENTIFIC DISCOVERY THROUGH ADVANCED
COMPUTING (SCIDAC) PROGRAM.

THANK YOU!

