
HPC Storage Service Autotuning Using 
Variational-Autoencoder-Guided Asynchronous 
Bayesian Optimization

PRASANNA BALAPRAKASH

M. Dorier, R. Egele, P. Balaprakash, J. Koo, S. Madireddy, S. Ramesh, A. D. Malony, and R. Ross. "HPC Storage 
Service Autotuning Using Variational-Autoencoder-Guided Asynchronous Bayesian Optimization." In 2022 IEEE 
International Conference on Cluster Computing (CLUSTER), pp. 381-393. IEEE, 2022.



IT ALL STARTED WITH
A HIGH ENERGY PHYSICS APPLICATION…



THE HEPnOS DATA SERVICE
● Motivated by scalability issues with 

filesystem-based storage strategies
● Designed to store “events” from HEP 

experiments (many small C++ objects)
● Transient storage system, in-memory or 

using local storage (e.g. SSDs)
● Developed using the Mochi suite of libraries 

for composable HPC data services
○ https://www.mcs.anl.gov/research/projects/mochi

● Provides lots of optimizations and lots of 
configuration knobs

https://www.mcs.anl.gov/research/projects/mochi


The HEP Event Selection Workflow
and its Parameter Space



MANUAL TUNING (IT’S HARD!)

Callpath ancestry appended to RPCs 
allows tracking and ranking distributed 
callpaths (e.g., by time in the callpath)

Performance 
variables exported 
by Mercury in 
conjunction with ULT 
data allow detailed 
analysis of timing.



AUTOMATE: BLACK-BOX TUNING
WITH DEEPHYPER!

Parallel Asynchronous Bayesian Optimization

● Many instances evaluated in parallel
● Asynchronous updates

https://deephyper.readthedocs.io

https://deephyper.readthedocs.io


Bayesian Optimization

https://en.wikipedia.org/wiki/Bayesian_optimization

Surrogate Model Fitted to Sampled Performance
(iterative refinement improves the learning model)

https://en.wikipedia.org/wiki/Bayesian_optimization


Acquisition Functions

Expected improvement

Probability of improvement

Upper confidence bound



How to Scale?



Asynchronous Multipoint Evaluation:
Kriging believer (aka liar strategy)
• Model M

• Ensemble of regression trees 
• mixed integer input space
• scalability due to parallelization
• minimal tuning

• Given a model M and an acquisition function u
• Repeat K times (for K configurations)

• select a point x that maximizes acquisition function 
with M

• sampling instead of optimization
• mixed integer space
• faster 

• predict the mean (mu) of x using M
• clone the model M to M’
• refit M’ with x and mu (lie)

• std.dev -> 0
• set M’ to M

Each worker can use multiple nodes 



TRASNFER LEARNING: REUSING PREVIOUS 
TUNING RESULTS TO SPEED UP BAYESIAN 
OPTIMIZATION



Transfer Learning
▪ Why? Data service tuning is compute and resource 

intensive
– Large search spaces – (continuous/discrete)
– Large/expensive black-box models 

▪ Transfer learning: transfer the information gained from a 
previous related search to a new one
– improve either the search efficiency or accuracy, or 

both

▪ High-performing configurations and their neighborhood from 
the previous (related) search 
– potentially high-performing configurations

▪ Define informative prior distributions for the parameter 
instead of typical non-informative (uniform distribution) prior
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Transfer Learning with Variational Autoencoder

Tabular-VAE

Hypothesis: High-performing configurations 
from one search can be used to bias a related 
search 

Problem: Learn the distribution of high-
performing configurations?

Solution: Density estimation

Algorithm
○ Select high-performing configurations from 

previous experiments 
○ Fit a Tabular-VAE to learn model the density of 

the high-performing configurations
■ p(z|x) (encoder) 
■ p(x|z) (decoder)

○ Execute BO with p(x|z) instead of p(x)
Xu, Lei, et al. "Modeling tabular data using conditional GAN." Advances in Neural Information Processing Systems 32 (2019).



VAE – ABO: Algorithm

▪ Sampling configurations in the 
initialization phase of BO 

▪ Select candidates for evaluation in the 
iterative phase of BO

▪ Sampled configurations in the BO are 
biased toward the high-performing 
configurations from the previous run 

Generate Samples using Decoder
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VAE – ABO: Algorithm



VAE – ABO: Algorithm
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VAE – ABO: Algorithm
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VAE – ABO: Algorithm



EXPERIMENTS



FIVE WAYS TO EVALUATE AN APPROACH

● Best-performing configuration
○ How good is it after 1h of autotuning?

● Mean best-performing configuration
○ Integrated best-performing time over 1h

● Number of evaluations
○ The more evaluations, the better

● Worker utilization
○ Idle workers are a waste of resources

● Search speedup
○ How much faster are we than pure luck (random sampling)?



PLATFORM: THETA
Architecture Intel-Cray XC40

Speed 11.7 petaflops

Processors per node 64 core, 1.3 GHz Intel 
Xeon Phi 7230

Nodes 4,392

Cores 281,088

Memory 843 TB

High-bandwidth memory 70 TB

Interconnect Aries network with 
Dragonfly topology



FIVE EXPERIMENTAL SETUPS
1. Initial: only the first step of the workflow, on 4 nodes per instance

○ 11 parameters
2. Full workflow: 2-steps workflow on 4 nodes per instance

○ 16 parameters, w/ and w/o transfer-learning from setup 1
3. More parameters: 2-steps workflow on 4 nodes with more parameters

○ 20 parameters, w/ and w/o transfer-learning from setup 2
4. Full workflow with 8 nodes per instance

○ 20 parameters, w/ and w/o transfer-learning from setup 3
5. Full workflow with 16 nodes per instance

○ 20 parameters, w/ and w/o transfer-learning from setup 4



INITIAL EXPERIMENT

● Single-step workflow instances
● 4 nodes per instance
● 11 tuning parameters
● DeepHyper uses 128 nodes
● 32 instances evaluated in parallel
● Experiment repeated 5 times

10min to converge



TRANSFER-LEARNING
From small to larger search space

From 1-step to 2-step workflow
(11 to 16 parameters) on 4 nodes per instance

2-step workflow on 4 nodes per instance
From 16 to 20 parameters



TRANSFER-LEARNING
From small to larger instances

From 4 nodes to 8 nodes per instance
(20 parameters)

From 8 nodes to 16 nodes per instance
(20 parameters)



CONCLUSION



CONCLUSION: USE TRANSFER LEARNING!
Contributions
● We developed a TVAE-based transfer-learning technique
● We integrated it into the DeepHyper framework
● We enabled autotuning of a HEP workflow and its storage service

Results
● Transfer-learning enables finding better configurations faster
● Our framework outperforms state-of-the-art autotuning GPtune and HiPerBOt

Future work
● Provide a generic autotuning framework for Mochi-based storage services
● Handle complex service configuration (e.g., hierarchical/conditional parameter 

spaces)
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