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Sampling QCD field configurations with gauge-equivariant flow models Phiala E. Shanahan

1. Introduction

The rapid development of machine learning, and in particular deep learning, over the last
decade has spawned a new wave of algorithms for computational physics [1–3]. In lattice quantum
field theory, custom machine learning tools are being developed to accelerate almost every step
of the computational workflow [4], from configuration generation [5–38] to calculation or design
of observables [5, 18, 39–49] and various aspects of analysis [50–61], while maintaining rigorous
guarantees of exactness.

One particular approach to accelerating gauge field generation via machine learning is based
on the use of flow transformations as trivializing maps [62–65], as outlined in Sec. 2. Bespoke
flow architectures tailored to this application have been constructed, including gauge-equivariant
architectures designed for Abelian and non-Abelian gauge field theories [30, 31], and methods to
incorporate fermions [32, 66]. Proof-of-principle implementations have demonstrated success in
ameliorating important challenges such as critical slowing-down and topological freezing, as well
as the computation of thermodynamic quantities, in theories ranging from scalar field theory [5,
28, 35, 67, 68] through Yukawa theory [32], to the Schwinger model [9, 69] and SU(3) gauge field
theory with fermions in two dimensions [66].

The following sections outline how recent developments may be combined to construct flow
transformations to enable sampling of QCD gauge field configurations, and present the first numer-
ical demonstration of this technique applied to lattice QCD.

2. Flow transformations of lattice field configurations

In the machine learning lexicon, a flow transformation [63–65] is a di�eomorphism between
manifolds, defined with a large number of free parameters such that it can be optimized, or trained,
to some objective. Precisely, a flow 5 maps samples I from a ‘prior’ or base distribution A (I) to
samples i = 5 (I) distributed according to

@(i) = A (I) | det m 5 (I)/mI |�1 . (1)

The free parameters of 5 are optimized such that @(i) approximates a ‘target’ probability distribution
?(i), i.e., @(i) ' ?(i). Typically this is achieved by minimization of a ‘loss function’ that
quantifies the di�erence between @(i) and ?(i), such as the Kullback-Leibler (KL) divergence [70]
or related measures. It is often convenient to define the loss function such that it can be computed
stochastically using only samples from A (I) (known as ‘self-training’ as no ‘training data’, i.e., no
samples from ?(i), are needed). Given a flow model 5 , samples from ?(i) can be obtained by
using samples drawn from the model distribution @(i) as proposals in the independence Metropolis
algorithm [71–73], or by reweighting.

Applications of flow models to lattice field theory are discussed in Refs. [5, 7–9, 23, 25, 27–
38, 68, 69, 74–77]. In the context of gauge field configuration generation, i (and I) are field
configurations, and the goal is to sample e�ciently from ?(i) = 1

Z 4�( (i) , where ((i) is the
Euclidean action of the theory and Z is a normalization constant. In the most direct approach, A (I)
can be taken as a trivial distribution (e.g., an independent uniform distribution over the Haar measure
on each link for a gauge theory), and 5 implements an approximation of a trivializing map [62].
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?(i), i.e., @(i) ' ?(i). Typically this is achieved by minimization of a ‘loss function’ that
quantifies the di�erence between @(i) and ?(i), such as the Kullback-Leibler (KL) divergence [70]
or related measures. It is often convenient to define the loss function such that it can be computed
stochastically using only samples from A (I) (known as ‘self-training’ as no ‘training data’, i.e., no
samples from ?(i), are needed). Given a flow model 5 , samples from ?(i) can be obtained by
using samples drawn from the model distribution @(i) as proposals in the independence Metropolis
algorithm [71–73], or by reweighting.

Applications of flow models to lattice field theory are discussed in Refs. [5, 7–9, 23, 25, 27–
38, 68, 69, 74–77]. In the context of gauge field configuration generation, i (and I) are field
configurations, and the goal is to sample e�ciently from ?(i) = 1

Z 4�( (i) , where ((i) is the
Euclidean action of the theory and Z is a normalization constant. In the most direct approach, A (I)
can be taken as a trivial distribution (e.g., an independent uniform distribution over the Haar measure
on each link for a gauge theory), and 5 implements an approximation of a trivializing map [62].
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3.1 Model definition

Marginal model @(q) ⇡ 1
/ 4

�( (q) The marginal model uses a Haar-uniform prior distribution and
consists of 48 gauge-equivariant spline coupling layers [31], with convolutional neural networks
acting in the spectral flow to define the spline parameters. Spatially separated convolutions are used;
i.e., the four-dimensional convolutional neural networks consist of blocks, where every block is the
sequential application of a one-dimensional convolution along each of the four dimensions. The
convolutions have kernel size 3, and two hidden layers each of size 32, with inner “Leaky ReLU”
activation functions and no final activation function. The hidden layers contain biases, while the
final layers do not. [Dan: What does this mean? All but the last block of convs? Last conv in each
block? Last conv overall?] The weights and biases of the convolutions comprise all free parameters
of the architecture. The gauge-invariant inputs to the inner spectral flow are the real and imaginary
parts of the traces of all frozen plaquettes; the masking pattern follows the algorithm for masking
patterns in 4D which is presented in Ref. [forward cite higher dim?] , with parameters spatial-dims
= [ 4, 4, 4, 4 ], mask-orientations = 0, width = 4, phase = 0, orientations-to-shift = [ 0, 1, 2, 3 ],
shifts = [ 1, 2, 1, 1 ]; mask alternation scheme is AlternateMu0Mu1. [Denis: I need to check with
Julian if he describes this mask alternation scheme it in 4D paper, otherwise we should describe
it here. Now there is not such description.] [Julian: alternation scheme will be described in Nd
U(1) paper, the parameter names will be the same, so it should be fine to forward cite here without
further changes necessary.]

The marginal model is constructed and trained before the conditional model is. The convolution
weights are first initialized using the Xavier normal [83] scheme with gain parameter 0.5, and biases
are set to zero. After initialization, self-training proceeds by minimizing stochastic estimates of the
“reverse” KL loss [28] computed with flow model samples, as discussed above. Gradients of the
fermion determinant are estimated stochastically as described in Appendix C of Ref. [32]. During
training only, the Dirac operator is regulated as (⇡⇡† + `0), with `0 = 10�5; no regulator is used
in evaluation. The marginal model is trained for 21k steps with batch size 512. The initial learning
rate is 10�3, and decreases by a factor 0.8 every 10k steps. All optimization is performed with the
Adam optimizer [84] with n = 10�2. Clipping is applied to the norm and value of gradients [85];
the maximum norm value was set to 10, and maximum value to 0.1. [Phiala: need to specify
what definition grad clip etc are set in etc] [Denis: I added the reference. We can also specify PT
functions torch.nn.utils.clip_grad_norm_ and torch.nn.utils.clip_grad_value_ ]

Conditional model

The conditional model uses a Gaussian prior and consists of 36 pseudofermion layers built from
parallel transport convolutional networks (PTCN), defined in Ref. [66]. The masking pattern rotates
through the spin projectors 1

2 (1 ± W`) for ` 2 {0, 1, 2, 3, 5} along with even/odd spatial projectors.
In the notation of Ref. [66], the PTCNs use =%) = 6 and � = 4. The context function of each PTCN
is a convolutional neural network—as described in the Appendix B.2 of Ref. [66]—and it has six
input channels, namely

Õ
`<a , Re Tr %`a ,

Õ
`<a Im Tr %`a , �0, �1, �2, and �3 where %`a (G) is the

plaquette and �8 (G) = G8 mod 4. The part of the context function that is shared among all PTCNs has
8 hidden channels, with “ELU” used as the inner activation function. The final activation function
is “tanh”. All layers have biases and use kernel size 3.
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Sampling QCD field configurations with gauge-equivariant flow models Phiala E. Shanahan

1. Introduction

The rapid development of machine learning, and in particular deep learning, over the last
decade has spawned a new wave of algorithms for computational physics [1–3]. In lattice quantum
field theory, custom machine learning tools are being developed to accelerate almost every step
of the computational workflow [4], from configuration generation [5–38] to calculation or design
of observables [5, 18, 39–49] and various aspects of analysis [50–61], while maintaining rigorous
guarantees of exactness.

One particular approach to accelerating gauge field generation via machine learning is based
on the use of flow transformations as trivializing maps [62–65], as outlined in Sec. 2. Bespoke
flow architectures tailored to this application have been constructed, including gauge-equivariant
architectures designed for Abelian and non-Abelian gauge field theories [30, 31], and methods to
incorporate fermions [32, 66]. Proof-of-principle implementations have demonstrated success in
ameliorating important challenges such as critical slowing-down and topological freezing, as well
as the computation of thermodynamic quantities, in theories ranging from scalar field theory [5,
28, 35, 67, 68] through Yukawa theory [32], to the Schwinger model [9, 69] and SU(3) gauge field
theory with fermions in two dimensions [66].

The following sections outline how recent developments may be combined to construct flow
transformations to enable sampling of QCD gauge field configurations, and present the first numer-
ical demonstration of this technique applied to lattice QCD.

2. Flow transformations of lattice field configurations

In the machine learning lexicon, a flow transformation [63–65] is a di�eomorphism between
manifolds, defined with a large number of free parameters such that it can be optimized, or trained,
to some objective. Precisely, a flow 5 maps samples I from a ‘prior’ or base distribution A (I) to
samples i = 5 (I) 5 (I) distributed according to

@(i) = A (I) | det m 5 (I)/mI |�1 . (1)

The free parameters of 5 are optimized such that @(i) approximates a ‘target’ probability distribution
?(i), i.e., @(i) ' ?(i). Typically this is achieved by minimization of a ‘loss function’ that
quantifies the di�erence between @(i) and ?(i), such as the Kullback-Leibler (KL) divergence [70]
or related measures. It is often convenient to define the loss function such that it can be computed
stochastically using only samples from A (I) (known as ‘self-training’ as no ‘training data’, i.e., no
samples from ?(i), are needed). Given a flow model 5 , samples from ?(i) can be obtained by
using samples drawn from the model distribution @(i) as proposals in the independence Metropolis
algorithm [71–73], or by reweighting.

Applications of flow models to lattice field theory are discussed in Refs. [5, 7–9, 23, 25, 27–
38, 68, 69, 74–77]. In the context of gauge field configuration generation, i (and I) are field
configurations, and the goal is to sample e�ciently from ?(i) = 1

Z 4�( (i) , where ((i) is the
Euclidean action of the theory and Z is a normalization constant. In the most direct approach, A (I)
can be taken as a trivial distribution (e.g., an independent uniform distribution over the Haar measure
on each link for a gauge theory), and 5 implements an approximation of a trivializing map [62].
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3.1 Model definition

Marginal model @(q) ⇡ 1
/ 4

�( (q) The marginal model uses a Haar-uniform prior distribution and
consists of 48 gauge-equivariant spline coupling layers [31], with convolutional neural networks
acting in the spectral flow to define the spline parameters. Spatially separated convolutions are used;
i.e., the four-dimensional convolutional neural networks consist of blocks, where every block is the
sequential application of a one-dimensional convolution along each of the four dimensions. The
convolutions have kernel size 3, and two hidden layers each of size 32, with inner “Leaky ReLU”
activation functions and no final activation function. The hidden layers contain biases, while the
final layers do not. [Dan: What does this mean? All but the last block of convs? Last conv in each
block? Last conv overall?] The weights and biases of the convolutions comprise all free parameters
of the architecture. The gauge-invariant inputs to the inner spectral flow are the real and imaginary
parts of the traces of all frozen plaquettes; the masking pattern follows the algorithm for masking
patterns in 4D which is presented in Ref. [forward cite higher dim?] , with parameters spatial-dims
= [ 4, 4, 4, 4 ], mask-orientations = 0, width = 4, phase = 0, orientations-to-shift = [ 0, 1, 2, 3 ],
shifts = [ 1, 2, 1, 1 ]; mask alternation scheme is AlternateMu0Mu1. [Denis: I need to check with
Julian if he describes this mask alternation scheme it in 4D paper, otherwise we should describe
it here. Now there is not such description.] [Julian: alternation scheme will be described in Nd
U(1) paper, the parameter names will be the same, so it should be fine to forward cite here without
further changes necessary.]

The marginal model is constructed and trained before the conditional model is. The convolution
weights are first initialized using the Xavier normal [83] scheme with gain parameter 0.5, and biases
are set to zero. After initialization, self-training proceeds by minimizing stochastic estimates of the
“reverse” KL loss [28] computed with flow model samples, as discussed above. Gradients of the
fermion determinant are estimated stochastically as described in Appendix C of Ref. [32]. During
training only, the Dirac operator is regulated as (⇡⇡† + `0), with `0 = 10�5; no regulator is used
in evaluation. The marginal model is trained for 21k steps with batch size 512. The initial learning
rate is 10�3, and decreases by a factor 0.8 every 10k steps. All optimization is performed with the
Adam optimizer [84] with n = 10�2. Clipping is applied to the norm and value of gradients [85];
the maximum norm value was set to 10, and maximum value to 0.1. [Phiala: need to specify
what definition grad clip etc are set in etc] [Denis: I added the reference. We can also specify PT
functions torch.nn.utils.clip_grad_norm_ and torch.nn.utils.clip_grad_value_ ]

Conditional model

The conditional model uses a Gaussian prior and consists of 36 pseudofermion layers built from
parallel transport convolutional networks (PTCN), defined in Ref. [66]. The masking pattern rotates
through the spin projectors 1

2 (1 ± W`) for ` 2 {0, 1, 2, 3, 5} along with even/odd spatial projectors.
In the notation of Ref. [66], the PTCNs use =%) = 6 and � = 4. The context function of each PTCN
is a convolutional neural network—as described in the Appendix B.2 of Ref. [66]—and it has six
input channels, namely

Õ
`<a , Re Tr %`a ,

Õ
`<a Im Tr %`a , �0, �1, �2, and �3 where %`a (G) is the

plaquette and �8 (G) = G8 mod 4. The part of the context function that is shared among all PTCNs has
8 hidden channels, with “ELU” used as the inner activation function. The final activation function
is “tanh”. All layers have biases and use kernel size 3.
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3.1 Model definition

Marginal model @(q) ⇡ 1
/ 4

�( (q) The marginal model uses a Haar-uniform prior distribution and
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acting in the spectral flow to define the spline parameters. Spatially separated convolutions are used;
i.e., the four-dimensional convolutional neural networks consist of blocks, where every block is the
sequential application of a one-dimensional convolution along each of the four dimensions. The
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activation functions and no final activation function. The hidden layers contain biases, while the
final layers do not. [Dan: What does this mean? All but the last block of convs? Last conv in each
block? Last conv overall?] The weights and biases of the convolutions comprise all free parameters
of the architecture. The gauge-invariant inputs to the inner spectral flow are the real and imaginary
parts of the traces of all frozen plaquettes; the masking pattern follows the algorithm for masking
patterns in 4D which is presented in Ref. [forward cite higher dim?] , with parameters spatial-dims
= [ 4, 4, 4, 4 ], mask-orientations = 0, width = 4, phase = 0, orientations-to-shift = [ 0, 1, 2, 3 ],
shifts = [ 1, 2, 1, 1 ]; mask alternation scheme is AlternateMu0Mu1. [Denis: I need to check with
Julian if he describes this mask alternation scheme it in 4D paper, otherwise we should describe
it here. Now there is not such description.] [Julian: alternation scheme will be described in Nd
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The marginal model is constructed and trained before the conditional model is. The convolution
weights are first initialized using the Xavier normal [83] scheme with gain parameter 0.5, and biases
are set to zero. After initialization, self-training proceeds by minimizing stochastic estimates of the
“reverse” KL loss [28] computed with flow model samples, as discussed above. Gradients of the
fermion determinant are estimated stochastically as described in Appendix C of Ref. [32]. During
training only, the Dirac operator is regulated as (⇡⇡† + `0), with `0 = 10�5; no regulator is used
in evaluation. The marginal model is trained for 21k steps with batch size 512. The initial learning
rate is 10�3, and decreases by a factor 0.8 every 10k steps. All optimization is performed with the
Adam optimizer [84] with n = 10�2. Clipping is applied to the norm and value of gradients [85];
the maximum norm value was set to 10, and maximum value to 0.1. [Phiala: need to specify
what definition grad clip etc are set in etc] [Denis: I added the reference. We can also specify PT
functions torch.nn.utils.clip_grad_norm_ and torch.nn.utils.clip_grad_value_ ]

Conditional model

The conditional model uses a Gaussian prior and consists of 36 pseudofermion layers built from
parallel transport convolutional networks (PTCN), defined in Ref. [66]. The masking pattern rotates
through the spin projectors 1

2 (1 ± W`) for ` 2 {0, 1, 2, 3, 5} along with even/odd spatial projectors.
In the notation of Ref. [66], the PTCNs use =%) = 6 and � = 4. The context function of each PTCN
is a convolutional neural network—as described in the Appendix B.2 of Ref. [66]—and it has six
input channels, namely

Õ
`<a , Re Tr %`a ,

Õ
`<a Im Tr %`a , �0, �1, �2, and �3 where %`a (G) is the

plaquette and �8 (G) = G8 mod 4. The part of the context function that is shared among all PTCNs has
8 hidden channels, with “ELU” used as the inner activation function. The final activation function
is “tanh”. All layers have biases and use kernel size 3.
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3.1 Model definition
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Fields via flow models
Example application:  Embarrassingly parallel direct sampling  

 

Proof-of-principle applications to 
simple lattice field theories reveal 
many potential advantages c.f. HMC 

• Mitigation of critical slowing-down and 
topological freezing 

• Efficient parameter-space exploration 
(by re-tuning trained models) 

• Direct access to the partition function 

• Independent samples of the base 
distribution map to independent 
samples of the model distribution
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Sampling QCD field configurations with gauge-equivariant flow models Phiala E. Shanahan

1. Introduction

The rapid development of machine learning, and in particular deep learning, over the last
decade has spawned a new wave of algorithms for computational physics [1–3]. In lattice quantum
field theory, custom machine learning tools are being developed to accelerate almost every step
of the computational workflow [4], from configuration generation [5–38] to calculation or design
of observables [5, 18, 39–49] and various aspects of analysis [50–61], while maintaining rigorous
guarantees of exactness.

One particular approach to accelerating gauge field generation via machine learning is based
on the use of flow transformations as trivializing maps [62–65], as outlined in Sec. 2. Bespoke
flow architectures tailored to this application have been constructed, including gauge-equivariant
architectures designed for Abelian and non-Abelian gauge field theories [30, 31], and methods to
incorporate fermions [32, 66]. Proof-of-principle implementations have demonstrated success in
ameliorating important challenges such as critical slowing-down and topological freezing, as well
as the computation of thermodynamic quantities, in theories ranging from scalar field theory [5,
28, 35, 67, 68] through Yukawa theory [32], to the Schwinger model [9, 69] and SU(3) gauge field
theory with fermions in two dimensions [66].

The following sections outline how recent developments may be combined to construct flow
transformations to enable sampling of QCD gauge field configurations, and present the first numer-
ical demonstration of this technique applied to lattice QCD.

2. Flow transformations of lattice field configurations

In the machine learning lexicon, a flow transformation [63–65] is a di�eomorphism between
manifolds, defined with a large number of free parameters such that it can be optimized, or trained,
to some objective. Precisely, a flow 5 maps samples I from a ‘prior’ or base distribution A (I) to
samples i = 5 (I) 5 (I) distributed according to

@(i) = A (I) | det m 5 (I)/mI |�1 . (1)

The free parameters of 5 are optimized such that @(i) approximates a ‘target’ probability distribution
?(i), i.e., @(i) ' ?(i). Typically this is achieved by minimization of a ‘loss function’ that
quantifies the di�erence between @(i) and ?(i), such as the Kullback-Leibler (KL) divergence [70]
or related measures. It is often convenient to define the loss function such that it can be computed
stochastically using only samples from A (I) (known as ‘self-training’ as no ‘training data’, i.e., no
samples from ?(i), are needed). Given a flow model 5 , samples from ?(i) can be obtained by
using samples drawn from the model distribution @(i) as proposals in the independence Metropolis
algorithm [71–73], or by reweighting.

Applications of flow models to lattice field theory are discussed in Refs. [5, 7–9, 23, 25, 27–
38, 68, 69, 74–77]. In the context of gauge field configuration generation, i (and I) are field
configurations, and the goal is to sample e�ciently from ?(i) = 1

Z 4�( (i) , where ((i) is the
Euclidean action of the theory and Z is a normalization constant. In the most direct approach, A (I)
can be taken as a trivial distribution (e.g., an independent uniform distribution over the Haar measure
on each link for a gauge theory), and 5 implements an approximation of a trivializing map [62].
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3.1 Model definition

Marginal model @(q) ⇡ 1
/ 4

�( (q) The marginal model uses a Haar-uniform prior distribution and
consists of 48 gauge-equivariant spline coupling layers [31], with convolutional neural networks
acting in the spectral flow to define the spline parameters. Spatially separated convolutions are used;
i.e., the four-dimensional convolutional neural networks consist of blocks, where every block is the
sequential application of a one-dimensional convolution along each of the four dimensions. The
convolutions have kernel size 3, and two hidden layers each of size 32, with inner “Leaky ReLU”
activation functions and no final activation function. The hidden layers contain biases, while the
final layers do not. [Dan: What does this mean? All but the last block of convs? Last conv in each
block? Last conv overall?] The weights and biases of the convolutions comprise all free parameters
of the architecture. The gauge-invariant inputs to the inner spectral flow are the real and imaginary
parts of the traces of all frozen plaquettes; the masking pattern follows the algorithm for masking
patterns in 4D which is presented in Ref. [forward cite higher dim?] , with parameters spatial-dims
= [ 4, 4, 4, 4 ], mask-orientations = 0, width = 4, phase = 0, orientations-to-shift = [ 0, 1, 2, 3 ],
shifts = [ 1, 2, 1, 1 ]; mask alternation scheme is AlternateMu0Mu1. [Denis: I need to check with
Julian if he describes this mask alternation scheme it in 4D paper, otherwise we should describe
it here. Now there is not such description.] [Julian: alternation scheme will be described in Nd
U(1) paper, the parameter names will be the same, so it should be fine to forward cite here without
further changes necessary.]

The marginal model is constructed and trained before the conditional model is. The convolution
weights are first initialized using the Xavier normal [83] scheme with gain parameter 0.5, and biases
are set to zero. After initialization, self-training proceeds by minimizing stochastic estimates of the
“reverse” KL loss [28] computed with flow model samples, as discussed above. Gradients of the
fermion determinant are estimated stochastically as described in Appendix C of Ref. [32]. During
training only, the Dirac operator is regulated as (⇡⇡† + `0), with `0 = 10�5; no regulator is used
in evaluation. The marginal model is trained for 21k steps with batch size 512. The initial learning
rate is 10�3, and decreases by a factor 0.8 every 10k steps. All optimization is performed with the
Adam optimizer [84] with n = 10�2. Clipping is applied to the norm and value of gradients [85];
the maximum norm value was set to 10, and maximum value to 0.1. [Phiala: need to specify
what definition grad clip etc are set in etc] [Denis: I added the reference. We can also specify PT
functions torch.nn.utils.clip_grad_norm_ and torch.nn.utils.clip_grad_value_ ]

Conditional model

The conditional model uses a Gaussian prior and consists of 36 pseudofermion layers built from
parallel transport convolutional networks (PTCN), defined in Ref. [66]. The masking pattern rotates
through the spin projectors 1

2 (1 ± W`) for ` 2 {0, 1, 2, 3, 5} along with even/odd spatial projectors.
In the notation of Ref. [66], the PTCNs use =%) = 6 and � = 4. The context function of each PTCN
is a convolutional neural network—as described in the Appendix B.2 of Ref. [66]—and it has six
input channels, namely

Õ
`<a , Re Tr %`a ,

Õ
`<a Im Tr %`a , �0, �1, �2, and �3 where %`a (G) is the

plaquette and �8 (G) = G8 mod 4. The part of the context function that is shared among all PTCNs has
8 hidden channels, with “ELU” used as the inner activation function. The final activation function
is “tanh”. All layers have biases and use kernel size 3.
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Flow model as an approximate 
trivialising map

Direct sampling is only one of 
many approaches to using 
flow models for lattice QCD! 
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Flow architectures designed 
for QCD gauge fields can be 
trained and applied in many 
different ways! 

Flow models for lattice QCD
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Sampling QCD field configurations with gauge-equivariant flow models Phiala E. Shanahan

1. Introduction

The rapid development of machine learning, and in particular deep learning, over the last
decade has spawned a new wave of algorithms for computational physics [1–3]. In lattice quantum
field theory, custom machine learning tools are being developed to accelerate almost every step
of the computational workflow [4], from configuration generation [5–38] to calculation or design
of observables [5, 18, 39–49] and various aspects of analysis [50–61], while maintaining rigorous
guarantees of exactness.

One particular approach to accelerating gauge field generation via machine learning is based
on the use of flow transformations as trivializing maps [62–65], as outlined in Sec. 2. Bespoke
flow architectures tailored to this application have been constructed, including gauge-equivariant
architectures designed for Abelian and non-Abelian gauge field theories [30, 31], and methods to
incorporate fermions [32, 66]. Proof-of-principle implementations have demonstrated success in
ameliorating important challenges such as critical slowing-down and topological freezing, as well
as the computation of thermodynamic quantities, in theories ranging from scalar field theory [5,
28, 35, 67, 68] through Yukawa theory [32], to the Schwinger model [9, 69] and SU(3) gauge field
theory with fermions in two dimensions [66].

The following sections outline how recent developments may be combined to construct flow
transformations to enable sampling of QCD gauge field configurations, and present the first numer-
ical demonstration of this technique applied to lattice QCD.

2. Flow transformations of lattice field configurations

In the machine learning lexicon, a flow transformation [63–65] is a di�eomorphism between
manifolds, defined with a large number of free parameters such that it can be optimized, or trained,
to some objective. Precisely, a flow 5 maps samples I from a ‘prior’ or base distribution A (I) to
samples i = 5 (I) 5 (I) distributed according to

@(i) = A (I) | det m 5 (I)/mI |�1 . (1)

The free parameters of 5 are optimized such that @(i) approximates a ‘target’ probability distribution
?(i), i.e., @(i) ' ?(i). Typically this is achieved by minimization of a ‘loss function’ that
quantifies the di�erence between @(i) and ?(i), such as the Kullback-Leibler (KL) divergence [70]
or related measures. It is often convenient to define the loss function such that it can be computed
stochastically using only samples from A (I) (known as ‘self-training’ as no ‘training data’, i.e., no
samples from ?(i), are needed). Given a flow model 5 , samples from ?(i) can be obtained by
using samples drawn from the model distribution @(i) as proposals in the independence Metropolis
algorithm [71–73], or by reweighting.

Applications of flow models to lattice field theory are discussed in Refs. [5, 7–9, 23, 25, 27–
38, 68, 69, 74–77]. In the context of gauge field configuration generation, i (and I) are field
configurations, and the goal is to sample e�ciently from ?(i) = 1

Z 4�( (i) , where ((i) is the
Euclidean action of the theory and Z is a normalization constant. In the most direct approach, A (I)
can be taken as a trivial distribution (e.g., an independent uniform distribution over the Haar measure
on each link for a gauge theory), and 5 implements an approximation of a trivializing map [62].
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3.1 Model definition

Marginal model @(q) ⇡ 1
/ 4

�( (q) The marginal model uses a Haar-uniform prior distribution and
consists of 48 gauge-equivariant spline coupling layers [31], with convolutional neural networks
acting in the spectral flow to define the spline parameters. Spatially separated convolutions are used;
i.e., the four-dimensional convolutional neural networks consist of blocks, where every block is the
sequential application of a one-dimensional convolution along each of the four dimensions. The
convolutions have kernel size 3, and two hidden layers each of size 32, with inner “Leaky ReLU”
activation functions and no final activation function. The hidden layers contain biases, while the
final layers do not. [Dan: What does this mean? All but the last block of convs? Last conv in each
block? Last conv overall?] The weights and biases of the convolutions comprise all free parameters
of the architecture. The gauge-invariant inputs to the inner spectral flow are the real and imaginary
parts of the traces of all frozen plaquettes; the masking pattern follows the algorithm for masking
patterns in 4D which is presented in Ref. [forward cite higher dim?] , with parameters spatial-dims
= [ 4, 4, 4, 4 ], mask-orientations = 0, width = 4, phase = 0, orientations-to-shift = [ 0, 1, 2, 3 ],
shifts = [ 1, 2, 1, 1 ]; mask alternation scheme is AlternateMu0Mu1. [Denis: I need to check with
Julian if he describes this mask alternation scheme it in 4D paper, otherwise we should describe
it here. Now there is not such description.] [Julian: alternation scheme will be described in Nd
U(1) paper, the parameter names will be the same, so it should be fine to forward cite here without
further changes necessary.]

The marginal model is constructed and trained before the conditional model is. The convolution
weights are first initialized using the Xavier normal [83] scheme with gain parameter 0.5, and biases
are set to zero. After initialization, self-training proceeds by minimizing stochastic estimates of the
“reverse” KL loss [28] computed with flow model samples, as discussed above. Gradients of the
fermion determinant are estimated stochastically as described in Appendix C of Ref. [32]. During
training only, the Dirac operator is regulated as (⇡⇡† + `0), with `0 = 10�5; no regulator is used
in evaluation. The marginal model is trained for 21k steps with batch size 512. The initial learning
rate is 10�3, and decreases by a factor 0.8 every 10k steps. All optimization is performed with the
Adam optimizer [84] with n = 10�2. Clipping is applied to the norm and value of gradients [85];
the maximum norm value was set to 10, and maximum value to 0.1. [Phiala: need to specify
what definition grad clip etc are set in etc] [Denis: I added the reference. We can also specify PT
functions torch.nn.utils.clip_grad_norm_ and torch.nn.utils.clip_grad_value_ ]

Conditional model

The conditional model uses a Gaussian prior and consists of 36 pseudofermion layers built from
parallel transport convolutional networks (PTCN), defined in Ref. [66]. The masking pattern rotates
through the spin projectors 1

2 (1 ± W`) for ` 2 {0, 1, 2, 3, 5} along with even/odd spatial projectors.
In the notation of Ref. [66], the PTCNs use =%) = 6 and � = 4. The context function of each PTCN
is a convolutional neural network—as described in the Appendix B.2 of Ref. [66]—and it has six
input channels, namely

Õ
`<a , Re Tr %`a ,

Õ
`<a Im Tr %`a , �0, �1, �2, and �3 where %`a (G) is the

plaquette and �8 (G) = G8 mod 4. The part of the context function that is shared among all PTCNs has
8 hidden channels, with “ELU” used as the inner activation function. The final activation function
is “tanh”. All layers have biases and use kernel size 3.
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1. Introduction

The rapid development of machine learning, and in particular deep learning, over the last
decade has spawned a new wave of algorithms for computational physics [1–3]. In lattice quantum
field theory, custom machine learning tools are being developed to accelerate almost every step
of the computational workflow [4], from configuration generation [5–38] to calculation or design
of observables [5, 18, 39–49] and various aspects of analysis [50–61], while maintaining rigorous
guarantees of exactness.

One particular approach to accelerating gauge field generation via machine learning is based
on the use of flow transformations as trivializing maps [62–65], as outlined in Sec. 2. Bespoke
flow architectures tailored to this application have been constructed, including gauge-equivariant
architectures designed for Abelian and non-Abelian gauge field theories [30, 31], and methods to
incorporate fermions [32, 66]. Proof-of-principle implementations have demonstrated success in
ameliorating important challenges such as critical slowing-down and topological freezing, as well
as the computation of thermodynamic quantities, in theories ranging from scalar field theory [5,
28, 35, 67, 68] through Yukawa theory [32], to the Schwinger model [9, 69] and SU(3) gauge field
theory with fermions in two dimensions [66].

The following sections outline how recent developments may be combined to construct flow
transformations to enable sampling of QCD gauge field configurations, and present the first numer-
ical demonstration of this technique applied to lattice QCD.

2. Flow transformations of lattice field configurations

In the machine learning lexicon, a flow transformation [63–65] is a di�eomorphism between
manifolds, defined with a large number of free parameters such that it can be optimized, or trained,
to some objective. Precisely, a flow 5 maps samples I from a ‘prior’ or base distribution A (I) to
samples i = 5 (I) distributed according to

@(i) = A (I) | det m 5 (I)/mI |�1 . (1)

The free parameters of 5 are optimized such that @(i) approximates a ‘target’ probability distribution
?(i), i.e., @(i) ' ?(i). Typically this is achieved by minimization of a ‘loss function’ that
quantifies the di�erence between @(i) and ?(i), such as the Kullback-Leibler (KL) divergence [70]
or related measures. It is often convenient to define the loss function such that it can be computed
stochastically using only samples from A (I) (known as ‘self-training’ as no ‘training data’, i.e., no
samples from ?(i), are needed). Given a flow model 5 , samples from ?(i) can be obtained by
using samples drawn from the model distribution @(i) as proposals in the independence Metropolis
algorithm [71–73], or by reweighting.

Applications of flow models to lattice field theory are discussed in Refs. [5, 7–9, 23, 25, 27–
38, 68, 69, 74–77]. In the context of gauge field configuration generation, i (and I) are field
configurations, and the goal is to sample e�ciently from ?(i) = 1

Z 4�( (i) , where ((i) is the
Euclidean action of the theory and Z is a normalization constant. In the most direct approach, A (I)
can be taken as a trivial distribution (e.g., an independent uniform distribution over the Haar measure
on each link for a gauge theory), and 5 implements an approximation of a trivializing map [62].
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Sampling QCD field configurations with gauge-equivariant flow models Phiala E. Shanahan

1. Introduction

The rapid development of machine learning, and in particular deep learning, over the last
decade has spawned a new wave of algorithms for computational physics [1–3]. In lattice quantum
field theory, custom machine learning tools are being developed to accelerate almost every step
of the computational workflow [4], from configuration generation [5–38] to calculation or design
of observables [5, 18, 39–49] and various aspects of analysis [50–61], while maintaining rigorous
guarantees of exactness.

One particular approach to accelerating gauge field generation via machine learning is based
on the use of flow transformations as trivializing maps [62–65], as outlined in Sec. 2. Bespoke
flow architectures tailored to this application have been constructed, including gauge-equivariant
architectures designed for Abelian and non-Abelian gauge field theories [30, 31], and methods to
incorporate fermions [32, 66]. Proof-of-principle implementations have demonstrated success in
ameliorating important challenges such as critical slowing-down and topological freezing, as well
as the computation of thermodynamic quantities, in theories ranging from scalar field theory [5,
28, 35, 67, 68] through Yukawa theory [32], to the Schwinger model [9, 69] and SU(3) gauge field
theory with fermions in two dimensions [66].

The following sections outline how recent developments may be combined to construct flow
transformations to enable sampling of QCD gauge field configurations, and present the first numer-
ical demonstration of this technique applied to lattice QCD.

2. Flow transformations of lattice field configurations

In the machine learning lexicon, a flow transformation [63–65] is a di�eomorphism between
manifolds, defined with a large number of free parameters such that it can be optimized, or trained,
to some objective. Precisely, a flow 5 maps samples I from a ‘prior’ or base distribution A (I) to
samples i = 5 (I) distributed according to

@(i) = A (I) | det m 5 (I)/mI |�1 . (1)

The free parameters of 5 are optimized such that @(i) approximates a ‘target’ probability distribution
?(i), i.e., @(i) ' ?(i). Typically this is achieved by minimization of a ‘loss function’ that
quantifies the di�erence between @(i) and ?(i), such as the Kullback-Leibler (KL) divergence [70]
or related measures. It is often convenient to define the loss function such that it can be computed
stochastically using only samples from A (I) (known as ‘self-training’ as no ‘training data’, i.e., no
samples from ?(i), are needed). Given a flow model 5 , samples from ?(i) can be obtained by
using samples drawn from the model distribution @(i) as proposals in the independence Metropolis
algorithm [71–73], or by reweighting.

Applications of flow models to lattice field theory are discussed in Refs. [5, 7–9, 23, 25, 27–
38, 68, 69, 74–77]. In the context of gauge field configuration generation, i (and I) are field
configurations, and the goal is to sample e�ciently from ?(i) = 1

Z 4�( (i) , where ((i) is the
Euclidean action of the theory and Z is a normalization constant. In the most direct approach, A (I)
can be taken as a trivial distribution (e.g., an independent uniform distribution over the Haar measure
on each link for a gauge theory), and 5 implements an approximation of a trivializing map [62].
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can be taken as a trivial distribution (e.g., an independent uniform distribution over the Haar measure
on each link for a gauge theory), and 5 implements an approximation of a trivializing map [62].
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• First demonstration of flows as non-sequential 
samplers for lattice field theory [Albergo et al., 1904.12072] 

• Variation of “real non-volume-preserving flows”  
developed for image generation [Dinh et al., 1605.08803] 

• Update field via sequential “coupling layers” 

• Each layer transforms half of the degrees of freedom 
conditioned on the other half 

• Transformations parameterised by arbitrary neural 
networks  
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Flow models for scalar fields

Generating samples is 
“embarrassingly parallel”
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Compute loss function 

Gradient descent

Save trained 
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Markov chain using 
samples from model

Parameterize flow 
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Each layer contains 
arbitrary neural networks 
with many free parameters



Demonstration of accelerated sampling at the cost of model engineering  
and training (φ4 theory, 2D, parameters tuned for constant mpL) [Albergo et al., 1904.12072] 
 
 
 
 
 
 
 
 
 

• Many choices in architecture design 
(e.g., prior distribution, variable splitting, neural network structure); further work by our 
group and others [e.g., Nicoli et al., 2007.07115, 2111.11303; Del Debbio et al., 2105.12481; Singha et al., 2207.00980; +…] 

• Current best implementations by our group orders of magnitude more efficient than 
2019 approach!                   Architecture development matters
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(b) Local Metropolis ensembles
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(c) Flow-based MCMC ensembles

FIG. 7: Scaling of integrated autocorrelation time with respect to lattice size for HMC, local Metropolis, and flow-based MCMC.
In (c) the upper sets of points in blue correspond to models trained to a mean acceptance rate of 50%, while the lower sets
of points in green correspond to models trained to a mean acceptance rate of 70%. Dashed red lines display power law fits to
L = {10, 12, 14} with labels Lz specifying the scaling. The HMC and local Metropolis methods demonstrate power-law growth
of ⌧int, while ⌧int for the flow-based MCMC is consistent with a constant in L and decreases as mean acceptance rate increases.
Dot-dashed blue and green lines for the flow-based ensembles display lower bounds in terms of mean acceptance rate based on
Eq. (18). Error bars indicate 68% confidence intervals estimated by bootstrap resampling and error propagation.

is a strong correlation between the mean acceptance rate
and integrated autocorrelation time for models trained
using a shifted KL loss. This is further confirmed by the
similarity of the rejection run histograms across lattice
sizes for flow-based MCMC, as shown in Figure 2.

D. Training costs

While CSD in the sampling step for the flow-based
MCMC is eliminated, training the generative model in-
troduces an additional up-front cost, as discussed in Sec-
tion IID. Since this cost is amortized over the ensem-
ble, this approach will naturally be computationally ad-
vantageous in the limit of generating a large number of
samples. For a finite target ensemble size, the poten-
tial acceleration o↵ered depends crucially on the training
time.

In this work, all models were trained using one to two
GPU-weeks, with the larger lattices incurring the most
computational cost. For the simple fully-connected archi-
tecture used in this work, the scaling of both the sampling
and training time is controlled by dense matrix-vector
multiplications which require O(V 2) floating point op-
erations each. The number of epochs used to train the
largest lattice was also roughly 10⇥ that of the smallest
lattice. This asymptotic scaling is a result of the simple
model architecture used in this proof-of-principle study.
For related methods applied to image generation, using
convolutional neural networks and a multi-scale archi-
tecture reduced training and sampling costs significantly
and improved scaling to O(V ) [39]. There are physical
grounds to expect these tools to apply equally well to

the present application. Convolutional networks use only
local information to update values in each layer, exploit-
ing locality in the system, and use identical weights for
each point on the lattice, manifestly preserving trans-
lational invariance. A multi-scale architecture learns
coarse-grained distributions and fine-graining procedures
in separate layers; this is an e↵ective division of tasks
for renormalizable quantum field theories, where simple
coarse-grained descriptions are expected to arise. Gen-
erative models, and in particular flow-based models, are
also rapidly evolving towards more e�cient representa-
tion capacity. Complex coupling layers have been imple-
mented [39, 52], as have generalized convolutions [53, 54]
and transformations with continuous dynamics that are
not dependent on restricted coupling layers [55]. These
developments allow models to better capture a distribu-
tion within a given number of training steps.

For complex applications, it is also critical that larger
models with many coupling layers can be trained with-
out exceeding memory bounds. The algorithm proposed
here can be trained with constant memory cost as the
number of layers is increased [56], alleviating the stor-
age limitations that can arise in gradient-based optimiza-
tion. Memory costs can be further reduced by distribut-
ing samples within each training batch across many ma-
chines.

Finally, typical applications seek to produce ensembles
at many di↵erent choices of parameters, and often require
parameter tuning. Training costs can therefore by amor-
tized further; models trained with respect to an action
at a given set of parameter values can either be used to
initialize training or as a prior distribution for models
targeting that action at nearby parameter values.
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• First flow architectures for lattice field theory (scalar field theory) [Albergo et al., 1904.12072] 

• Gauge field theories 
• Flow transformations on compact, connected manifolds [Rezende et al., 2002.02428] 

• Gauge-equivariant architectures: Abelian field theories [Kanwar et al., 2003.06413, 2101.08176] 
• Gauge-equivariant architectures: non-Abelian field theories [Boyda et al., 2008.05456] 

• Theories with fermions  

• Architectures for theories with fermions [Albergo et al., 2106.05934]  
• Combining architectures for gauge fields and fermions [Albergo et al., 2202.11712] 
• Techniques to incorporate pseudofermions [Abbott et al., 2207.08945]  

• Initial application to QCD in 4D  
[Abbott et al., 2208.03832] 

• Architectures for QCD at scale [ongoing; Aurora Early Science Project]

Flow models for lattice QCD
• Ongoing program to develop flow model architectures for applications across 

lattice QCD

[see also tutorial notebook 2101.08176, work on multimodal distributions 2107.00734]
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• Definition of flow transformations on 
compact connected manifolds  
(unlike real transformations relevant for images, 
scalar field theory) [Rezende et al., 2002.02428] 

• Encoding complex symmetries of 
probability distribution (spatial, gauge, …) 
[Kanwar et al., 2003.06413, Boyda et al., 2008.05456;  
Related ideas in Favoni et al., 2012.12901,2111.04389;  
Luo et al., 2012.05232] 

• Not essential for correctness 

• Crucial for practical training of high-
dimensional models with high-
dimensional symmetries
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FIG. 1. Left: distributions that exactly respect gauge sym-
metry factor over the degrees of freedom, such that they have
uniform density in the pure gauge degrees of freedom and
a non-trivial density only in the gauge invariant degrees of
freedom. Right: arbitrary distributions on the space of gauge
configurations do not factor, and uniformity in the pure gauge
direction must be approximately learned by the model.

3. Gauge symmetry group, where each element ⌦ can
be defined as a group-valued field over lattice sites,
⌦(x) 2 G, that transforms links of a field configu-
ration as:

(⌦ · U)µ(x) = ⌦(x)Uµ(x)⌦†(x + µ̂). (10)

Any expressive flow-based model should approximately
reproduce the symmetries of the original action after op-
timization, even if these symmetries are not imposed in
the model. Exact symmetries are recovered on average in
the sampled distribution after reweighting or composing
samples into a Markov chain. Nevertheless, any break-
ing of the symmetries in the model reflects di↵erences
between the model and target distribution, and is thus
associated with sampling ine�ciencies in the form of in-
creased variance or correlations in the Markov chain. Im-
posing symmetries explicitly in the form of the model
e↵ectively reduces the variational parameter space to in-
clude only symmetry-respecting maps, i.e. those that fac-
torize the distribution. An example of such factorization
is illustrated for gauge symmetry in Fig. 1. In many
machine learning contexts, it has been found that ex-
plicitly preserving the symmetries of interest in models
improves both the optimization costs and ultimate model
quality [22, 32–37]. For example, gauge symmetry is a
large symmetry group with dimension proportional to the
number of lattice sites; in our study of U(1) gauge theory
in Ref. [11], it was shown that imposing this symmetry
exactly was necessary to construct flow-based samplers of
comparable or better e�ciency than traditional sampling
approaches.

Interactions between symmetry groups are also an im-
portant consideration. For example, a simple way to
achieve the factorization of the model distribution de-
picted in Fig. 1 would be to employ a gauge fixing pro-
cedure that reduces configurations to gauge invariant de-
grees of freedom only and sample only in the remaining
lower-dimensional space. This could be achieved with
a maximal tree gauge fixing [38, 39]. However, gauge
fixing procedures like the maximal tree procedure that
explicitly factorize the degrees of freedom are not trans-
lationally invariant. On the other hand, gauge fixing

procedures based on implicit di↵erential equation con-
straints instead of an explicit factorization are known
to preserve translational invariance in the path integral
formulation [40], but it is unclear how to restrict flow-
based models to act on configurations satisfying these
constraints. Recent work in the Hamiltonian formulation
has suggested ways to factor out pure gauge degrees of
freedom for U(1) gauge theory, but it is not clear whether
this can be extended to SU(N) gauge theory or the path
integral formulation [41]. Here we develop an approach
to simultaneously impose gauge and translational sym-
metries on models acting on all of the degrees of freedom
of an SU(N) gauge field, without any preemptive factor-
ization along the lines of gauge fixing.

To preserve a symmetry in a flow-based sampling
model, it is su�cient to sample from a prior distribution
that is exactly invariant under the symmetry and trans-
form the samples using an invertible transformation that
is equivariant under the symmetry [42–44], meaning that
symmetry transformations t commute with application of
the function,

f(t · U) = t · f(U). (11)

For lattice gauge theories, a uniform prior distribution
(with respect to the product Haar measure) is easily
sampled and is symmetric under translations, hypercu-
bic symmetries, and gauge symmetry. Equivariance of
the map f can be guaranteed by ensuring that the indi-
vidual coupling layers in the decomposition of f are each
equivariant:

gi(t · U) = t · gi(U)

=) f(t · U) = gn(gn�1(. . . g1(t · U) . . . )) = t · f(U).
(12)

In our approach [11], coupling layers decompose the
components of a field configuration by spacetime loca-
tion, and therefore making coupling layers equivariant
to spacetime symmetries (translational and hypercubic
symmetries) and making coupling layers equivariant to
internal symmetries (such as gauge symmetry) must be
handled in di↵erent ways, but can be simultaneously
achieved.

It has been noted that convolutional neural networks
are equivariant to discrete translations, and a similar
approach can extend equivariance to rotations and re-
flections [9, 45]. For lattice gauge theory, using these
equivariant networks acting on the frozen links inside
each coupling layer and choosing symmetric decomposi-
tions into frozen and updated links ensures each coupling
layer is equivariant under (a large subgroup of) transla-
tions. For example, in Sec. IV we construct models for
two-dimensional gauge theory using convolutional neu-
ral networks with a decomposition pattern that repeats
after o↵sets by 4 sites in both directions on the lattice,
resulting in equivariance under the translational symme-
try group modulo Z4 ⇥Z4. Though the full translational
symmetry group is not preserved exactly, the residual
group that must be learned has a fixed size independent
of the lattice volume.
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FIG. 1. Left: distributions that exactly respect gauge sym-
metry factor over the degrees of freedom, such that they have
uniform density in the pure gauge degrees of freedom and
a non-trivial density only in the gauge invariant degrees of
freedom. Right: arbitrary distributions on the space of gauge
configurations do not factor, and uniformity in the pure gauge
direction must be approximately learned by the model.

3. Gauge symmetry group, where each element ⌦ can
be defined as a group-valued field over lattice sites,
⌦(x) 2 G, that transforms links of a field configu-
ration as:

(⌦ · U)µ(x) = ⌦(x)Uµ(x)⌦†(x + µ̂). (10)

Any expressive flow-based model should approximately
reproduce the symmetries of the original action after op-
timization, even if these symmetries are not imposed in
the model. Exact symmetries are recovered on average in
the sampled distribution after reweighting or composing
samples into a Markov chain. Nevertheless, any break-
ing of the symmetries in the model reflects di↵erences
between the model and target distribution, and is thus
associated with sampling ine�ciencies in the form of in-
creased variance or correlations in the Markov chain. Im-
posing symmetries explicitly in the form of the model
e↵ectively reduces the variational parameter space to in-
clude only symmetry-respecting maps, i.e. those that fac-
torize the distribution. An example of such factorization
is illustrated for gauge symmetry in Fig. 1. In many
machine learning contexts, it has been found that ex-
plicitly preserving the symmetries of interest in models
improves both the optimization costs and ultimate model
quality [22, 32–37]. For example, gauge symmetry is a
large symmetry group with dimension proportional to the
number of lattice sites; in our study of U(1) gauge theory
in Ref. [11], it was shown that imposing this symmetry
exactly was necessary to construct flow-based samplers of
comparable or better e�ciency than traditional sampling
approaches.

Interactions between symmetry groups are also an im-
portant consideration. For example, a simple way to
achieve the factorization of the model distribution de-
picted in Fig. 1 would be to employ a gauge fixing pro-
cedure that reduces configurations to gauge invariant de-
grees of freedom only and sample only in the remaining
lower-dimensional space. This could be achieved with
a maximal tree gauge fixing [38, 39]. However, gauge
fixing procedures like the maximal tree procedure that
explicitly factorize the degrees of freedom are not trans-
lationally invariant. On the other hand, gauge fixing

procedures based on implicit di↵erential equation con-
straints instead of an explicit factorization are known
to preserve translational invariance in the path integral
formulation [40], but it is unclear how to restrict flow-
based models to act on configurations satisfying these
constraints. Recent work in the Hamiltonian formulation
has suggested ways to factor out pure gauge degrees of
freedom for U(1) gauge theory, but it is not clear whether
this can be extended to SU(N) gauge theory or the path
integral formulation [41]. Here we develop an approach
to simultaneously impose gauge and translational sym-
metries on models acting on all of the degrees of freedom
of an SU(N) gauge field, without any preemptive factor-
ization along the lines of gauge fixing.

To preserve a symmetry in a flow-based sampling
model, it is su�cient to sample from a prior distribution
that is exactly invariant under the symmetry and trans-
form the samples using an invertible transformation that
is equivariant under the symmetry [42–44], meaning that
symmetry transformations t commute with application of
the function,

f(t · U) = t · f(U). (11)

For lattice gauge theories, a uniform prior distribution
(with respect to the product Haar measure) is easily
sampled and is symmetric under translations, hypercu-
bic symmetries, and gauge symmetry. Equivariance of
the map f can be guaranteed by ensuring that the indi-
vidual coupling layers in the decomposition of f are each
equivariant:

gi(t · U) = t · gi(U)

=) f(t · U) = gn(gn�1(. . . g1(t · U) . . . )) = t · f(U).
(12)

In our approach [11], coupling layers decompose the
components of a field configuration by spacetime loca-
tion, and therefore making coupling layers equivariant
to spacetime symmetries (translational and hypercubic
symmetries) and making coupling layers equivariant to
internal symmetries (such as gauge symmetry) must be
handled in di↵erent ways, but can be simultaneously
achieved.

It has been noted that convolutional neural networks
are equivariant to discrete translations, and a similar
approach can extend equivariance to rotations and re-
flections [9, 45]. For lattice gauge theory, using these
equivariant networks acting on the frozen links inside
each coupling layer and choosing symmetric decomposi-
tions into frozen and updated links ensures each coupling
layer is equivariant under (a large subgroup of) transla-
tions. For example, in Sec. IV we construct models for
two-dimensional gauge theory using convolutional neu-
ral networks with a decomposition pattern that repeats
after o↵sets by 4 sites in both directions on the lattice,
resulting in equivariance under the translational symme-
try group modulo Z4 ⇥Z4. Though the full translational
symmetry group is not preserved exactly, the residual
group that must be learned has a fixed size independent
of the lattice volume.

Flow models for gauge field theories require additional developments:
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flow-based models at a range of parameters approaching
criticality, while without it, models of similar scale fail
to learn the distributions under the same training proce-
dure.

Flow-based sampling.— Flow-based generative models
allow sampling from an expressive family of distributions
by applying an invertible function f to samples U from
a fixed, simple prior distribution defined by a density
r(U) [51]. The resulting samples U 0 = f(U) are dis-
tributed according to a model density q(U 0). The invert-
ible function is constructed specifically to allow e�cient
evaluation of the Jacobian factor for any given sample,
so that the associated normalized probability density,

q(U 0) = q(f(U)) = r(U)

����det
@f(U)

@U

����
�1

, (1)

is returned with each sample drawn. This feature enables
training the flow model, i.e. optimizing the function f , by
minimizing the distance between the model probability
density q(U 0) and the desired density p(U 0) using a cho-
sen metric. Any deviation from the true distribution due
to an imperfect model can be corrected by a number of
techniques; in this work, we apply Metropolis indepen-
dence sampling [25].1

A powerful approach to defining a flexible invertible
function f is through composition of several coupling
layers, f := gm � · · · � g1. Coupling layers act on sam-
ples U by applying an analytically invertible transfor-
mation (such as a scaling) to a subset of the compo-
nents UA :=

�
U i : i 2 A

 
, where the superscript i in-

dexes components of the multi-dimensional sample U and
the set A indicates the components that are transformed.
The remaining (unmodified) components UB , defined by
UB = U \ UA, are given as input to a feed-forward neu-
ral network that parameterizes the transformation. This
variable splitting guarantees invertibility despite the use
of non-invertible feed-forward networks.

Gauge-invariant flows.— Lattice gauge theories can be
defined in terms of one gauge variable Uµ(x) per nearest-
neighbor link (x, x + µ̂) of the lattice. Samples thus live
in the compact manifold GNdV , where G is the mani-
fold of the gauge group, Nd is the spacetime dimension,
and V is the lattice volume. The physical distribution
p(U) is exactly invariant under a discrete translational
symmetry group with V elements and a continuous V -
dimensional gauge symmetry group, meaning that the
density associated with any transformed field configura-
tion eU is identical to that of the untransformed config-
uration, p(eU) = p(U). Under a gauge transformation,
links Uµ(x) are transformed by a group-valued field ⌦(x)

1 Reweighted observables can also be used [52, 53]. This is ef-
ficient when measurements of the action are more costly than
measurements of observables.

as

Uµ(x) ! eUµ(x) = ⌦(x)Uµ(x)⌦†(x + µ̂). (2)

In the flow-based approach, symmetries correspond to
flat directions of the probability density that must be
reproduced by the model. Exactly encoding symme-
tries in machine learning models can improve training
and model quality compared with learning the symme-
tries over the course of training [24, 27, 54–58]. The
incorporation of translational symmetries into models is
possible using convolutional architectures, as studied for
example in Ref. [54]. To address gauge symmetry, one
could attempt to use a gauge-fixing procedure to select
a single configuration from each gauge-equivalent class,
leaving only physical degrees of freedom; however, the
only known gauge fixing procedures that preserve trans-
lational invariance are based on implicit di↵erential equa-
tion constraints [59], which do not have a straightforward
implementation in flows. Here, we instead introduce a
method to preserve exact gauge invariance in flow-based
models.

When a flow-based model is defined in terms of cou-
pling layers, its output distribution will be invariant un-
der a symmetry group if two conditions are met:

1. The prior distribution is symmetric.

2. Each coupling layer is equivariant under the sym-
metry, i.e. all transformations commute through
application of the coupling layer [54, 56, 60–62].

Choosing a prior distribution that is symmetric is typ-
ically straightforward, for example a uniform distribu-
tion with respect to the Haar measure over gauge links is
both translationally and gauge invariant. Using gauge-
equivariant coupling layers with such a prior distribution
then defines a gauge-invariant flow-based model.
Gauge-equivariant coupling layers.— We construct an

explicitly gauge-equivariant and invertible coupling layer
g : GNdV

! GNdV by splitting the input variables
into subsets UA and UB . In terms of these sub-
sets, we define the action of the coupling layer to be
g(UA, UB) = (U 0A, UB), where link U i

2 UA is mapped
to

U 0i = h(U iSi
|Ii)Si†, (3)

in which h : G ! G is an invertible kernel which is explic-
itly parameterized by a set of gauge-invariant quantities
Ii constructed from the elements of UB . Here, Si is a
product of links such that U iSi forms a loop that starts
and ends at a common point x, and therefore transforms
under the gauge symmetry to ⌦(x) U i⌦†(x + µ̂) ⌦(x +
µ̂)Si⌦†(x) = ⌦(x) U iSi ⌦†(x). With this definition, the
coupling layer is gauge equivariant if the kernel satisfies

h(XWX†) = X h(W ) X†, 8X, W 2 G, (4)

Spacetime 
dimension

Lattice volume

Act on a subset of the variables in each layer
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nents UA :=
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, where the superscript i in-

dexes components of the multi-dimensional sample U and
the set A indicates the components that are transformed.
The remaining (unmodified) components UB , defined by
UB = U \ UA, are given as input to a feed-forward neu-
ral network that parameterizes the transformation. This
variable splitting guarantees invertibility despite the use
of non-invertible feed-forward networks.

Gauge-invariant flows.— Lattice gauge theories can be
defined in terms of one gauge variable Uµ(x) per nearest-
neighbor link (x, x + µ̂) of the lattice. Samples thus live
in the compact manifold GNdV , where G is the mani-
fold of the gauge group, Nd is the spacetime dimension,
and V is the lattice volume. The physical distribution
p(U) is exactly invariant under a discrete translational
symmetry group with V elements and a continuous V -
dimensional gauge symmetry group, meaning that the
density associated with any transformed field configura-
tion eU is identical to that of the untransformed config-
uration, p(eU) = p(U). Under a gauge transformation,
links Uµ(x) are transformed by a group-valued field ⌦(x)

1 Reweighted observables can also be used [52, 53]. This is ef-
ficient when measurements of the action are more costly than
measurements of observables.

as

Uµ(x) ! eUµ(x) = ⌦(x)Uµ(x)⌦†(x + µ̂). (2)

In the flow-based approach, symmetries correspond to
flat directions of the probability density that must be
reproduced by the model. Exactly encoding symme-
tries in machine learning models can improve training
and model quality compared with learning the symme-
tries over the course of training [24, 27, 54–58]. The
incorporation of translational symmetries into models is
possible using convolutional architectures, as studied for
example in Ref. [54]. To address gauge symmetry, one
could attempt to use a gauge-fixing procedure to select
a single configuration from each gauge-equivalent class,
leaving only physical degrees of freedom; however, the
only known gauge fixing procedures that preserve trans-
lational invariance are based on implicit di↵erential equa-
tion constraints [59], which do not have a straightforward
implementation in flows. Here, we instead introduce a
method to preserve exact gauge invariance in flow-based
models.

When a flow-based model is defined in terms of cou-
pling layers, its output distribution will be invariant un-
der a symmetry group if two conditions are met:

1. The prior distribution is symmetric.

2. Each coupling layer is equivariant under the sym-
metry, i.e. all transformations commute through
application of the coupling layer [54, 56, 60–62].

Choosing a prior distribution that is symmetric is typ-
ically straightforward, for example a uniform distribu-
tion with respect to the Haar measure over gauge links is
both translationally and gauge invariant. Using gauge-
equivariant coupling layers with such a prior distribution
then defines a gauge-invariant flow-based model.
Gauge-equivariant coupling layers.— We construct an

explicitly gauge-equivariant and invertible coupling layer
g : GNdV

! GNdV by splitting the input variables
into subsets UA and UB . In terms of these sub-
sets, we define the action of the coupling layer to be
g(UA, UB) = (U 0A, UB), where link U i

2 UA is mapped
to

U 0i = h(U iSi
|Ii)Si†, (3)

in which h : G ! G is an invertible kernel which is explic-
itly parameterized by a set of gauge-invariant quantities
Ii constructed from the elements of UB . Here, Si is a
product of links such that U iSi forms a loop that starts
and ends at a common point x, and therefore transforms
under the gauge symmetry to ⌦(x) U i⌦†(x + µ̂) ⌦(x +
µ̂)Si⌦†(x) = ⌦(x) U iSi ⌦†(x). With this definition, the
coupling layer is gauge equivariant if the kernel satisfies

h(XWX†) = X h(W ) X†, 8X, W 2 G, (4)
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flow-based models at a range of parameters approaching
criticality, while without it, models of similar scale fail
to learn the distributions under the same training proce-
dure.

Flow-based sampling.— Flow-based generative models
allow sampling from an expressive family of distributions
by applying an invertible function f to samples U from
a fixed, simple prior distribution defined by a density
r(U) [51]. The resulting samples U 0 = f(U) are dis-
tributed according to a model density q(U 0). The invert-
ible function is constructed specifically to allow e�cient
evaluation of the Jacobian factor for any given sample,
so that the associated normalized probability density,
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is returned with each sample drawn. This feature enables
training the flow model, i.e. optimizing the function f , by
minimizing the distance between the model probability
density q(U 0) and the desired density p(U 0) using a cho-
sen metric. Any deviation from the true distribution due
to an imperfect model can be corrected by a number of
techniques; in this work, we apply Metropolis indepen-
dence sampling [25].1

A powerful approach to defining a flexible invertible
function f is through composition of several coupling
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the set A indicates the components that are transformed.
The remaining (unmodified) components UB , defined by
UB = U \ UA, are given as input to a feed-forward neu-
ral network that parameterizes the transformation. This
variable splitting guarantees invertibility despite the use
of non-invertible feed-forward networks.

Gauge-invariant flows.— Lattice gauge theories can be
defined in terms of one gauge variable Uµ(x) per nearest-
neighbor link (x, x + µ̂) of the lattice. Samples thus live
in the compact manifold GNdV , where G is the mani-
fold of the gauge group, Nd is the spacetime dimension,
and V is the lattice volume. The physical distribution
p(U) is exactly invariant under a discrete translational
symmetry group with V elements and a continuous V -
dimensional gauge symmetry group, meaning that the
density associated with any transformed field configura-
tion eU is identical to that of the untransformed config-
uration, p(eU) = p(U). Under a gauge transformation,
links Uµ(x) are transformed by a group-valued field ⌦(x)

1 Reweighted observables can also be used [52, 53]. This is ef-
ficient when measurements of the action are more costly than
measurements of observables.
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In the flow-based approach, symmetries correspond to
flat directions of the probability density that must be
reproduced by the model. Exactly encoding symme-
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and model quality compared with learning the symme-
tries over the course of training [24, 27, 54–58]. The
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possible using convolutional architectures, as studied for
example in Ref. [54]. To address gauge symmetry, one
could attempt to use a gauge-fixing procedure to select
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leaving only physical degrees of freedom; however, the
only known gauge fixing procedures that preserve trans-
lational invariance are based on implicit di↵erential equa-
tion constraints [59], which do not have a straightforward
implementation in flows. Here, we instead introduce a
method to preserve exact gauge invariance in flow-based
models.

When a flow-based model is defined in terms of cou-
pling layers, its output distribution will be invariant un-
der a symmetry group if two conditions are met:

1. The prior distribution is symmetric.

2. Each coupling layer is equivariant under the sym-
metry, i.e. all transformations commute through
application of the coupling layer [54, 56, 60–62].

Choosing a prior distribution that is symmetric is typ-
ically straightforward, for example a uniform distribu-
tion with respect to the Haar measure over gauge links is
both translationally and gauge invariant. Using gauge-
equivariant coupling layers with such a prior distribution
then defines a gauge-invariant flow-based model.
Gauge-equivariant coupling layers.— We construct an
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into subsets UA and UB . In terms of these sub-
sets, we define the action of the coupling layer to be
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Ii constructed from the elements of UB . Here, Si is a
product of links such that U iSi forms a loop that starts
and ends at a common point x, and therefore transforms
under the gauge symmetry to ⌦(x) U i⌦†(x + µ̂) ⌦(x +
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is returned with each sample drawn. This feature enables
training the flow model, i.e. optimizing the function f , by
minimizing the distance between the model probability
density q(U 0) and the desired density p(U 0) using a cho-
sen metric. Any deviation from the true distribution due
to an imperfect model can be corrected by a number of
techniques; in this work, we apply Metropolis indepen-
dence sampling [25].1

A powerful approach to defining a flexible invertible
function f is through composition of several coupling
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mation (such as a scaling) to a subset of the compo-
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the set A indicates the components that are transformed.
The remaining (unmodified) components UB , defined by
UB = U \ UA, are given as input to a feed-forward neu-
ral network that parameterizes the transformation. This
variable splitting guarantees invertibility despite the use
of non-invertible feed-forward networks.

Gauge-invariant flows.— Lattice gauge theories can be
defined in terms of one gauge variable Uµ(x) per nearest-
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in the compact manifold GNdV , where G is the mani-
fold of the gauge group, Nd is the spacetime dimension,
and V is the lattice volume. The physical distribution
p(U) is exactly invariant under a discrete translational
symmetry group with V elements and a continuous V -
dimensional gauge symmetry group, meaning that the
density associated with any transformed field configura-
tion eU is identical to that of the untransformed config-
uration, p(eU) = p(U). Under a gauge transformation,
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flat directions of the probability density that must be
reproduced by the model. Exactly encoding symme-
tries in machine learning models can improve training
and model quality compared with learning the symme-
tries over the course of training [24, 27, 54–58]. The
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possible using convolutional architectures, as studied for
example in Ref. [54]. To address gauge symmetry, one
could attempt to use a gauge-fixing procedure to select
a single configuration from each gauge-equivalent class,
leaving only physical degrees of freedom; however, the
only known gauge fixing procedures that preserve trans-
lational invariance are based on implicit di↵erential equa-
tion constraints [59], which do not have a straightforward
implementation in flows. Here, we instead introduce a
method to preserve exact gauge invariance in flow-based
models.

When a flow-based model is defined in terms of cou-
pling layers, its output distribution will be invariant un-
der a symmetry group if two conditions are met:

1. The prior distribution is symmetric.

2. Each coupling layer is equivariant under the sym-
metry, i.e. all transformations commute through
application of the coupling layer [54, 56, 60–62].

Choosing a prior distribution that is symmetric is typ-
ically straightforward, for example a uniform distribu-
tion with respect to the Haar measure over gauge links is
both translationally and gauge invariant. Using gauge-
equivariant coupling layers with such a prior distribution
then defines a gauge-invariant flow-based model.
Gauge-equivariant coupling layers.— We construct an

explicitly gauge-equivariant and invertible coupling layer
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into subsets UA and UB . In terms of these sub-
sets, we define the action of the coupling layer to be
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itly parameterized by a set of gauge-invariant quantities
Ii constructed from the elements of UB . Here, Si is a
product of links such that U iSi forms a loop that starts
and ends at a common point x, and therefore transforms
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criticality, while without it, models of similar scale fail
to learn the distributions under the same training proce-
dure.
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allow sampling from an expressive family of distributions
by applying an invertible function f to samples U from
a fixed, simple prior distribution defined by a density
r(U) [51]. The resulting samples U 0 = f(U) are dis-
tributed according to a model density q(U 0). The invert-
ible function is constructed specifically to allow e�cient
evaluation of the Jacobian factor for any given sample,
so that the associated normalized probability density,
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is returned with each sample drawn. This feature enables
training the flow model, i.e. optimizing the function f , by
minimizing the distance between the model probability
density q(U 0) and the desired density p(U 0) using a cho-
sen metric. Any deviation from the true distribution due
to an imperfect model can be corrected by a number of
techniques; in this work, we apply Metropolis indepen-
dence sampling [25].1

A powerful approach to defining a flexible invertible
function f is through composition of several coupling
layers, f := gm � · · · � g1. Coupling layers act on sam-
ples U by applying an analytically invertible transfor-
mation (such as a scaling) to a subset of the compo-
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dexes components of the multi-dimensional sample U and
the set A indicates the components that are transformed.
The remaining (unmodified) components UB , defined by
UB = U \ UA, are given as input to a feed-forward neu-
ral network that parameterizes the transformation. This
variable splitting guarantees invertibility despite the use
of non-invertible feed-forward networks.

Gauge-invariant flows.— Lattice gauge theories can be
defined in terms of one gauge variable Uµ(x) per nearest-
neighbor link (x, x + µ̂) of the lattice. Samples thus live
in the compact manifold GNdV , where G is the mani-
fold of the gauge group, Nd is the spacetime dimension,
and V is the lattice volume. The physical distribution
p(U) is exactly invariant under a discrete translational
symmetry group with V elements and a continuous V -
dimensional gauge symmetry group, meaning that the
density associated with any transformed field configura-
tion eU is identical to that of the untransformed config-
uration, p(eU) = p(U). Under a gauge transformation,
links Uµ(x) are transformed by a group-valued field ⌦(x)

1 Reweighted observables can also be used [52, 53]. This is ef-
ficient when measurements of the action are more costly than
measurements of observables.

as

Uµ(x) ! eUµ(x) = ⌦(x)Uµ(x)⌦†(x + µ̂). (2)

In the flow-based approach, symmetries correspond to
flat directions of the probability density that must be
reproduced by the model. Exactly encoding symme-
tries in machine learning models can improve training
and model quality compared with learning the symme-
tries over the course of training [24, 27, 54–58]. The
incorporation of translational symmetries into models is
possible using convolutional architectures, as studied for
example in Ref. [54]. To address gauge symmetry, one
could attempt to use a gauge-fixing procedure to select
a single configuration from each gauge-equivalent class,
leaving only physical degrees of freedom; however, the
only known gauge fixing procedures that preserve trans-
lational invariance are based on implicit di↵erential equa-
tion constraints [59], which do not have a straightforward
implementation in flows. Here, we instead introduce a
method to preserve exact gauge invariance in flow-based
models.

When a flow-based model is defined in terms of cou-
pling layers, its output distribution will be invariant un-
der a symmetry group if two conditions are met:

1. The prior distribution is symmetric.

2. Each coupling layer is equivariant under the sym-
metry, i.e. all transformations commute through
application of the coupling layer [54, 56, 60–62].

Choosing a prior distribution that is symmetric is typ-
ically straightforward, for example a uniform distribu-
tion with respect to the Haar measure over gauge links is
both translationally and gauge invariant. Using gauge-
equivariant coupling layers with such a prior distribution
then defines a gauge-invariant flow-based model.
Gauge-equivariant coupling layers.— We construct an
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g : GNdV

! GNdV by splitting the input variables
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itly parameterized by a set of gauge-invariant quantities
Ii constructed from the elements of UB . Here, Si is a
product of links such that U iSi forms a loop that starts
and ends at a common point x, and therefore transforms
under the gauge symmetry to ⌦(x) U i⌦†(x + µ̂) ⌦(x +
µ̂)Si⌦†(x) = ⌦(x) U iSi ⌦†(x). With this definition, the
coupling layer is gauge equivariant if the kernel satisfies

h(XWX†) = X h(W ) X†, 8X, W 2 G, (4)
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is returned with each sample drawn. This feature enables
training the flow model, i.e. optimizing the function f , by
minimizing the distance between the model probability
density q(U 0) and the desired density p(U 0) using a cho-
sen metric. Any deviation from the true distribution due
to an imperfect model can be corrected by a number of
techniques; in this work, we apply Metropolis indepen-
dence sampling [25].1
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The remaining (unmodified) components UB , defined by
UB = U \ UA, are given as input to a feed-forward neu-
ral network that parameterizes the transformation. This
variable splitting guarantees invertibility despite the use
of non-invertible feed-forward networks.
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defined in terms of one gauge variable Uµ(x) per nearest-
neighbor link (x, x + µ̂) of the lattice. Samples thus live
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is returned with each sample drawn. This feature enables
training the flow model, i.e. optimizing the function f , by
minimizing the distance between the model probability
density q(U 0) and the desired density p(U 0) using a cho-
sen metric. Any deviation from the true distribution due
to an imperfect model can be corrected by a number of
techniques; in this work, we apply Metropolis indepen-
dence sampling [25].1
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tion eU is identical to that of the untransformed config-
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tion constraints [59], which do not have a straightforward
implementation in flows. Here, we instead introduce a
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models.
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der a symmetry group if two conditions are met:
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ically straightforward, for example a uniform distribu-
tion with respect to the Haar measure over gauge links is
both translationally and gauge invariant. Using gauge-
equivariant coupling layers with such a prior distribution
then defines a gauge-invariant flow-based model.
Gauge-equivariant coupling layers.— We construct an

explicitly gauge-equivariant and invertible coupling layer
g : GNdV

! GNdV by splitting the input variables
into subsets UA and UB . In terms of these sub-
sets, we define the action of the coupling layer to be
g(UA, UB) = (U 0A, UB), where link U i

2 UA is mapped
to

U 0i = h(U iSi
|Ii)Si†, (3)

in which h : G ! G is an invertible kernel which is explic-
itly parameterized by a set of gauge-invariant quantities
Ii constructed from the elements of UB . Here, Si is a
product of links such that U iSi forms a loop that starts
and ends at a common point x, and therefore transforms
under the gauge symmetry to ⌦(x) U i⌦†(x + µ̂) ⌦(x +
µ̂)Si⌦†(x) = ⌦(x) U iSi ⌦†(x). With this definition, the
coupling layer is gauge equivariant if the kernel satisfies

h(XWX†) = X h(W ) X†, 8X, W 2 G, (4)
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FIG. 2. An example of a variable splitting based on a tiled
4 ⇥ 1 pattern with an actively updated link U i ⌘ Uµ(x) and
1 ⇥ 1 loop U iSi ⌘ Pµ⌫(x) located at x, a passively updated
1⇥ 1 loop at ex = x� ⌫̂, and two frozen traced 1⇥ 1 loops at
x+ ⌫̂ and x+ 2⌫̂ included in the set Ii.

which implies that U 0i
! eU 0i transforms according to

Eq. (2),

eU 0i = h
�
⌦(x) U iSi ⌦†(x)|Ii

�
⌦(x)Si†⌦†(x + µ̂)

= ⌦(x)U 0i⌦†(x + µ̂).
(5)

To ensure invertibility, the product of links Si must not
contain any links in UA.

For an Abelian group, the transformation property
in Eq. (4) is trivially satisfied by any kernel. In
the U(1) gauge theory considered below, we there-
fore define the kernel using invertible flows parame-
terized by neural networks. For non-Abelian theo-
ries, it has been shown that it is possible to con-
struct invertible functions on spheres [63] and surjec-
tive functions on general Lie groups [64]. If these ap-
proaches can be generalized to produce invertible func-
tions with convergent power expansions, they will sat-
isfy the necessary kernel transformation property, since
h(XWX†) =

P
n ↵n(XWX†)n = X h(W ) X†.

An example of a variable splitting suitable for both
Abelian and non-Abelian gauge theories is given by the
pattern depicted in Fig. 2. In this example, the set of
updated links UA consists of vertical links spaced by 4
sites, and the products U iSi are 1 ⇥ 1 loops adjacent to
each U i. This is su�ciently sparse such that every Si

is independent of all updated links in UA, and a non-
trivial set of invariants Ii (e.g. all traced 1⇥ 1 loops that
are not adjacent to updated links) can be constructed
to parametrize the transformation. Composing coupling
layers using rotations and o↵sets of the pattern allows all
links to be updated.2

2 For example, composing 8 such layers is su�cient to update all
links in 2D.

Using gauge-equivariant coupling layers constructed in
terms of kernels generalizes the “trivializing map” pro-
posed in Ref. [65]. There, repeatedly applying a spe-
cific kernel based on gradients of the action theoretically
trivializes a gauge theory, i.e. maps the Euclidean time
distribution to a uniform one. The family of gauge equiv-
ariant flows defined here includes the trivializing map in
the limit of a large number of coupling layers and arbi-
trarily expressive kernel, indicating that in this limiting
case exact sampling as described in Ref. [65] is possible.
However, the approach presented here allows for more
general and inexpensive parametrizations of h. These
can be optimized to produce flows that similarly trivial-
ize the theory, and which may have a lower cost of evalu-
ation than implementations of the analytical trivializing
map [66].
Application to U(1) gauge theory.— Gauge theory with

a U(1) gauge group defined in two spacetime dimensions
is the quenched limit of 1 + 1D electrodynamics, i.e. the
Schwinger model [67]. The full Schwinger model repro-
duces many features of quantum chromodynamics (con-
finement, an axial anomaly, topology, and chiral symme-
try breaking) while being analytically tractable. Even in
the quenched limit, the well-defined gauge field topology
results in severe critical slowing down of MCMC meth-
ods for sampling lattice discretizations of the model as
the coupling is taken to criticality. We consider the lat-
tice discretization given by the Wilson gauge action [68],

S(U) := ��
X

x

Re P (x), (6)

where P (x) is the plaquette at x defined in terms of link
variables Uµ(x) 2 U(1),

P (x) := U0(x)U1(x + 0̂)U†

0 (x + 1̂)U†

1 (x), (7)

and x = (x0, x1) runs over coordinates in an L⇥L square
lattice with periodic boundary conditions. Physical infor-
mation may be extracted from the model by considering
expectation values of observables O under the Euclidean
time path integral,

hOi :=
1

Z

Z
DU O(U)e�S(U), (8)

where
R

DU denotes integration over the product of
Haar measures for each link, and Z =

R
DU e�S(U). In

this study, three key observables were considered:

1. Expectation values of powers of plaquettes.

2. Expectation values of ` ⇥ ` Wilson loops W`⇥` =Q
x2`⇥` P (x).

3. Topological susceptibility �Q = hQ2/V i, where
topological charge Q := 1

2⇡

P
x arg (P (x)) is de-

fined in terms of plaquette phase in the principal
interval, arg (P (x)) 2 [�⇡, ⇡].

2

flow-based models at a range of parameters approaching
criticality, while without it, models of similar scale fail
to learn the distributions under the same training proce-
dure.

Flow-based sampling.— Flow-based generative models
allow sampling from an expressive family of distributions
by applying an invertible function f to samples U from
a fixed, simple prior distribution defined by a density
r(U) [51]. The resulting samples U 0 = f(U) are dis-
tributed according to a model density q(U 0). The invert-
ible function is constructed specifically to allow e�cient
evaluation of the Jacobian factor for any given sample,
so that the associated normalized probability density,

q(U 0) = q(f(U)) = r(U)

����det
@f(U)

@U

����
�1

, (1)

is returned with each sample drawn. This feature enables
training the flow model, i.e. optimizing the function f , by
minimizing the distance between the model probability
density q(U 0) and the desired density p(U 0) using a cho-
sen metric. Any deviation from the true distribution due
to an imperfect model can be corrected by a number of
techniques; in this work, we apply Metropolis indepen-
dence sampling [25].1

A powerful approach to defining a flexible invertible
function f is through composition of several coupling
layers, f := gm � · · · � g1. Coupling layers act on sam-
ples U by applying an analytically invertible transfor-
mation (such as a scaling) to a subset of the compo-
nents UA :=

�
U i : i 2 A

 
, where the superscript i in-

dexes components of the multi-dimensional sample U and
the set A indicates the components that are transformed.
The remaining (unmodified) components UB , defined by
UB = U \ UA, are given as input to a feed-forward neu-
ral network that parameterizes the transformation. This
variable splitting guarantees invertibility despite the use
of non-invertible feed-forward networks.

Gauge-invariant flows.— Lattice gauge theories can be
defined in terms of one gauge variable Uµ(x) per nearest-
neighbor link (x, x + µ̂) of the lattice. Samples thus live
in the compact manifold GNdV , where G is the mani-
fold of the gauge group, Nd is the spacetime dimension,
and V is the lattice volume. The physical distribution
p(U) is exactly invariant under a discrete translational
symmetry group with V elements and a continuous V -
dimensional gauge symmetry group, meaning that the
density associated with any transformed field configura-
tion eU is identical to that of the untransformed config-
uration, p(eU) = p(U). Under a gauge transformation,
links Uµ(x) are transformed by a group-valued field ⌦(x)

1 Reweighted observables can also be used [52, 53]. This is ef-
ficient when measurements of the action are more costly than
measurements of observables.

as

Uµ(x) ! eUµ(x) = ⌦(x)Uµ(x)⌦†(x + µ̂). (2)

In the flow-based approach, symmetries correspond to
flat directions of the probability density that must be
reproduced by the model. Exactly encoding symme-
tries in machine learning models can improve training
and model quality compared with learning the symme-
tries over the course of training [24, 27, 54–58]. The
incorporation of translational symmetries into models is
possible using convolutional architectures, as studied for
example in Ref. [54]. To address gauge symmetry, one
could attempt to use a gauge-fixing procedure to select
a single configuration from each gauge-equivalent class,
leaving only physical degrees of freedom; however, the
only known gauge fixing procedures that preserve trans-
lational invariance are based on implicit di↵erential equa-
tion constraints [59], which do not have a straightforward
implementation in flows. Here, we instead introduce a
method to preserve exact gauge invariance in flow-based
models.

When a flow-based model is defined in terms of cou-
pling layers, its output distribution will be invariant un-
der a symmetry group if two conditions are met:

1. The prior distribution is symmetric.

2. Each coupling layer is equivariant under the sym-
metry, i.e. all transformations commute through
application of the coupling layer [54, 56, 60–62].

Choosing a prior distribution that is symmetric is typ-
ically straightforward, for example a uniform distribu-
tion with respect to the Haar measure over gauge links is
both translationally and gauge invariant. Using gauge-
equivariant coupling layers with such a prior distribution
then defines a gauge-invariant flow-based model.
Gauge-equivariant coupling layers.— We construct an

explicitly gauge-equivariant and invertible coupling layer
g : GNdV

! GNdV by splitting the input variables
into subsets UA and UB . In terms of these sub-
sets, we define the action of the coupling layer to be
g(UA, UB) = (U 0A, UB), where link U i

2 UA is mapped
to

U 0i = h(U iSi
|Ii)Si†, (3)

in which h : G ! G is an invertible kernel which is explic-
itly parameterized by a set of gauge-invariant quantities
Ii constructed from the elements of UB . Here, Si is a
product of links such that U iSi forms a loop that starts
and ends at a common point x, and therefore transforms
under the gauge symmetry to ⌦(x) U i⌦†(x + µ̂) ⌦(x +
µ̂)Si⌦†(x) = ⌦(x) U iSi ⌦†(x). With this definition, the
coupling layer is gauge equivariant if the kernel satisfies

h(XWX†) = X h(W ) X†, 8X, W 2 G, (4)
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flow-based models at a range of parameters approaching
criticality, while without it, models of similar scale fail
to learn the distributions under the same training proce-
dure.

Flow-based sampling.— Flow-based generative models
allow sampling from an expressive family of distributions
by applying an invertible function f to samples U from
a fixed, simple prior distribution defined by a density
r(U) [51]. The resulting samples U 0 = f(U) are dis-
tributed according to a model density q(U 0). The invert-
ible function is constructed specifically to allow e�cient
evaluation of the Jacobian factor for any given sample,
so that the associated normalized probability density,
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is returned with each sample drawn. This feature enables
training the flow model, i.e. optimizing the function f , by
minimizing the distance between the model probability
density q(U 0) and the desired density p(U 0) using a cho-
sen metric. Any deviation from the true distribution due
to an imperfect model can be corrected by a number of
techniques; in this work, we apply Metropolis indepen-
dence sampling [25].1

A powerful approach to defining a flexible invertible
function f is through composition of several coupling
layers, f := gm � · · · � g1. Coupling layers act on sam-
ples U by applying an analytically invertible transfor-
mation (such as a scaling) to a subset of the compo-
nents UA :=
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, where the superscript i in-

dexes components of the multi-dimensional sample U and
the set A indicates the components that are transformed.
The remaining (unmodified) components UB , defined by
UB = U \ UA, are given as input to a feed-forward neu-
ral network that parameterizes the transformation. This
variable splitting guarantees invertibility despite the use
of non-invertible feed-forward networks.

Gauge-invariant flows.— Lattice gauge theories can be
defined in terms of one gauge variable Uµ(x) per nearest-
neighbor link (x, x + µ̂) of the lattice. Samples thus live
in the compact manifold GNdV , where G is the mani-
fold of the gauge group, Nd is the spacetime dimension,
and V is the lattice volume. The physical distribution
p(U) is exactly invariant under a discrete translational
symmetry group with V elements and a continuous V -
dimensional gauge symmetry group, meaning that the
density associated with any transformed field configura-
tion eU is identical to that of the untransformed config-
uration, p(eU) = p(U). Under a gauge transformation,
links Uµ(x) are transformed by a group-valued field ⌦(x)

1 Reweighted observables can also be used [52, 53]. This is ef-
ficient when measurements of the action are more costly than
measurements of observables.

as

Uµ(x) ! eUµ(x) = ⌦(x)Uµ(x)⌦†(x + µ̂). (2)

In the flow-based approach, symmetries correspond to
flat directions of the probability density that must be
reproduced by the model. Exactly encoding symme-
tries in machine learning models can improve training
and model quality compared with learning the symme-
tries over the course of training [24, 27, 54–58]. The
incorporation of translational symmetries into models is
possible using convolutional architectures, as studied for
example in Ref. [54]. To address gauge symmetry, one
could attempt to use a gauge-fixing procedure to select
a single configuration from each gauge-equivalent class,
leaving only physical degrees of freedom; however, the
only known gauge fixing procedures that preserve trans-
lational invariance are based on implicit di↵erential equa-
tion constraints [59], which do not have a straightforward
implementation in flows. Here, we instead introduce a
method to preserve exact gauge invariance in flow-based
models.

When a flow-based model is defined in terms of cou-
pling layers, its output distribution will be invariant un-
der a symmetry group if two conditions are met:

1. The prior distribution is symmetric.

2. Each coupling layer is equivariant under the sym-
metry, i.e. all transformations commute through
application of the coupling layer [54, 56, 60–62].

Choosing a prior distribution that is symmetric is typ-
ically straightforward, for example a uniform distribu-
tion with respect to the Haar measure over gauge links is
both translationally and gauge invariant. Using gauge-
equivariant coupling layers with such a prior distribution
then defines a gauge-invariant flow-based model.
Gauge-equivariant coupling layers.— We construct an

explicitly gauge-equivariant and invertible coupling layer
g : GNdV

! GNdV by splitting the input variables
into subsets UA and UB . In terms of these sub-
sets, we define the action of the coupling layer to be
g(UA, UB) = (U 0A, UB), where link U i

2 UA is mapped
to

U 0i = h(U iSi
|Ii)Si†, (3)

in which h : G ! G is an invertible kernel which is explic-
itly parameterized by a set of gauge-invariant quantities
Ii constructed from the elements of UB . Here, Si is a
product of links such that U iSi forms a loop that starts
and ends at a common point x, and therefore transforms
under the gauge symmetry to ⌦(x) U i⌦†(x + µ̂) ⌦(x +
µ̂)Si⌦†(x) = ⌦(x) U iSi ⌦†(x). With this definition, the
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FIG. 2. An example of a variable splitting based on a tiled
4 ⇥ 1 pattern with an actively updated link U i ⌘ Uµ(x) and
1 ⇥ 1 loop U iSi ⌘ Pµ⌫(x) located at x, a passively updated
1⇥ 1 loop at ex = x� ⌫̂, and two frozen traced 1⇥ 1 loops at
x+ ⌫̂ and x+ 2⌫̂ included in the set Ii.

which implies that U 0i
! eU 0i transforms according to

Eq. (2),

eU 0i = h
�
⌦(x) U iSi ⌦†(x)|Ii

�
⌦(x)Si†⌦†(x + µ̂)

= ⌦(x)U 0i⌦†(x + µ̂).
(5)

To ensure invertibility, the product of links Si must not
contain any links in UA.

For an Abelian group, the transformation property
in Eq. (4) is trivially satisfied by any kernel. In
the U(1) gauge theory considered below, we there-
fore define the kernel using invertible flows parame-
terized by neural networks. For non-Abelian theo-
ries, it has been shown that it is possible to con-
struct invertible functions on spheres [63] and surjec-
tive functions on general Lie groups [64]. If these ap-
proaches can be generalized to produce invertible func-
tions with convergent power expansions, they will sat-
isfy the necessary kernel transformation property, since
h(XWX†) =

P
n ↵n(XWX†)n = X h(W ) X†.

An example of a variable splitting suitable for both
Abelian and non-Abelian gauge theories is given by the
pattern depicted in Fig. 2. In this example, the set of
updated links UA consists of vertical links spaced by 4
sites, and the products U iSi are 1 ⇥ 1 loops adjacent to
each U i. This is su�ciently sparse such that every Si

is independent of all updated links in UA, and a non-
trivial set of invariants Ii (e.g. all traced 1⇥ 1 loops that
are not adjacent to updated links) can be constructed
to parametrize the transformation. Composing coupling
layers using rotations and o↵sets of the pattern allows all
links to be updated.2

2 For example, composing 8 such layers is su�cient to update all
links in 2D.

Using gauge-equivariant coupling layers constructed in
terms of kernels generalizes the “trivializing map” pro-
posed in Ref. [65]. There, repeatedly applying a spe-
cific kernel based on gradients of the action theoretically
trivializes a gauge theory, i.e. maps the Euclidean time
distribution to a uniform one. The family of gauge equiv-
ariant flows defined here includes the trivializing map in
the limit of a large number of coupling layers and arbi-
trarily expressive kernel, indicating that in this limiting
case exact sampling as described in Ref. [65] is possible.
However, the approach presented here allows for more
general and inexpensive parametrizations of h. These
can be optimized to produce flows that similarly trivial-
ize the theory, and which may have a lower cost of evalu-
ation than implementations of the analytical trivializing
map [66].
Application to U(1) gauge theory.— Gauge theory with

a U(1) gauge group defined in two spacetime dimensions
is the quenched limit of 1 + 1D electrodynamics, i.e. the
Schwinger model [67]. The full Schwinger model repro-
duces many features of quantum chromodynamics (con-
finement, an axial anomaly, topology, and chiral symme-
try breaking) while being analytically tractable. Even in
the quenched limit, the well-defined gauge field topology
results in severe critical slowing down of MCMC meth-
ods for sampling lattice discretizations of the model as
the coupling is taken to criticality. We consider the lat-
tice discretization given by the Wilson gauge action [68],

S(U) := ��
X

x

Re P (x), (6)

where P (x) is the plaquette at x defined in terms of link
variables Uµ(x) 2 U(1),

P (x) := U0(x)U1(x + 0̂)U†

0 (x + 1̂)U†

1 (x), (7)

and x = (x0, x1) runs over coordinates in an L⇥L square
lattice with periodic boundary conditions. Physical infor-
mation may be extracted from the model by considering
expectation values of observables O under the Euclidean
time path integral,

hOi :=
1

Z

Z
DU O(U)e�S(U), (8)

where
R

DU denotes integration over the product of
Haar measures for each link, and Z =

R
DU e�S(U). In

this study, three key observables were considered:

1. Expectation values of powers of plaquettes.

2. Expectation values of ` ⇥ ` Wilson loops W`⇥` =Q
x2`⇥` P (x).

3. Topological susceptibility �Q = hQ2/V i, where
topological charge Q := 1

2⇡

P
x arg (P (x)) is de-

fined in terms of plaquette phase in the principal
interval, arg (P (x)) 2 [�⇡, ⇡].
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flow-based models at a range of parameters approaching
criticality, while without it, models of similar scale fail
to learn the distributions under the same training proce-
dure.

Flow-based sampling.— Flow-based generative models
allow sampling from an expressive family of distributions
by applying an invertible function f to samples U from
a fixed, simple prior distribution defined by a density
r(U) [51]. The resulting samples U 0 = f(U) are dis-
tributed according to a model density q(U 0). The invert-
ible function is constructed specifically to allow e�cient
evaluation of the Jacobian factor for any given sample,
so that the associated normalized probability density,

q(U 0) = q(f(U)) = r(U)

����det
@f(U)

@U

����
�1

, (1)

is returned with each sample drawn. This feature enables
training the flow model, i.e. optimizing the function f , by
minimizing the distance between the model probability
density q(U 0) and the desired density p(U 0) using a cho-
sen metric. Any deviation from the true distribution due
to an imperfect model can be corrected by a number of
techniques; in this work, we apply Metropolis indepen-
dence sampling [25].1

A powerful approach to defining a flexible invertible
function f is through composition of several coupling
layers, f := gm � · · · � g1. Coupling layers act on sam-
ples U by applying an analytically invertible transfor-
mation (such as a scaling) to a subset of the compo-
nents UA :=

�
U i : i 2 A

 
, where the superscript i in-

dexes components of the multi-dimensional sample U and
the set A indicates the components that are transformed.
The remaining (unmodified) components UB , defined by
UB = U \ UA, are given as input to a feed-forward neu-
ral network that parameterizes the transformation. This
variable splitting guarantees invertibility despite the use
of non-invertible feed-forward networks.

Gauge-invariant flows.— Lattice gauge theories can be
defined in terms of one gauge variable Uµ(x) per nearest-
neighbor link (x, x + µ̂) of the lattice. Samples thus live
in the compact manifold GNdV , where G is the mani-
fold of the gauge group, Nd is the spacetime dimension,
and V is the lattice volume. The physical distribution
p(U) is exactly invariant under a discrete translational
symmetry group with V elements and a continuous V -
dimensional gauge symmetry group, meaning that the
density associated with any transformed field configura-
tion eU is identical to that of the untransformed config-
uration, p(eU) = p(U). Under a gauge transformation,
links Uµ(x) are transformed by a group-valued field ⌦(x)

1 Reweighted observables can also be used [52, 53]. This is ef-
ficient when measurements of the action are more costly than
measurements of observables.

as

Uµ(x) ! eUµ(x) = ⌦(x)Uµ(x)⌦†(x + µ̂). (2)

In the flow-based approach, symmetries correspond to
flat directions of the probability density that must be
reproduced by the model. Exactly encoding symme-
tries in machine learning models can improve training
and model quality compared with learning the symme-
tries over the course of training [24, 27, 54–58]. The
incorporation of translational symmetries into models is
possible using convolutional architectures, as studied for
example in Ref. [54]. To address gauge symmetry, one
could attempt to use a gauge-fixing procedure to select
a single configuration from each gauge-equivalent class,
leaving only physical degrees of freedom; however, the
only known gauge fixing procedures that preserve trans-
lational invariance are based on implicit di↵erential equa-
tion constraints [59], which do not have a straightforward
implementation in flows. Here, we instead introduce a
method to preserve exact gauge invariance in flow-based
models.

When a flow-based model is defined in terms of cou-
pling layers, its output distribution will be invariant un-
der a symmetry group if two conditions are met:

1. The prior distribution is symmetric.

2. Each coupling layer is equivariant under the sym-
metry, i.e. all transformations commute through
application of the coupling layer [54, 56, 60–62].

Choosing a prior distribution that is symmetric is typ-
ically straightforward, for example a uniform distribu-
tion with respect to the Haar measure over gauge links is
both translationally and gauge invariant. Using gauge-
equivariant coupling layers with such a prior distribution
then defines a gauge-invariant flow-based model.
Gauge-equivariant coupling layers.— We construct an

explicitly gauge-equivariant and invertible coupling layer
g : GNdV

! GNdV by splitting the input variables
into subsets UA and UB . In terms of these sub-
sets, we define the action of the coupling layer to be
g(UA, UB) = (U 0A, UB), where link U i

2 UA is mapped
to

U 0i = h(U iSi
|Ii)Si†, (3)

in which h : G ! G is an invertible kernel which is explic-
itly parameterized by a set of gauge-invariant quantities
Ii constructed from the elements of UB . Here, Si is a
product of links such that U iSi forms a loop that starts
and ends at a common point x, and therefore transforms
under the gauge symmetry to ⌦(x) U i⌦†(x + µ̂) ⌦(x +
µ̂)Si⌦†(x) = ⌦(x) U iSi ⌦†(x). With this definition, the
coupling layer is gauge equivariant if the kernel satisfies

h(XWX†) = X h(W ) X†, 8X, W 2 G, (4)
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to learn the distributions under the same training proce-
dure.

Flow-based sampling.— Flow-based generative models
allow sampling from an expressive family of distributions
by applying an invertible function f to samples U from
a fixed, simple prior distribution defined by a density
r(U) [51]. The resulting samples U 0 = f(U) are dis-
tributed according to a model density q(U 0). The invert-
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so that the associated normalized probability density,
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is returned with each sample drawn. This feature enables
training the flow model, i.e. optimizing the function f , by
minimizing the distance between the model probability
density q(U 0) and the desired density p(U 0) using a cho-
sen metric. Any deviation from the true distribution due
to an imperfect model can be corrected by a number of
techniques; in this work, we apply Metropolis indepen-
dence sampling [25].1

A powerful approach to defining a flexible invertible
function f is through composition of several coupling
layers, f := gm � · · · � g1. Coupling layers act on sam-
ples U by applying an analytically invertible transfor-
mation (such as a scaling) to a subset of the compo-
nents UA :=
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the set A indicates the components that are transformed.
The remaining (unmodified) components UB , defined by
UB = U \ UA, are given as input to a feed-forward neu-
ral network that parameterizes the transformation. This
variable splitting guarantees invertibility despite the use
of non-invertible feed-forward networks.

Gauge-invariant flows.— Lattice gauge theories can be
defined in terms of one gauge variable Uµ(x) per nearest-
neighbor link (x, x + µ̂) of the lattice. Samples thus live
in the compact manifold GNdV , where G is the mani-
fold of the gauge group, Nd is the spacetime dimension,
and V is the lattice volume. The physical distribution
p(U) is exactly invariant under a discrete translational
symmetry group with V elements and a continuous V -
dimensional gauge symmetry group, meaning that the
density associated with any transformed field configura-
tion eU is identical to that of the untransformed config-
uration, p(eU) = p(U). Under a gauge transformation,
links Uµ(x) are transformed by a group-valued field ⌦(x)

1 Reweighted observables can also be used [52, 53]. This is ef-
ficient when measurements of the action are more costly than
measurements of observables.

as

Uµ(x) ! eUµ(x) = ⌦(x)Uµ(x)⌦†(x + µ̂). (2)

In the flow-based approach, symmetries correspond to
flat directions of the probability density that must be
reproduced by the model. Exactly encoding symme-
tries in machine learning models can improve training
and model quality compared with learning the symme-
tries over the course of training [24, 27, 54–58]. The
incorporation of translational symmetries into models is
possible using convolutional architectures, as studied for
example in Ref. [54]. To address gauge symmetry, one
could attempt to use a gauge-fixing procedure to select
a single configuration from each gauge-equivalent class,
leaving only physical degrees of freedom; however, the
only known gauge fixing procedures that preserve trans-
lational invariance are based on implicit di↵erential equa-
tion constraints [59], which do not have a straightforward
implementation in flows. Here, we instead introduce a
method to preserve exact gauge invariance in flow-based
models.

When a flow-based model is defined in terms of cou-
pling layers, its output distribution will be invariant un-
der a symmetry group if two conditions are met:

1. The prior distribution is symmetric.

2. Each coupling layer is equivariant under the sym-
metry, i.e. all transformations commute through
application of the coupling layer [54, 56, 60–62].

Choosing a prior distribution that is symmetric is typ-
ically straightforward, for example a uniform distribu-
tion with respect to the Haar measure over gauge links is
both translationally and gauge invariant. Using gauge-
equivariant coupling layers with such a prior distribution
then defines a gauge-invariant flow-based model.
Gauge-equivariant coupling layers.— We construct an

explicitly gauge-equivariant and invertible coupling layer
g : GNdV

! GNdV by splitting the input variables
into subsets UA and UB . In terms of these sub-
sets, we define the action of the coupling layer to be
g(UA, UB) = (U 0A, UB), where link U i

2 UA is mapped
to

U 0i = h(U iSi
|Ii)Si†, (3)

in which h : G ! G is an invertible kernel which is explic-
itly parameterized by a set of gauge-invariant quantities
Ii constructed from the elements of UB . Here, Si is a
product of links such that U iSi forms a loop that starts
and ends at a common point x, and therefore transforms
under the gauge symmetry to ⌦(x) U i⌦†(x + µ̂) ⌦(x +
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First gauge theory application: U(1) field theory 

Generative flow architecture that is gauge-equivariant



3

▶︎ ▶︎

x

<latexit sha1_base64="E+xWb622b2P97o+CO1oWwc/7ors=">AAAB6HicbVDLTgJBEOzFF+IL9ehlIjHxRHYNRo9ELx4hkUcCGzI79MLI7OxmZtZICF/gxYPGePWTvPk3DrAHBSvppFLVne6uIBFcG9f9dnJr6xubW/ntws7u3v5B8fCoqeNUMWywWMSqHVCNgktsGG4EthOFNAoEtoLR7cxvPaLSPJb3ZpygH9GB5CFn1Fip/tQrltyyOwdZJV5GSpCh1it+dfsxSyOUhgmqdcdzE+NPqDKcCZwWuqnGhLIRHWDHUkkj1P5kfuiUnFmlT8JY2ZKGzNXfExMaaT2OAtsZUTPUy95M/M/rpCa89idcJqlByRaLwlQQE5PZ16TPFTIjxpZQpri9lbAhVZQZm03BhuAtv7xKmhdlr1K+rFdK1ZssjjycwCmcgwdXUIU7qEEDGCA8wyu8OQ/Oi/PufCxac042cwx/4Hz+AOjRjQQ=</latexit>

.P 0

µ�(x) = h(Pµ�(x)|I(x))

<latexit sha1_base64="DBylEEDfzo3DYBu0qWIyU0bKL9E="></latexit>

▶︎

▶︎

▶︎

▶︎

▶︎

▶︎

▶︎

▶︎

▶︎

▶︎

▶︎

▶︎

▶︎

▶︎

▶︎

▶︎  
active update

 
passive update

 
frozen

 
frozen

Pµ�(x̃)!P 0

µ�(x̃)

<latexit sha1_base64="eFTEK2In5BMi3LUacylswlCGLdU="></latexit>

Pµ�

<latexit sha1_base64="Y7kkpTrXLbIQqVI7A8hA2q2PWPY="></latexit>

P 0

µ�

<latexit sha1_base64="DIXcVMM3Omrg2/3UExYXRLIQ9R8="></latexit>

p(Pµ�)

<latexit sha1_base64="3oCAe8IV962EFfVNr95O1Z3g1Yw=">AAAB9HicbVDLSgNBEOz1GeMr6tHLYBDiJexKRI9BLx4jmAdklzA7mU2GzM6u8wiEJd/hxYMiXv0Yb/6Nk2QPmljQUFR1090Vppwp7brfztr6xubWdmGnuLu3f3BYOjpuqcRIQpsk4YnshFhRzgRtaqY57aSS4jjktB2O7mZ+e0ylYol41JOUBjEeCBYxgrWVgrTS6GV+bHxhphe9UtmtunOgVeLlpAw5Gr3Sl99PiImp0IRjpbqem+ogw1Izwum06BtFU0xGeEC7lgocUxVk86On6NwqfRQl0pbQaK7+nshwrNQkDm1njPVQLXsz8T+va3R0E2RMpEZTQRaLIsORTtAsAdRnkhLNJ5ZgIpm9FZEhlphom1PRhuAtv7xKWpdVr1a9eqiV67d5HAU4hTOogAfXUId7aEATCDzBM7zCmzN2Xpx352PRuubkMyfwB87nD3aDkek=</latexit>

p(P 0

µ�)

<latexit sha1_base64="BowzmUHmI2UKPaa1E8ysKu3BQbI=">AAAB9XicbVBNSwMxEJ2tX7V+VT16CRaxXsquVPRY9OKxgv2A7lqyadqGJtklySpl6f/w4kERr/4Xb/4b03YP2vpg4PHeDDPzwpgzbVz328mtrK6tb+Q3C1vbO7t7xf2Dpo4SRWiDRDxS7RBrypmkDcMMp+1YUSxCTlvh6Gbqtx6p0iyS92Yc00DggWR9RrCx0kNcrp92U18kvkwmZ91iya24M6Bl4mWkBBnq3eKX34tIIqg0hGOtO54bmyDFyjDC6aTgJ5rGmIzwgHYslVhQHaSzqyfoxCo91I+ULWnQTP09kWKh9ViEtlNgM9SL3lT8z+skpn8VpEzGiaGSzBf1E45MhKYRoB5TlBg+tgQTxeytiAyxwsTYoAo2BG/x5WXSPK941crFXbVUu87iyMMRHEMZPLiEGtxCHRpAQMEzvMKb8+S8OO/Ox7w152Qzh/AHzucP2QmSGg==</latexit>

x̃

<latexit sha1_base64="OFJrA71Ci/6WdL5JRreK70NNIqQ=">AAAB8HicbVBNS8NAEN3Ur1q/qh69LBbBU0lE0WPRi8cK9kPaUDababt0Nwm7E7GE/govHhTx6s/x5r9x2+agrQ8GHu/NMDMvSKQw6LrfTmFldW19o7hZ2tre2d0r7x80TZxqDg0ey1i3A2ZAiggaKFBCO9HAVCChFYxupn7rEbQRcXSP4wR8xQaR6AvO0EoPXRQyhOxp0itX3Ko7A10mXk4qJEe9V/7qhjFPFUTIJTOm47kJ+hnTKLiESambGkgYH7EBdCyNmALjZ7ODJ/TEKiHtx9pWhHSm/p7ImDJmrALbqRgOzaI3Ff/zOin2r/xMREmKEPH5on4qKcZ0+j0NhQaOcmwJ41rYWykfMs042oxKNgRv8eVl0jyreufVi7vzSu06j6NIjsgxOSUeuSQ1ckvqpEE4UeSZvJI3RzsvzrvzMW8tOPnMIfkD5/MHRfWQug==</latexit>

I1(x)

<latexit sha1_base64="fuXW4UdBbqziWNdm7tEPIs3Ex+s=">AAACGHicbVBLS8NAGNzUV62vqEcvwSJUkJi0jdZb0YveKtgHtKFsttt26ebB7kYsIT/Di3/FiwdFvPbmv3GTRtDqwMIwM9/ut+MElHBhGJ9Kbml5ZXUtv17Y2Nza3lF391rcDxnCTeRTn3UcyDElHm4KIijuBAxD16G47UyuEr99jxknvncnpgG2XTjyyJAgKKTUV0+jXnpJl40cOzJ0I8WJoVtnF1Y5IZWaVbEq8U3fLD0cx321+B3S/hIzI0WQodFXZ72Bj0IXewJRyHnXNAJhR5AJgiiOC72Q4wCiCRzhrqQedDG3o3SnWDuSykAb+kweT2ip+nMigi7nU9eRSReKMV/0EvE/rxuKYc2OiBeEAnto/tAwpJrwtaQlbUAYRoJOJYGIEbmrhsaQQSRklwVZgrn45b+kVdbNqm7dVov1y6yOPDgAh6AETHAO6uAaNEATIPAInsEreFOelBflXfmYR3NKNrMPfkGZfQFgbpuR</latexit>

I2(x)

<latexit sha1_base64="LziJcPGNo/1vM3u28HnfrtaVVCM=">AAACGHicbVBLS8NAGNzUV62vqEcvwSJUkJq0jdZb0YveKtgHpCFsttt26ebB7kYsoT/Di3/FiwdFvPbmv3GTRtDqwMIwM9/ut+OGlHCh659Kbml5ZXUtv17Y2Nza3lF399o8iBjCLRTQgHVdyDElPm4JIijuhgxDz6W4446vEr9zjxkngX8nJiG2PTj0yYAgKKTkqKdxL73EYkPXjvWynuJEL5tnF2YlIdW6WTWr0xunUno4njpq8Tuk/SVGRoogQ9NRZ71+gCIP+wJRyLll6KGwY8gEQRRPC72I4xCiMRxiS1IfepjbcbrTVDuSSl8bBEweX2ip+nMihh7nE8+VSQ+KEV/0EvE/z4rEoG7HxA8jgX00f2gQUU0EWtKS1icMI0EnkkDEiNxVQyPIIBKyy4IswVj88l/SrpSNWtm8rRUbl1kdeXAADkEJGOAcNMA1aIIWQOARPINX8KY8KS/Ku/Ixj+aUbGYf/IIy+wJh9puS</latexit>

P 0

µ�(x̃)=Pµ�(x̃)Uµ(x)U 0†

µ (x)

<latexit sha1_base64="uiG51YXhpXbqpv/pPFiL56pdzO8="></latexit>

U 0

µ(x)=P 0

µ�(x)P †

µ�(x)Uµ(x)

<latexit sha1_base64="B08+pW96tbXW1+Rn9kgeI4ZsXWY="></latexit>

Pµ�(x)!P 0

µ�(x)

<latexit sha1_base64="lzU07WQ24cJ/cdE+FcsR1MjmAVc="></latexit>

FIG. 2. An example of a variable splitting based on a tiled
4 ⇥ 1 pattern with an actively updated link U i ⌘ Uµ(x) and
1 ⇥ 1 loop U iSi ⌘ Pµ⌫(x) located at x, a passively updated
1⇥ 1 loop at ex = x� ⌫̂, and two frozen traced 1⇥ 1 loops at
x+ ⌫̂ and x+ 2⌫̂ included in the set Ii.

which implies that U 0i
! eU 0i transforms according to

Eq. (2),

eU 0i = h
�
⌦(x) U iSi ⌦†(x)|Ii

�
⌦(x)Si†⌦†(x + µ̂)

= ⌦(x)U 0i⌦†(x + µ̂).
(5)

To ensure invertibility, the product of links Si must not
contain any links in UA.

For an Abelian group, the transformation property
in Eq. (4) is trivially satisfied by any kernel. In
the U(1) gauge theory considered below, we there-
fore define the kernel using invertible flows parame-
terized by neural networks. For non-Abelian theo-
ries, it has been shown that it is possible to con-
struct invertible functions on spheres [63] and surjec-
tive functions on general Lie groups [64]. If these ap-
proaches can be generalized to produce invertible func-
tions with convergent power expansions, they will sat-
isfy the necessary kernel transformation property, since
h(XWX†) =

P
n ↵n(XWX†)n = X h(W ) X†.

An example of a variable splitting suitable for both
Abelian and non-Abelian gauge theories is given by the
pattern depicted in Fig. 2. In this example, the set of
updated links UA consists of vertical links spaced by 4
sites, and the products U iSi are 1 ⇥ 1 loops adjacent to
each U i. This is su�ciently sparse such that every Si

is independent of all updated links in UA, and a non-
trivial set of invariants Ii (e.g. all traced 1⇥ 1 loops that
are not adjacent to updated links) can be constructed
to parametrize the transformation. Composing coupling
layers using rotations and o↵sets of the pattern allows all
links to be updated.2

2 For example, composing 8 such layers is su�cient to update all
links in 2D.

Using gauge-equivariant coupling layers constructed in
terms of kernels generalizes the “trivializing map” pro-
posed in Ref. [65]. There, repeatedly applying a spe-
cific kernel based on gradients of the action theoretically
trivializes a gauge theory, i.e. maps the Euclidean time
distribution to a uniform one. The family of gauge equiv-
ariant flows defined here includes the trivializing map in
the limit of a large number of coupling layers and arbi-
trarily expressive kernel, indicating that in this limiting
case exact sampling as described in Ref. [65] is possible.
However, the approach presented here allows for more
general and inexpensive parametrizations of h. These
can be optimized to produce flows that similarly trivial-
ize the theory, and which may have a lower cost of evalu-
ation than implementations of the analytical trivializing
map [66].
Application to U(1) gauge theory.— Gauge theory with

a U(1) gauge group defined in two spacetime dimensions
is the quenched limit of 1 + 1D electrodynamics, i.e. the
Schwinger model [67]. The full Schwinger model repro-
duces many features of quantum chromodynamics (con-
finement, an axial anomaly, topology, and chiral symme-
try breaking) while being analytically tractable. Even in
the quenched limit, the well-defined gauge field topology
results in severe critical slowing down of MCMC meth-
ods for sampling lattice discretizations of the model as
the coupling is taken to criticality. We consider the lat-
tice discretization given by the Wilson gauge action [68],

S(U) := ��
X

x

Re P (x), (6)

where P (x) is the plaquette at x defined in terms of link
variables Uµ(x) 2 U(1),

P (x) := U0(x)U1(x + 0̂)U†

0 (x + 1̂)U†

1 (x), (7)

and x = (x0, x1) runs over coordinates in an L⇥L square
lattice with periodic boundary conditions. Physical infor-
mation may be extracted from the model by considering
expectation values of observables O under the Euclidean
time path integral,

hOi :=
1

Z

Z
DU O(U)e�S(U), (8)

where
R

DU denotes integration over the product of
Haar measures for each link, and Z =

R
DU e�S(U). In

this study, three key observables were considered:

1. Expectation values of powers of plaquettes.

2. Expectation values of ` ⇥ ` Wilson loops W`⇥` =Q
x2`⇥` P (x).

3. Topological susceptibility �Q = hQ2/V i, where
topological charge Q := 1

2⇡

P
x arg (P (x)) is de-

fined in terms of plaquette phase in the principal
interval, arg (P (x)) 2 [�⇡, ⇡].

Gauge-equivariant flows

Phiala Shanahan, MIT20

2

flow-based models at a range of parameters approaching
criticality, while without it, models of similar scale fail
to learn the distributions under the same training proce-
dure.

Flow-based sampling.— Flow-based generative models
allow sampling from an expressive family of distributions
by applying an invertible function f to samples U from
a fixed, simple prior distribution defined by a density
r(U) [51]. The resulting samples U 0 = f(U) are dis-
tributed according to a model density q(U 0). The invert-
ible function is constructed specifically to allow e�cient
evaluation of the Jacobian factor for any given sample,
so that the associated normalized probability density,

q(U 0) = q(f(U)) = r(U)

����det
@f(U)

@U

����
�1

, (1)

is returned with each sample drawn. This feature enables
training the flow model, i.e. optimizing the function f , by
minimizing the distance between the model probability
density q(U 0) and the desired density p(U 0) using a cho-
sen metric. Any deviation from the true distribution due
to an imperfect model can be corrected by a number of
techniques; in this work, we apply Metropolis indepen-
dence sampling [25].1

A powerful approach to defining a flexible invertible
function f is through composition of several coupling
layers, f := gm � · · · � g1. Coupling layers act on sam-
ples U by applying an analytically invertible transfor-
mation (such as a scaling) to a subset of the compo-
nents UA :=

�
U i : i 2 A

 
, where the superscript i in-

dexes components of the multi-dimensional sample U and
the set A indicates the components that are transformed.
The remaining (unmodified) components UB , defined by
UB = U \ UA, are given as input to a feed-forward neu-
ral network that parameterizes the transformation. This
variable splitting guarantees invertibility despite the use
of non-invertible feed-forward networks.

Gauge-invariant flows.— Lattice gauge theories can be
defined in terms of one gauge variable Uµ(x) per nearest-
neighbor link (x, x + µ̂) of the lattice. Samples thus live
in the compact manifold GNdV , where G is the mani-
fold of the gauge group, Nd is the spacetime dimension,
and V is the lattice volume. The physical distribution
p(U) is exactly invariant under a discrete translational
symmetry group with V elements and a continuous V -
dimensional gauge symmetry group, meaning that the
density associated with any transformed field configura-
tion eU is identical to that of the untransformed config-
uration, p(eU) = p(U). Under a gauge transformation,
links Uµ(x) are transformed by a group-valued field ⌦(x)

1 Reweighted observables can also be used [52, 53]. This is ef-
ficient when measurements of the action are more costly than
measurements of observables.

as

Uµ(x) ! eUµ(x) = ⌦(x)Uµ(x)⌦†(x + µ̂). (2)

In the flow-based approach, symmetries correspond to
flat directions of the probability density that must be
reproduced by the model. Exactly encoding symme-
tries in machine learning models can improve training
and model quality compared with learning the symme-
tries over the course of training [24, 27, 54–58]. The
incorporation of translational symmetries into models is
possible using convolutional architectures, as studied for
example in Ref. [54]. To address gauge symmetry, one
could attempt to use a gauge-fixing procedure to select
a single configuration from each gauge-equivalent class,
leaving only physical degrees of freedom; however, the
only known gauge fixing procedures that preserve trans-
lational invariance are based on implicit di↵erential equa-
tion constraints [59], which do not have a straightforward
implementation in flows. Here, we instead introduce a
method to preserve exact gauge invariance in flow-based
models.

When a flow-based model is defined in terms of cou-
pling layers, its output distribution will be invariant un-
der a symmetry group if two conditions are met:

1. The prior distribution is symmetric.

2. Each coupling layer is equivariant under the sym-
metry, i.e. all transformations commute through
application of the coupling layer [54, 56, 60–62].

Choosing a prior distribution that is symmetric is typ-
ically straightforward, for example a uniform distribu-
tion with respect to the Haar measure over gauge links is
both translationally and gauge invariant. Using gauge-
equivariant coupling layers with such a prior distribution
then defines a gauge-invariant flow-based model.
Gauge-equivariant coupling layers.— We construct an

explicitly gauge-equivariant and invertible coupling layer
g : GNdV

! GNdV by splitting the input variables
into subsets UA and UB . In terms of these sub-
sets, we define the action of the coupling layer to be
g(UA, UB) = (U 0A, UB), where link U i

2 UA is mapped
to

U 0i = h(U iSi
|Ii)Si†, (3)

in which h : G ! G is an invertible kernel which is explic-
itly parameterized by a set of gauge-invariant quantities
Ii constructed from the elements of UB . Here, Si is a
product of links such that U iSi forms a loop that starts
and ends at a common point x, and therefore transforms
under the gauge symmetry to ⌦(x) U i⌦†(x + µ̂) ⌦(x +
µ̂)Si⌦†(x) = ⌦(x) U iSi ⌦†(x). With this definition, the
coupling layer is gauge equivariant if the kernel satisfies

h(XWX†) = X h(W ) X†, 8X, W 2 G, (4)
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In the flow-based approach, symmetries correspond to
flat directions of the probability density that must be
reproduced by the model. Exactly encoding symme-
tries in machine learning models can improve training
and model quality compared with learning the symme-
tries over the course of training [24, 27, 54–58]. The
incorporation of translational symmetries into models is
possible using convolutional architectures, as studied for
example in Ref. [54]. To address gauge symmetry, one
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only known gauge fixing procedures that preserve trans-
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sets, we define the action of the coupling layer to be
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|Ii)Si†, (3)
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itly parameterized by a set of gauge-invariant quantities
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FIG. 2. An example of a variable splitting based on a tiled
4 ⇥ 1 pattern with an actively updated link U i ⌘ Uµ(x) and
1 ⇥ 1 loop U iSi ⌘ Pµ⌫(x) located at x, a passively updated
1⇥ 1 loop at ex = x� ⌫̂, and two frozen traced 1⇥ 1 loops at
x+ ⌫̂ and x+ 2⌫̂ included in the set Ii.

which implies that U 0i
! eU 0i transforms according to

Eq. (2),

eU 0i = h
�
⌦(x) U iSi ⌦†(x)|Ii

�
⌦(x)Si†⌦†(x + µ̂)

= ⌦(x)U 0i⌦†(x + µ̂).
(5)

To ensure invertibility, the product of links Si must not
contain any links in UA.

For an Abelian group, the transformation property
in Eq. (4) is trivially satisfied by any kernel. In
the U(1) gauge theory considered below, we there-
fore define the kernel using invertible flows parame-
terized by neural networks. For non-Abelian theo-
ries, it has been shown that it is possible to con-
struct invertible functions on spheres [63] and surjec-
tive functions on general Lie groups [64]. If these ap-
proaches can be generalized to produce invertible func-
tions with convergent power expansions, they will sat-
isfy the necessary kernel transformation property, since
h(XWX†) =

P
n ↵n(XWX†)n = X h(W ) X†.

An example of a variable splitting suitable for both
Abelian and non-Abelian gauge theories is given by the
pattern depicted in Fig. 2. In this example, the set of
updated links UA consists of vertical links spaced by 4
sites, and the products U iSi are 1 ⇥ 1 loops adjacent to
each U i. This is su�ciently sparse such that every Si

is independent of all updated links in UA, and a non-
trivial set of invariants Ii (e.g. all traced 1⇥ 1 loops that
are not adjacent to updated links) can be constructed
to parametrize the transformation. Composing coupling
layers using rotations and o↵sets of the pattern allows all
links to be updated.2

2 For example, composing 8 such layers is su�cient to update all
links in 2D.

Using gauge-equivariant coupling layers constructed in
terms of kernels generalizes the “trivializing map” pro-
posed in Ref. [65]. There, repeatedly applying a spe-
cific kernel based on gradients of the action theoretically
trivializes a gauge theory, i.e. maps the Euclidean time
distribution to a uniform one. The family of gauge equiv-
ariant flows defined here includes the trivializing map in
the limit of a large number of coupling layers and arbi-
trarily expressive kernel, indicating that in this limiting
case exact sampling as described in Ref. [65] is possible.
However, the approach presented here allows for more
general and inexpensive parametrizations of h. These
can be optimized to produce flows that similarly trivial-
ize the theory, and which may have a lower cost of evalu-
ation than implementations of the analytical trivializing
map [66].
Application to U(1) gauge theory.— Gauge theory with

a U(1) gauge group defined in two spacetime dimensions
is the quenched limit of 1 + 1D electrodynamics, i.e. the
Schwinger model [67]. The full Schwinger model repro-
duces many features of quantum chromodynamics (con-
finement, an axial anomaly, topology, and chiral symme-
try breaking) while being analytically tractable. Even in
the quenched limit, the well-defined gauge field topology
results in severe critical slowing down of MCMC meth-
ods for sampling lattice discretizations of the model as
the coupling is taken to criticality. We consider the lat-
tice discretization given by the Wilson gauge action [68],

S(U) := ��
X

x

Re P (x), (6)

where P (x) is the plaquette at x defined in terms of link
variables Uµ(x) 2 U(1),

P (x) := U0(x)U1(x + 0̂)U†

0 (x + 1̂)U†

1 (x), (7)

and x = (x0, x1) runs over coordinates in an L⇥L square
lattice with periodic boundary conditions. Physical infor-
mation may be extracted from the model by considering
expectation values of observables O under the Euclidean
time path integral,

hOi :=
1

Z

Z
DU O(U)e�S(U), (8)

where
R

DU denotes integration over the product of
Haar measures for each link, and Z =

R
DU e�S(U). In

this study, three key observables were considered:

1. Expectation values of powers of plaquettes.

2. Expectation values of ` ⇥ ` Wilson loops W`⇥` =Q
x2`⇥` P (x).

3. Topological susceptibility �Q = hQ2/V i, where
topological charge Q := 1

2⇡

P
x arg (P (x)) is de-

fined in terms of plaquette phase in the principal
interval, arg (P (x)) 2 [�⇡, ⇡].
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flow-based models at a range of parameters approaching
criticality, while without it, models of similar scale fail
to learn the distributions under the same training proce-
dure.

Flow-based sampling.— Flow-based generative models
allow sampling from an expressive family of distributions
by applying an invertible function f to samples U from
a fixed, simple prior distribution defined by a density
r(U) [51]. The resulting samples U 0 = f(U) are dis-
tributed according to a model density q(U 0). The invert-
ible function is constructed specifically to allow e�cient
evaluation of the Jacobian factor for any given sample,
so that the associated normalized probability density,

q(U 0) = q(f(U)) = r(U)

����det
@f(U)

@U

����
�1

, (1)

is returned with each sample drawn. This feature enables
training the flow model, i.e. optimizing the function f , by
minimizing the distance between the model probability
density q(U 0) and the desired density p(U 0) using a cho-
sen metric. Any deviation from the true distribution due
to an imperfect model can be corrected by a number of
techniques; in this work, we apply Metropolis indepen-
dence sampling [25].1

A powerful approach to defining a flexible invertible
function f is through composition of several coupling
layers, f := gm � · · · � g1. Coupling layers act on sam-
ples U by applying an analytically invertible transfor-
mation (such as a scaling) to a subset of the compo-
nents UA :=

�
U i : i 2 A

 
, where the superscript i in-

dexes components of the multi-dimensional sample U and
the set A indicates the components that are transformed.
The remaining (unmodified) components UB , defined by
UB = U \ UA, are given as input to a feed-forward neu-
ral network that parameterizes the transformation. This
variable splitting guarantees invertibility despite the use
of non-invertible feed-forward networks.

Gauge-invariant flows.— Lattice gauge theories can be
defined in terms of one gauge variable Uµ(x) per nearest-
neighbor link (x, x + µ̂) of the lattice. Samples thus live
in the compact manifold GNdV , where G is the mani-
fold of the gauge group, Nd is the spacetime dimension,
and V is the lattice volume. The physical distribution
p(U) is exactly invariant under a discrete translational
symmetry group with V elements and a continuous V -
dimensional gauge symmetry group, meaning that the
density associated with any transformed field configura-
tion eU is identical to that of the untransformed config-
uration, p(eU) = p(U). Under a gauge transformation,
links Uµ(x) are transformed by a group-valued field ⌦(x)

1 Reweighted observables can also be used [52, 53]. This is ef-
ficient when measurements of the action are more costly than
measurements of observables.

as

Uµ(x) ! eUµ(x) = ⌦(x)Uµ(x)⌦†(x + µ̂). (2)

In the flow-based approach, symmetries correspond to
flat directions of the probability density that must be
reproduced by the model. Exactly encoding symme-
tries in machine learning models can improve training
and model quality compared with learning the symme-
tries over the course of training [24, 27, 54–58]. The
incorporation of translational symmetries into models is
possible using convolutional architectures, as studied for
example in Ref. [54]. To address gauge symmetry, one
could attempt to use a gauge-fixing procedure to select
a single configuration from each gauge-equivalent class,
leaving only physical degrees of freedom; however, the
only known gauge fixing procedures that preserve trans-
lational invariance are based on implicit di↵erential equa-
tion constraints [59], which do not have a straightforward
implementation in flows. Here, we instead introduce a
method to preserve exact gauge invariance in flow-based
models.

When a flow-based model is defined in terms of cou-
pling layers, its output distribution will be invariant un-
der a symmetry group if two conditions are met:

1. The prior distribution is symmetric.

2. Each coupling layer is equivariant under the sym-
metry, i.e. all transformations commute through
application of the coupling layer [54, 56, 60–62].

Choosing a prior distribution that is symmetric is typ-
ically straightforward, for example a uniform distribu-
tion with respect to the Haar measure over gauge links is
both translationally and gauge invariant. Using gauge-
equivariant coupling layers with such a prior distribution
then defines a gauge-invariant flow-based model.
Gauge-equivariant coupling layers.— We construct an

explicitly gauge-equivariant and invertible coupling layer
g : GNdV

! GNdV by splitting the input variables
into subsets UA and UB . In terms of these sub-
sets, we define the action of the coupling layer to be
g(UA, UB) = (U 0A, UB), where link U i

2 UA is mapped
to

U 0i = h(U iSi
|Ii)Si†, (3)

in which h : G ! G is an invertible kernel which is explic-
itly parameterized by a set of gauge-invariant quantities
Ii constructed from the elements of UB . Here, Si is a
product of links such that U iSi forms a loop that starts
and ends at a common point x, and therefore transforms
under the gauge symmetry to ⌦(x) U i⌦†(x + µ̂) ⌦(x +
µ̂)Si⌦†(x) = ⌦(x) U iSi ⌦†(x). With this definition, the
coupling layer is gauge equivariant if the kernel satisfies

h(XWX†) = X h(W ) X†, 8X, W 2 G, (4)

Loop that starts 
and ends at same 

point

Generative flow architecture that is gauge-equivariant
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FIG. 2. An example of a variable splitting based on a tiled
4 ⇥ 1 pattern with an actively updated link U i ⌘ Uµ(x) and
1 ⇥ 1 loop U iSi ⌘ Pµ⌫(x) located at x, a passively updated
1⇥ 1 loop at ex = x� ⌫̂, and two frozen traced 1⇥ 1 loops at
x+ ⌫̂ and x+ 2⌫̂ included in the set Ii.

which implies that U 0i
! eU 0i transforms according to

Eq. (2),

eU 0i = h
�
⌦(x) U iSi ⌦†(x)|Ii

�
⌦(x)Si†⌦†(x + µ̂)

= ⌦(x)U 0i⌦†(x + µ̂).
(5)

To ensure invertibility, the product of links Si must not
contain any links in UA.

For an Abelian group, the transformation property
in Eq. (4) is trivially satisfied by any kernel. In
the U(1) gauge theory considered below, we there-
fore define the kernel using invertible flows parame-
terized by neural networks. For non-Abelian theo-
ries, it has been shown that it is possible to con-
struct invertible functions on spheres [63] and surjec-
tive functions on general Lie groups [64]. If these ap-
proaches can be generalized to produce invertible func-
tions with convergent power expansions, they will sat-
isfy the necessary kernel transformation property, since
h(XWX†) =

P
n ↵n(XWX†)n = X h(W ) X†.

An example of a variable splitting suitable for both
Abelian and non-Abelian gauge theories is given by the
pattern depicted in Fig. 2. In this example, the set of
updated links UA consists of vertical links spaced by 4
sites, and the products U iSi are 1 ⇥ 1 loops adjacent to
each U i. This is su�ciently sparse such that every Si

is independent of all updated links in UA, and a non-
trivial set of invariants Ii (e.g. all traced 1⇥ 1 loops that
are not adjacent to updated links) can be constructed
to parametrize the transformation. Composing coupling
layers using rotations and o↵sets of the pattern allows all
links to be updated.2

2 For example, composing 8 such layers is su�cient to update all
links in 2D.

Using gauge-equivariant coupling layers constructed in
terms of kernels generalizes the “trivializing map” pro-
posed in Ref. [65]. There, repeatedly applying a spe-
cific kernel based on gradients of the action theoretically
trivializes a gauge theory, i.e. maps the Euclidean time
distribution to a uniform one. The family of gauge equiv-
ariant flows defined here includes the trivializing map in
the limit of a large number of coupling layers and arbi-
trarily expressive kernel, indicating that in this limiting
case exact sampling as described in Ref. [65] is possible.
However, the approach presented here allows for more
general and inexpensive parametrizations of h. These
can be optimized to produce flows that similarly trivial-
ize the theory, and which may have a lower cost of evalu-
ation than implementations of the analytical trivializing
map [66].
Application to U(1) gauge theory.— Gauge theory with

a U(1) gauge group defined in two spacetime dimensions
is the quenched limit of 1 + 1D electrodynamics, i.e. the
Schwinger model [67]. The full Schwinger model repro-
duces many features of quantum chromodynamics (con-
finement, an axial anomaly, topology, and chiral symme-
try breaking) while being analytically tractable. Even in
the quenched limit, the well-defined gauge field topology
results in severe critical slowing down of MCMC meth-
ods for sampling lattice discretizations of the model as
the coupling is taken to criticality. We consider the lat-
tice discretization given by the Wilson gauge action [68],

S(U) := ��
X

x

Re P (x), (6)

where P (x) is the plaquette at x defined in terms of link
variables Uµ(x) 2 U(1),

P (x) := U0(x)U1(x + 0̂)U†

0 (x + 1̂)U†

1 (x), (7)

and x = (x0, x1) runs over coordinates in an L⇥L square
lattice with periodic boundary conditions. Physical infor-
mation may be extracted from the model by considering
expectation values of observables O under the Euclidean
time path integral,

hOi :=
1

Z

Z
DU O(U)e�S(U), (8)

where
R

DU denotes integration over the product of
Haar measures for each link, and Z =

R
DU e�S(U). In

this study, three key observables were considered:

1. Expectation values of powers of plaquettes.

2. Expectation values of ` ⇥ ` Wilson loops W`⇥` =Q
x2`⇥` P (x).

3. Topological susceptibility �Q = hQ2/V i, where
topological charge Q := 1

2⇡

P
x arg (P (x)) is de-

fined in terms of plaquette phase in the principal
interval, arg (P (x)) 2 [�⇡, ⇡].
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FIG. 2. An example of a variable splitting based on a tiled
4 ⇥ 1 pattern with an actively updated link U i ⌘ Uµ(x) and
1 ⇥ 1 loop U iSi ⌘ Pµ⌫(x) located at x, a passively updated
1⇥ 1 loop at ex = x� ⌫̂, and two frozen traced 1⇥ 1 loops at
x+ ⌫̂ and x+ 2⌫̂ included in the set Ii.

which implies that U 0i
! eU 0i transforms according to

Eq. (2),

eU 0i = h
�
⌦(x) U iSi ⌦†(x)|Ii

�
⌦(x)Si†⌦†(x + µ̂)

= ⌦(x)U 0i⌦†(x + µ̂).
(5)

To ensure invertibility, the product of links Si must not
contain any links in UA.

For an Abelian group, the transformation property
in Eq. (4) is trivially satisfied by any kernel. In
the U(1) gauge theory considered below, we there-
fore define the kernel using invertible flows parame-
terized by neural networks. For non-Abelian theo-
ries, it has been shown that it is possible to con-
struct invertible functions on spheres [63] and surjec-
tive functions on general Lie groups [64]. If these ap-
proaches can be generalized to produce invertible func-
tions with convergent power expansions, they will sat-
isfy the necessary kernel transformation property, since
h(XWX†) =

P
n ↵n(XWX†)n = X h(W ) X†.

An example of a variable splitting suitable for both
Abelian and non-Abelian gauge theories is given by the
pattern depicted in Fig. 2. In this example, the set of
updated links UA consists of vertical links spaced by 4
sites, and the products U iSi are 1 ⇥ 1 loops adjacent to
each U i. This is su�ciently sparse such that every Si

is independent of all updated links in UA, and a non-
trivial set of invariants Ii (e.g. all traced 1⇥ 1 loops that
are not adjacent to updated links) can be constructed
to parametrize the transformation. Composing coupling
layers using rotations and o↵sets of the pattern allows all
links to be updated.2

2 For example, composing 8 such layers is su�cient to update all
links in 2D.

Using gauge-equivariant coupling layers constructed in
terms of kernels generalizes the “trivializing map” pro-
posed in Ref. [65]. There, repeatedly applying a spe-
cific kernel based on gradients of the action theoretically
trivializes a gauge theory, i.e. maps the Euclidean time
distribution to a uniform one. The family of gauge equiv-
ariant flows defined here includes the trivializing map in
the limit of a large number of coupling layers and arbi-
trarily expressive kernel, indicating that in this limiting
case exact sampling as described in Ref. [65] is possible.
However, the approach presented here allows for more
general and inexpensive parametrizations of h. These
can be optimized to produce flows that similarly trivial-
ize the theory, and which may have a lower cost of evalu-
ation than implementations of the analytical trivializing
map [66].
Application to U(1) gauge theory.— Gauge theory with

a U(1) gauge group defined in two spacetime dimensions
is the quenched limit of 1 + 1D electrodynamics, i.e. the
Schwinger model [67]. The full Schwinger model repro-
duces many features of quantum chromodynamics (con-
finement, an axial anomaly, topology, and chiral symme-
try breaking) while being analytically tractable. Even in
the quenched limit, the well-defined gauge field topology
results in severe critical slowing down of MCMC meth-
ods for sampling lattice discretizations of the model as
the coupling is taken to criticality. We consider the lat-
tice discretization given by the Wilson gauge action [68],

S(U) := ��
X

x

Re P (x), (6)

where P (x) is the plaquette at x defined in terms of link
variables Uµ(x) 2 U(1),

P (x) := U0(x)U1(x + 0̂)U†

0 (x + 1̂)U†

1 (x), (7)

and x = (x0, x1) runs over coordinates in an L⇥L square
lattice with periodic boundary conditions. Physical infor-
mation may be extracted from the model by considering
expectation values of observables O under the Euclidean
time path integral,

hOi :=
1

Z

Z
DU O(U)e�S(U), (8)

where
R

DU denotes integration over the product of
Haar measures for each link, and Z =

R
DU e�S(U). In

this study, three key observables were considered:

1. Expectation values of powers of plaquettes.

2. Expectation values of ` ⇥ ` Wilson loops W`⇥` =Q
x2`⇥` P (x).

3. Topological susceptibility �Q = hQ2/V i, where
topological charge Q := 1

2⇡

P
x arg (P (x)) is de-

fined in terms of plaquette phase in the principal
interval, arg (P (x)) 2 [�⇡, ⇡].

2

flow-based models at a range of parameters approaching
criticality, while without it, models of similar scale fail
to learn the distributions under the same training proce-
dure.

Flow-based sampling.— Flow-based generative models
allow sampling from an expressive family of distributions
by applying an invertible function f to samples U from
a fixed, simple prior distribution defined by a density
r(U) [51]. The resulting samples U 0 = f(U) are dis-
tributed according to a model density q(U 0). The invert-
ible function is constructed specifically to allow e�cient
evaluation of the Jacobian factor for any given sample,
so that the associated normalized probability density,

q(U 0) = q(f(U)) = r(U)

����det
@f(U)

@U

����
�1

, (1)

is returned with each sample drawn. This feature enables
training the flow model, i.e. optimizing the function f , by
minimizing the distance between the model probability
density q(U 0) and the desired density p(U 0) using a cho-
sen metric. Any deviation from the true distribution due
to an imperfect model can be corrected by a number of
techniques; in this work, we apply Metropolis indepen-
dence sampling [25].1

A powerful approach to defining a flexible invertible
function f is through composition of several coupling
layers, f := gm � · · · � g1. Coupling layers act on sam-
ples U by applying an analytically invertible transfor-
mation (such as a scaling) to a subset of the compo-
nents UA :=

�
U i : i 2 A

 
, where the superscript i in-

dexes components of the multi-dimensional sample U and
the set A indicates the components that are transformed.
The remaining (unmodified) components UB , defined by
UB = U \ UA, are given as input to a feed-forward neu-
ral network that parameterizes the transformation. This
variable splitting guarantees invertibility despite the use
of non-invertible feed-forward networks.

Gauge-invariant flows.— Lattice gauge theories can be
defined in terms of one gauge variable Uµ(x) per nearest-
neighbor link (x, x + µ̂) of the lattice. Samples thus live
in the compact manifold GNdV , where G is the mani-
fold of the gauge group, Nd is the spacetime dimension,
and V is the lattice volume. The physical distribution
p(U) is exactly invariant under a discrete translational
symmetry group with V elements and a continuous V -
dimensional gauge symmetry group, meaning that the
density associated with any transformed field configura-
tion eU is identical to that of the untransformed config-
uration, p(eU) = p(U). Under a gauge transformation,
links Uµ(x) are transformed by a group-valued field ⌦(x)

1 Reweighted observables can also be used [52, 53]. This is ef-
ficient when measurements of the action are more costly than
measurements of observables.

as

Uµ(x) ! eUµ(x) = ⌦(x)Uµ(x)⌦†(x + µ̂). (2)

In the flow-based approach, symmetries correspond to
flat directions of the probability density that must be
reproduced by the model. Exactly encoding symme-
tries in machine learning models can improve training
and model quality compared with learning the symme-
tries over the course of training [24, 27, 54–58]. The
incorporation of translational symmetries into models is
possible using convolutional architectures, as studied for
example in Ref. [54]. To address gauge symmetry, one
could attempt to use a gauge-fixing procedure to select
a single configuration from each gauge-equivalent class,
leaving only physical degrees of freedom; however, the
only known gauge fixing procedures that preserve trans-
lational invariance are based on implicit di↵erential equa-
tion constraints [59], which do not have a straightforward
implementation in flows. Here, we instead introduce a
method to preserve exact gauge invariance in flow-based
models.

When a flow-based model is defined in terms of cou-
pling layers, its output distribution will be invariant un-
der a symmetry group if two conditions are met:

1. The prior distribution is symmetric.

2. Each coupling layer is equivariant under the sym-
metry, i.e. all transformations commute through
application of the coupling layer [54, 56, 60–62].

Choosing a prior distribution that is symmetric is typ-
ically straightforward, for example a uniform distribu-
tion with respect to the Haar measure over gauge links is
both translationally and gauge invariant. Using gauge-
equivariant coupling layers with such a prior distribution
then defines a gauge-invariant flow-based model.
Gauge-equivariant coupling layers.— We construct an

explicitly gauge-equivariant and invertible coupling layer
g : GNdV

! GNdV by splitting the input variables
into subsets UA and UB . In terms of these sub-
sets, we define the action of the coupling layer to be
g(UA, UB) = (U 0A, UB), where link U i

2 UA is mapped
to

U 0i = h(U iSi
|Ii)Si†, (3)

in which h : G ! G is an invertible kernel which is explic-
itly parameterized by a set of gauge-invariant quantities
Ii constructed from the elements of UB . Here, Si is a
product of links such that U iSi forms a loop that starts
and ends at a common point x, and therefore transforms
under the gauge symmetry to ⌦(x) U i⌦†(x + µ̂) ⌦(x +
µ̂)Si⌦†(x) = ⌦(x) U iSi ⌦†(x). With this definition, the
coupling layer is gauge equivariant if the kernel satisfies

h(XWX†) = X h(W ) X†, 8X, W 2 G, (4)

Loop that starts 
and ends at same 

point

Generative flow architecture that is gauge-equivariant
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FIG. 2. An example of a variable splitting based on a tiled
4 ⇥ 1 pattern with an actively updated link U i ⌘ Uµ(x) and
1 ⇥ 1 loop U iSi ⌘ Pµ⌫(x) located at x, a passively updated
1⇥ 1 loop at ex = x� ⌫̂, and two frozen traced 1⇥ 1 loops at
x+ ⌫̂ and x+ 2⌫̂ included in the set Ii.

which implies that U 0i
! eU 0i transforms according to

Eq. (2),

eU 0i = h
�
⌦(x) U iSi ⌦†(x)|Ii

�
⌦(x)Si†⌦†(x + µ̂)

= ⌦(x)U 0i⌦†(x + µ̂).
(5)

To ensure invertibility, the product of links Si must not
contain any links in UA.

For an Abelian group, the transformation property
in Eq. (4) is trivially satisfied by any kernel. In
the U(1) gauge theory considered below, we there-
fore define the kernel using invertible flows parame-
terized by neural networks. For non-Abelian theo-
ries, it has been shown that it is possible to con-
struct invertible functions on spheres [63] and surjec-
tive functions on general Lie groups [64]. If these ap-
proaches can be generalized to produce invertible func-
tions with convergent power expansions, they will sat-
isfy the necessary kernel transformation property, since
h(XWX†) =

P
n ↵n(XWX†)n = X h(W ) X†.

An example of a variable splitting suitable for both
Abelian and non-Abelian gauge theories is given by the
pattern depicted in Fig. 2. In this example, the set of
updated links UA consists of vertical links spaced by 4
sites, and the products U iSi are 1 ⇥ 1 loops adjacent to
each U i. This is su�ciently sparse such that every Si

is independent of all updated links in UA, and a non-
trivial set of invariants Ii (e.g. all traced 1⇥ 1 loops that
are not adjacent to updated links) can be constructed
to parametrize the transformation. Composing coupling
layers using rotations and o↵sets of the pattern allows all
links to be updated.2

2 For example, composing 8 such layers is su�cient to update all
links in 2D.

Using gauge-equivariant coupling layers constructed in
terms of kernels generalizes the “trivializing map” pro-
posed in Ref. [65]. There, repeatedly applying a spe-
cific kernel based on gradients of the action theoretically
trivializes a gauge theory, i.e. maps the Euclidean time
distribution to a uniform one. The family of gauge equiv-
ariant flows defined here includes the trivializing map in
the limit of a large number of coupling layers and arbi-
trarily expressive kernel, indicating that in this limiting
case exact sampling as described in Ref. [65] is possible.
However, the approach presented here allows for more
general and inexpensive parametrizations of h. These
can be optimized to produce flows that similarly trivial-
ize the theory, and which may have a lower cost of evalu-
ation than implementations of the analytical trivializing
map [66].
Application to U(1) gauge theory.— Gauge theory with

a U(1) gauge group defined in two spacetime dimensions
is the quenched limit of 1 + 1D electrodynamics, i.e. the
Schwinger model [67]. The full Schwinger model repro-
duces many features of quantum chromodynamics (con-
finement, an axial anomaly, topology, and chiral symme-
try breaking) while being analytically tractable. Even in
the quenched limit, the well-defined gauge field topology
results in severe critical slowing down of MCMC meth-
ods for sampling lattice discretizations of the model as
the coupling is taken to criticality. We consider the lat-
tice discretization given by the Wilson gauge action [68],

S(U) := ��
X

x

Re P (x), (6)

where P (x) is the plaquette at x defined in terms of link
variables Uµ(x) 2 U(1),

P (x) := U0(x)U1(x + 0̂)U†

0 (x + 1̂)U†

1 (x), (7)

and x = (x0, x1) runs over coordinates in an L⇥L square
lattice with periodic boundary conditions. Physical infor-
mation may be extracted from the model by considering
expectation values of observables O under the Euclidean
time path integral,

hOi :=
1

Z

Z
DU O(U)e�S(U), (8)

where
R

DU denotes integration over the product of
Haar measures for each link, and Z =

R
DU e�S(U). In

this study, three key observables were considered:

1. Expectation values of powers of plaquettes.

2. Expectation values of ` ⇥ ` Wilson loops W`⇥` =Q
x2`⇥` P (x).

3. Topological susceptibility �Q = hQ2/V i, where
topological charge Q := 1

2⇡

P
x arg (P (x)) is de-

fined in terms of plaquette phase in the principal
interval, arg (P (x)) 2 [�⇡, ⇡].
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FIG. 2. An example of a variable splitting based on a tiled
4 ⇥ 1 pattern with an actively updated link U i ⌘ Uµ(x) and
1 ⇥ 1 loop U iSi ⌘ Pµ⌫(x) located at x, a passively updated
1⇥ 1 loop at ex = x� ⌫̂, and two frozen traced 1⇥ 1 loops at
x+ ⌫̂ and x+ 2⌫̂ included in the set Ii.

which implies that U 0i
! eU 0i transforms according to

Eq. (2),

eU 0i = h
�
⌦(x) U iSi ⌦†(x)|Ii

�
⌦(x)Si†⌦†(x + µ̂)

= ⌦(x)U 0i⌦†(x + µ̂).
(5)

To ensure invertibility, the product of links Si must not
contain any links in UA.

For an Abelian group, the transformation property
in Eq. (4) is trivially satisfied by any kernel. In
the U(1) gauge theory considered below, we there-
fore define the kernel using invertible flows parame-
terized by neural networks. For non-Abelian theo-
ries, it has been shown that it is possible to con-
struct invertible functions on spheres [63] and surjec-
tive functions on general Lie groups [64]. If these ap-
proaches can be generalized to produce invertible func-
tions with convergent power expansions, they will sat-
isfy the necessary kernel transformation property, since
h(XWX†) =

P
n ↵n(XWX†)n = X h(W ) X†.

An example of a variable splitting suitable for both
Abelian and non-Abelian gauge theories is given by the
pattern depicted in Fig. 2. In this example, the set of
updated links UA consists of vertical links spaced by 4
sites, and the products U iSi are 1 ⇥ 1 loops adjacent to
each U i. This is su�ciently sparse such that every Si

is independent of all updated links in UA, and a non-
trivial set of invariants Ii (e.g. all traced 1⇥ 1 loops that
are not adjacent to updated links) can be constructed
to parametrize the transformation. Composing coupling
layers using rotations and o↵sets of the pattern allows all
links to be updated.2

2 For example, composing 8 such layers is su�cient to update all
links in 2D.

Using gauge-equivariant coupling layers constructed in
terms of kernels generalizes the “trivializing map” pro-
posed in Ref. [65]. There, repeatedly applying a spe-
cific kernel based on gradients of the action theoretically
trivializes a gauge theory, i.e. maps the Euclidean time
distribution to a uniform one. The family of gauge equiv-
ariant flows defined here includes the trivializing map in
the limit of a large number of coupling layers and arbi-
trarily expressive kernel, indicating that in this limiting
case exact sampling as described in Ref. [65] is possible.
However, the approach presented here allows for more
general and inexpensive parametrizations of h. These
can be optimized to produce flows that similarly trivial-
ize the theory, and which may have a lower cost of evalu-
ation than implementations of the analytical trivializing
map [66].
Application to U(1) gauge theory.— Gauge theory with

a U(1) gauge group defined in two spacetime dimensions
is the quenched limit of 1 + 1D electrodynamics, i.e. the
Schwinger model [67]. The full Schwinger model repro-
duces many features of quantum chromodynamics (con-
finement, an axial anomaly, topology, and chiral symme-
try breaking) while being analytically tractable. Even in
the quenched limit, the well-defined gauge field topology
results in severe critical slowing down of MCMC meth-
ods for sampling lattice discretizations of the model as
the coupling is taken to criticality. We consider the lat-
tice discretization given by the Wilson gauge action [68],

S(U) := ��
X

x

Re P (x), (6)

where P (x) is the plaquette at x defined in terms of link
variables Uµ(x) 2 U(1),

P (x) := U0(x)U1(x + 0̂)U†

0 (x + 1̂)U†

1 (x), (7)

and x = (x0, x1) runs over coordinates in an L⇥L square
lattice with periodic boundary conditions. Physical infor-
mation may be extracted from the model by considering
expectation values of observables O under the Euclidean
time path integral,

hOi :=
1

Z

Z
DU O(U)e�S(U), (8)

where
R

DU denotes integration over the product of
Haar measures for each link, and Z =

R
DU e�S(U). In

this study, three key observables were considered:

1. Expectation values of powers of plaquettes.

2. Expectation values of ` ⇥ ` Wilson loops W`⇥` =Q
x2`⇥` P (x).

3. Topological susceptibility �Q = hQ2/V i, where
topological charge Q := 1

2⇡

P
x arg (P (x)) is de-

fined in terms of plaquette phase in the principal
interval, arg (P (x)) 2 [�⇡, ⇡].

• Transform subset of links conditioned on the remaining subset 

• Create gauge-equivariant layers by acting via transformations of (untraced) loops
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FIG. 2. Decomposition of a single gauge equivariant coupling
layer. Outer gray sections depict the general formulation of
gauge equivariant flows detailed in Ref. [11]. Inner colored
sections detail the kernel we construct in Sec. III for a single
SU(N) variable.
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<latexit sha1_base64="APyp7iOenZZ25oyZN+BqLZ0hFao=">AAACJ3ichVDLSgMxFE3qq1atrS7dBIvgqswUQZdFNy4r2ge0Q8mkd6ahmcyQZIQy9BPc6jf4Ne5El/6JaTsLawUPBA7nnMu9OX4iuDaO84kLG5tb2zvF3dLe/kH5sFI96ug4VQzaLBax6vlUg+AS2oYbAb1EAY18AV1/cjP3u4+gNI/lg5km4EU0lDzgjBor3YfDxrBSc+rOAmSduDmpoRytYRWXB6OYpRFIwwTVuu86ifEyqgxnAmalQaohoWxCQ+hbKmkE2ssWt87ImVVGJIiVfdKQhfpzIqOR1tPIt8mImrH+7c3FPz1f0QmYle0Zo5KBmP2X66cmuPIyLpPUgGTLI4NUEBOTeWlkxBUwI6aWUKa4/SdhY6ooM7bakm3Q/d3XOuk06q5Td+8uas3rvMsiOkGn6By56BI10S1qoTZiKERP6Bm94Ff8ht/xxzJawPnMMVoB/voGBvGlvA==</latexit><latexit sha1_base64="APyp7iOenZZ25oyZN+BqLZ0hFao=">AAACJ3ichVDLSgMxFE3qq1atrS7dBIvgqswUQZdFNy4r2ge0Q8mkd6ahmcyQZIQy9BPc6jf4Ne5El/6JaTsLawUPBA7nnMu9OX4iuDaO84kLG5tb2zvF3dLe/kH5sFI96ug4VQzaLBax6vlUg+AS2oYbAb1EAY18AV1/cjP3u4+gNI/lg5km4EU0lDzgjBor3YfDxrBSc+rOAmSduDmpoRytYRWXB6OYpRFIwwTVuu86ifEyqgxnAmalQaohoWxCQ+hbKmkE2ssWt87ImVVGJIiVfdKQhfpzIqOR1tPIt8mImrH+7c3FPz1f0QmYle0Zo5KBmP2X66cmuPIyLpPUgGTLI4NUEBOTeWlkxBUwI6aWUKa4/SdhY6ooM7bakm3Q/d3XOuk06q5Td+8uas3rvMsiOkGn6By56BI10S1qoTZiKERP6Bm94Ff8ht/xxzJawPnMMVoB/voGBvGlvA==</latexit><latexit sha1_base64="APyp7iOenZZ25oyZN+BqLZ0hFao=">AAACJ3ichVDLSgMxFE3qq1atrS7dBIvgqswUQZdFNy4r2ge0Q8mkd6ahmcyQZIQy9BPc6jf4Ne5El/6JaTsLawUPBA7nnMu9OX4iuDaO84kLG5tb2zvF3dLe/kH5sFI96ug4VQzaLBax6vlUg+AS2oYbAb1EAY18AV1/cjP3u4+gNI/lg5km4EU0lDzgjBor3YfDxrBSc+rOAmSduDmpoRytYRWXB6OYpRFIwwTVuu86ifEyqgxnAmalQaohoWxCQ+hbKmkE2ssWt87ImVVGJIiVfdKQhfpzIqOR1tPIt8mImrH+7c3FPz1f0QmYle0Zo5KBmP2X66cmuPIyLpPUgGTLI4NUEBOTeWlkxBUwI6aWUKa4/SdhY6ooM7bakm3Q/d3XOuk06q5Td+8uas3rvMsiOkGn6By56BI10S1qoTZiKERP6Bm94Ff8ht/xxzJawPnMMVoB/voGBvGlvA==</latexit><latexit sha1_base64="APyp7iOenZZ25oyZN+BqLZ0hFao=">AAACJ3ichVDLSgMxFE3qq1atrS7dBIvgqswUQZdFNy4r2ge0Q8mkd6ahmcyQZIQy9BPc6jf4Ne5El/6JaTsLawUPBA7nnMu9OX4iuDaO84kLG5tb2zvF3dLe/kH5sFI96ug4VQzaLBax6vlUg+AS2oYbAb1EAY18AV1/cjP3u4+gNI/lg5km4EU0lDzgjBor3YfDxrBSc+rOAmSduDmpoRytYRWXB6OYpRFIwwTVuu86ifEyqgxnAmalQaohoWxCQ+hbKmkE2ssWt87ImVVGJIiVfdKQhfpzIqOR1tPIt8mImrH+7c3FPz1f0QmYle0Zo5KBmP2X66cmuPIyLpPUgGTLI4NUEBOTeWlkxBUwI6aWUKa4/SdhY6ooM7bakm3Q/d3XOuk06q5Td+8uas3rvMsiOkGn6By56BI10S1qoTZiKERP6Bm94Ff8ht/xxzJawPnMMVoB/voGBvGlvA==</latexit>

g3
<latexit sha1_base64="qZaaXUgMKO7ekhVgncJhOuM8+4I=">AAACKHichVDLSsNAFJ2pr1q1trp0EyyCq5KooMuiG5cV7APaUCbTm3boZBJmboQS+gtu9Rv8GnfSrV9i0mZhW8EDA4dzzuXeOV4khUHbntPC1vbO7l5xv3RweFQ+rlRP2iaMNYcWD2Woux4zIIWCFgqU0I00sMCT0PEmD5nfeQFtRKiecRqBG7CREr7gDDNpNLguDSo1u24vYG0SJyc1kqM5qNJyfxjyOACFXDJjeo4doZswjYJLmJX6sYGI8QkbQS+ligVg3GRx7My6SJWh5Yc6fQqthfp7ImGBMdPAS5MBw7FZ9zLxT8/TbAK4sj3hTHGQs/9yvRj9OzcRKooRFF8e6cfSwtDKWrOGQgNHOU0J41qk/7T4mGnGMe02a9BZ72uTtK/qjl13nm5qjfu8yyI5I+fkkjjkljTII2mSFuFkTF7JG3mnH/STftH5Mlqg+cwpWQH9/gFAWqXR</latexit><latexit sha1_base64="qZaaXUgMKO7ekhVgncJhOuM8+4I=">AAACKHichVDLSsNAFJ2pr1q1trp0EyyCq5KooMuiG5cV7APaUCbTm3boZBJmboQS+gtu9Rv8GnfSrV9i0mZhW8EDA4dzzuXeOV4khUHbntPC1vbO7l5xv3RweFQ+rlRP2iaMNYcWD2Woux4zIIWCFgqU0I00sMCT0PEmD5nfeQFtRKiecRqBG7CREr7gDDNpNLguDSo1u24vYG0SJyc1kqM5qNJyfxjyOACFXDJjeo4doZswjYJLmJX6sYGI8QkbQS+ligVg3GRx7My6SJWh5Yc6fQqthfp7ImGBMdPAS5MBw7FZ9zLxT8/TbAK4sj3hTHGQs/9yvRj9OzcRKooRFF8e6cfSwtDKWrOGQgNHOU0J41qk/7T4mGnGMe02a9BZ72uTtK/qjl13nm5qjfu8yyI5I+fkkjjkljTII2mSFuFkTF7JG3mnH/STftH5Mlqg+cwpWQH9/gFAWqXR</latexit><latexit sha1_base64="qZaaXUgMKO7ekhVgncJhOuM8+4I=">AAACKHichVDLSsNAFJ2pr1q1trp0EyyCq5KooMuiG5cV7APaUCbTm3boZBJmboQS+gtu9Rv8GnfSrV9i0mZhW8EDA4dzzuXeOV4khUHbntPC1vbO7l5xv3RweFQ+rlRP2iaMNYcWD2Woux4zIIWCFgqU0I00sMCT0PEmD5nfeQFtRKiecRqBG7CREr7gDDNpNLguDSo1u24vYG0SJyc1kqM5qNJyfxjyOACFXDJjeo4doZswjYJLmJX6sYGI8QkbQS+ligVg3GRx7My6SJWh5Yc6fQqthfp7ImGBMdPAS5MBw7FZ9zLxT8/TbAK4sj3hTHGQs/9yvRj9OzcRKooRFF8e6cfSwtDKWrOGQgNHOU0J41qk/7T4mGnGMe02a9BZ72uTtK/qjl13nm5qjfu8yyI5I+fkkjjkljTII2mSFuFkTF7JG3mnH/STftH5Mlqg+cwpWQH9/gFAWqXR</latexit><latexit sha1_base64="UWLLxPiKWMhGxtZ4WXFidNyb6Ow=">AAACFnichZDNSsNAFIVv6l+NVdu1m2ARXJXEjS4FNy4r2B9oQ7mZ3LRDJ5MwMxFK6Au49Rl8Gnfixrdx+rOwreCBgcM5d5g7X5QLro3vfzuVvf2Dw6PqsXtSc0/Pzuu1rs4KxajDMpGpfoSaBJfUMdwI6ueKMI0E9aLpw6LvvZDSPJPPZpZTmOJY8oQzNDZqj+pNv+Uv5e2aYG2asNao4ZwN44wVKUnDBGo9CPzchCUqw5mguTssNOXIpjimgbUSU9Jhudxz7l3ZJPaSTNkjjbdMf98oMdV6lkZ2MkUz0dvdIvyzixROyWy8XjKUjMT8v7lBYZK7sOQyLwxJtloyKYRnMm8BzIu5ImbEzBpkitt/emyCCpmxWF0LMNjGtWu6N63AbwVPPlThAi7hGgK4hXt4hDZ0gEEMr/DmvDsfzucKdMVZE2/AhpyvH8ZHoic=</latexit><latexit sha1_base64="IAVOls6bMcvyFoFxXqrfGStxJHk=">AAACHXichZDNSsNAFIVv6l+ttbZu3QwWwVVJdKFLwY3LCvYH2lBuprft0MkkzEyEEvoKbvUZfBp30rcxabuwreCBgcM5d5g7XxBLYazrLpzC3v7B4VHxuHRSPq2cVWvltokSzanFIxnpboCGpFDUssJK6saaMAwkdYLpY953XkkbEakXO4vJD3GsxEhwtHk0HtyWBtW623CXYrvGW5s6rNUc1JxKfxjxJCRluURjep4bWz9FbQWXNC/1E0Mx8imOqZdZhSEZP10uO2dXWTJko0hnR1m2TH/fSDE0ZhYG2WSIdmK2uzz8sws0TsluvJ5yVJzk/L+5XmJH934qVJxYUny15CiRzEYsp8aGQhO3cpYZ5Fpk/2R8ghq5zdjmBL1tXrumfdPw3Ib37EIRLuASrsGDO3iAJ2hCCzhM4A3e4cP5dL6c7xXrgrOGfg4bchY/HWqkPg==</latexit><latexit sha1_base64="IAVOls6bMcvyFoFxXqrfGStxJHk=">AAACHXichZDNSsNAFIVv6l+ttbZu3QwWwVVJdKFLwY3LCvYH2lBuprft0MkkzEyEEvoKbvUZfBp30rcxabuwreCBgcM5d5g7XxBLYazrLpzC3v7B4VHxuHRSPq2cVWvltokSzanFIxnpboCGpFDUssJK6saaMAwkdYLpY953XkkbEakXO4vJD3GsxEhwtHk0HtyWBtW623CXYrvGW5s6rNUc1JxKfxjxJCRluURjep4bWz9FbQWXNC/1E0Mx8imOqZdZhSEZP10uO2dXWTJko0hnR1m2TH/fSDE0ZhYG2WSIdmK2uzz8sws0TsluvJ5yVJzk/L+5XmJH934qVJxYUny15CiRzEYsp8aGQhO3cpYZ5Fpk/2R8ghq5zdjmBL1tXrumfdPw3Ib37EIRLuASrsGDO3iAJ2hCCzhM4A3e4cP5dL6c7xXrgrOGfg4bchY/HWqkPg==</latexit><latexit sha1_base64="/baqA/b8uPYTSDSquGfm946SQYE=">AAACKHichVDLSgMxFE3qq9ZXq0s3wSK4KjO60GXRjcsK9gHtUO6kt21oJjMkGaEM/QW3+g1+jTvp1i9xpp2FbQUPBA7nnMu9OX4khbGOM6eFre2d3b3ifung8Oj4pFw5bZkw1hybPJSh7vhgUAqFTSusxE6kEQJfYtufPGR++wW1EaF6ttMIvQBGSgwFB5tJo/5NqV+uOjVnAbZJ3JxUSY5Gv0KPe4OQxwEqyyUY03WdyHoJaCu4xFmpFxuMgE9ghN2UKgjQeMni2Bm7TJUBG4Y6fcqyhfp7IoHAmGngp8kA7Nise5n4p+drmKBd2Z5wUBzl7L9cN7bDOy8RKootKr48chhLZkOWtcYGQiO3cpoS4Fqk/2R8DBq4TbvNGnTX+9okreua69TcJ6dav8+7LJJzckGuiEtuSZ08kgZpEk7G5JW8kXf6QT/pF50vowWaz5yRFdDvHz8apc0=</latexit><latexit sha1_base64="qZaaXUgMKO7ekhVgncJhOuM8+4I=">AAACKHichVDLSsNAFJ2pr1q1trp0EyyCq5KooMuiG5cV7APaUCbTm3boZBJmboQS+gtu9Rv8GnfSrV9i0mZhW8EDA4dzzuXeOV4khUHbntPC1vbO7l5xv3RweFQ+rlRP2iaMNYcWD2Woux4zIIWCFgqU0I00sMCT0PEmD5nfeQFtRKiecRqBG7CREr7gDDNpNLguDSo1u24vYG0SJyc1kqM5qNJyfxjyOACFXDJjeo4doZswjYJLmJX6sYGI8QkbQS+ligVg3GRx7My6SJWh5Yc6fQqthfp7ImGBMdPAS5MBw7FZ9zLxT8/TbAK4sj3hTHGQs/9yvRj9OzcRKooRFF8e6cfSwtDKWrOGQgNHOU0J41qk/7T4mGnGMe02a9BZ72uTtK/qjl13nm5qjfu8yyI5I+fkkjjkljTII2mSFuFkTF7JG3mnH/STftH5Mlqg+cwpWQH9/gFAWqXR</latexit><latexit sha1_base64="qZaaXUgMKO7ekhVgncJhOuM8+4I=">AAACKHichVDLSsNAFJ2pr1q1trp0EyyCq5KooMuiG5cV7APaUCbTm3boZBJmboQS+gtu9Rv8GnfSrV9i0mZhW8EDA4dzzuXeOV4khUHbntPC1vbO7l5xv3RweFQ+rlRP2iaMNYcWD2Woux4zIIWCFgqU0I00sMCT0PEmD5nfeQFtRKiecRqBG7CREr7gDDNpNLguDSo1u24vYG0SJyc1kqM5qNJyfxjyOACFXDJjeo4doZswjYJLmJX6sYGI8QkbQS+ligVg3GRx7My6SJWh5Yc6fQqthfp7ImGBMdPAS5MBw7FZ9zLxT8/TbAK4sj3hTHGQs/9yvRj9OzcRKooRFF8e6cfSwtDKWrOGQgNHOU0J41qk/7T4mGnGMe02a9BZ72uTtK/qjl13nm5qjfu8yyI5I+fkkjjkljTII2mSFuFkTF7JG3mnH/STftH5Mlqg+cwpWQH9/gFAWqXR</latexit><latexit sha1_base64="qZaaXUgMKO7ekhVgncJhOuM8+4I=">AAACKHichVDLSsNAFJ2pr1q1trp0EyyCq5KooMuiG5cV7APaUCbTm3boZBJmboQS+gtu9Rv8GnfSrV9i0mZhW8EDA4dzzuXeOV4khUHbntPC1vbO7l5xv3RweFQ+rlRP2iaMNYcWD2Woux4zIIWCFgqU0I00sMCT0PEmD5nfeQFtRKiecRqBG7CREr7gDDNpNLguDSo1u24vYG0SJyc1kqM5qNJyfxjyOACFXDJjeo4doZswjYJLmJX6sYGI8QkbQS+ligVg3GRx7My6SJWh5Yc6fQqthfp7ImGBMdPAS5MBw7FZ9zLxT8/TbAK4sj3hTHGQs/9yvRj9OzcRKooRFF8e6cfSwtDKWrOGQgNHOU0J41qk/7T4mGnGMe02a9BZ72uTtK/qjl13nm5qjfu8yyI5I+fkkjjkljTII2mSFuFkTF7JG3mnH/STftH5Mlqg+cwpWQH9/gFAWqXR</latexit><latexit sha1_base64="qZaaXUgMKO7ekhVgncJhOuM8+4I=">AAACKHichVDLSsNAFJ2pr1q1trp0EyyCq5KooMuiG5cV7APaUCbTm3boZBJmboQS+gtu9Rv8GnfSrV9i0mZhW8EDA4dzzuXeOV4khUHbntPC1vbO7l5xv3RweFQ+rlRP2iaMNYcWD2Woux4zIIWCFgqU0I00sMCT0PEmD5nfeQFtRKiecRqBG7CREr7gDDNpNLguDSo1u24vYG0SJyc1kqM5qNJyfxjyOACFXDJjeo4doZswjYJLmJX6sYGI8QkbQS+ligVg3GRx7My6SJWh5Yc6fQqthfp7ImGBMdPAS5MBw7FZ9zLxT8/TbAK4sj3hTHGQs/9yvRj9OzcRKooRFF8e6cfSwtDKWrOGQgNHOU0J41qk/7T4mGnGMe02a9BZ72uTtK/qjl13nm5qjfu8yyI5I+fkkjjkljTII2mSFuFkTF7JG3mnH/STftH5Mlqg+cwpWQH9/gFAWqXR</latexit><latexit sha1_base64="qZaaXUgMKO7ekhVgncJhOuM8+4I=">AAACKHichVDLSsNAFJ2pr1q1trp0EyyCq5KooMuiG5cV7APaUCbTm3boZBJmboQS+gtu9Rv8GnfSrV9i0mZhW8EDA4dzzuXeOV4khUHbntPC1vbO7l5xv3RweFQ+rlRP2iaMNYcWD2Woux4zIIWCFgqU0I00sMCT0PEmD5nfeQFtRKiecRqBG7CREr7gDDNpNLguDSo1u24vYG0SJyc1kqM5qNJyfxjyOACFXDJjeo4doZswjYJLmJX6sYGI8QkbQS+ligVg3GRx7My6SJWh5Yc6fQqthfp7ImGBMdPAS5MBw7FZ9zLxT8/TbAK4sj3hTHGQs/9yvRj9OzcRKooRFF8e6cfSwtDKWrOGQgNHOU0J41qk/7T4mGnGMe02a9BZ72uTtK/qjl13nm5qjfu8yyI5I+fkkjjkljTII2mSFuFkTF7JG3mnH/STftH5Mlqg+cwpWQH9/gFAWqXR</latexit><latexit sha1_base64="qZaaXUgMKO7ekhVgncJhOuM8+4I=">AAACKHichVDLSsNAFJ2pr1q1trp0EyyCq5KooMuiG5cV7APaUCbTm3boZBJmboQS+gtu9Rv8GnfSrV9i0mZhW8EDA4dzzuXeOV4khUHbntPC1vbO7l5xv3RweFQ+rlRP2iaMNYcWD2Woux4zIIWCFgqU0I00sMCT0PEmD5nfeQFtRKiecRqBG7CREr7gDDNpNLguDSo1u24vYG0SJyc1kqM5qNJyfxjyOACFXDJjeo4doZswjYJLmJX6sYGI8QkbQS+ligVg3GRx7My6SJWh5Yc6fQqthfp7ImGBMdPAS5MBw7FZ9zLxT8/TbAK4sj3hTHGQs/9yvRj9OzcRKooRFF8e6cfSwtDKWrOGQgNHOU0J41qk/7T4mGnGMe02a9BZ72uTtK/qjl13nm5qjfu8yyI5I+fkkjjkljTII2mSFuFkTF7JG3mnH/STftH5Mlqg+cwpWQH9/gFAWqXR</latexit>

g4
<latexit sha1_base64="4wxtPWNDnmCH0dgSYyQ3K0rC1ac=">AAACJ3ichVDLSgMxFE3qq1atrS7dBIvgqsxIQZdFNy4r2ge0Q8mkd6ahmcyQZIQy9BPc6jf4Ne5El/6JaTsLawUPBA7nnMu9OX4iuDaO84kLG5tb2zvF3dLe/kH5sFI96ug4VQzaLBax6vlUg+AS2oYbAb1EAY18AV1/cjP3u4+gNI/lg5km4EU0lDzgjBor3YfDxrBSc+rOAmSduDmpoRytYRWXB6OYpRFIwwTVuu86ifEyqgxnAmalQaohoWxCQ+hbKmkE2ssWt87ImVVGJIiVfdKQhfpzIqOR1tPIt8mImrH+7c3FPz1f0QmYle0Zo5KBmP2X66cmuPIyLpPUgGTLI4NUEBOTeWlkxBUwI6aWUKa4/SdhY6ooM7bakm3Q/d3XOulc1F2n7t41as3rvMsiOkGn6By56BI10S1qoTZiKERP6Bm94Ff8ht/xxzJawPnMMVoB/voGCnOlvg==</latexit><latexit sha1_base64="4wxtPWNDnmCH0dgSYyQ3K0rC1ac=">AAACJ3ichVDLSgMxFE3qq1atrS7dBIvgqsxIQZdFNy4r2ge0Q8mkd6ahmcyQZIQy9BPc6jf4Ne5El/6JaTsLawUPBA7nnMu9OX4iuDaO84kLG5tb2zvF3dLe/kH5sFI96ug4VQzaLBax6vlUg+AS2oYbAb1EAY18AV1/cjP3u4+gNI/lg5km4EU0lDzgjBor3YfDxrBSc+rOAmSduDmpoRytYRWXB6OYpRFIwwTVuu86ifEyqgxnAmalQaohoWxCQ+hbKmkE2ssWt87ImVVGJIiVfdKQhfpzIqOR1tPIt8mImrH+7c3FPz1f0QmYle0Zo5KBmP2X66cmuPIyLpPUgGTLI4NUEBOTeWlkxBUwI6aWUKa4/SdhY6ooM7bakm3Q/d3XOulc1F2n7t41as3rvMsiOkGn6By56BI10S1qoTZiKERP6Bm94Ff8ht/xxzJawPnMMVoB/voGCnOlvg==</latexit><latexit sha1_base64="4wxtPWNDnmCH0dgSYyQ3K0rC1ac=">AAACJ3ichVDLSgMxFE3qq1atrS7dBIvgqsxIQZdFNy4r2ge0Q8mkd6ahmcyQZIQy9BPc6jf4Ne5El/6JaTsLawUPBA7nnMu9OX4iuDaO84kLG5tb2zvF3dLe/kH5sFI96ug4VQzaLBax6vlUg+AS2oYbAb1EAY18AV1/cjP3u4+gNI/lg5km4EU0lDzgjBor3YfDxrBSc+rOAmSduDmpoRytYRWXB6OYpRFIwwTVuu86ifEyqgxnAmalQaohoWxCQ+hbKmkE2ssWt87ImVVGJIiVfdKQhfpzIqOR1tPIt8mImrH+7c3FPz1f0QmYle0Zo5KBmP2X66cmuPIyLpPUgGTLI4NUEBOTeWlkxBUwI6aWUKa4/SdhY6ooM7bakm3Q/d3XOulc1F2n7t41as3rvMsiOkGn6By56BI10S1qoTZiKERP6Bm94Ff8ht/xxzJawPnMMVoB/voGCnOlvg==</latexit><latexit sha1_base64="4wxtPWNDnmCH0dgSYyQ3K0rC1ac=">AAACJ3ichVDLSgMxFE3qq1atrS7dBIvgqsxIQZdFNy4r2ge0Q8mkd6ahmcyQZIQy9BPc6jf4Ne5El/6JaTsLawUPBA7nnMu9OX4iuDaO84kLG5tb2zvF3dLe/kH5sFI96ug4VQzaLBax6vlUg+AS2oYbAb1EAY18AV1/cjP3u4+gNI/lg5km4EU0lDzgjBor3YfDxrBSc+rOAmSduDmpoRytYRWXB6OYpRFIwwTVuu86ifEyqgxnAmalQaohoWxCQ+hbKmkE2ssWt87ImVVGJIiVfdKQhfpzIqOR1tPIt8mImrH+7c3FPz1f0QmYle0Zo5KBmP2X66cmuPIyLpPUgGTLI4NUEBOTeWlkxBUwI6aWUKa4/SdhY6ooM7bakm3Q/d3XOulc1F2n7t41as3rvMsiOkGn6By56BI10S1qoTZiKERP6Bm94Ff8ht/xxzJawPnMMVoB/voGCnOlvg==</latexit>

. . .

FIG. 3. Our choice of plaquettes to update [Pµ⌫(x), yellow],
gauge invariant context for that transformation [I1 and I2,
green], the corresponding updated link [Uµ(x), blue], and the
plaquettes passively modified as a result of the link update
[Pµ⌫(x̃), red] for two-dimensional gauge theory. A repeating
cycle of rotations and translations are applied to the pattern
for successive coupling layers; composition of 8 coupling layers
is su�cient to update every link once for this pattern.

kernel is used to transform untraced loops of links start-
ing and ending at a common point (whose spectrum has
physical, gauge-invariant meaning). Here, we specify a
general method to construct such kernels and investigate
application of these kernels to sampling probability den-
sities on single SU(N) or U(N) variables (representing
marginal distributions on open loops in the full gauge
theory).

In the language of groups, a kernel should move den-
sity between conjugacy classes while preserving struc-
ture within those classes. Each conjugacy class is de-
fined by a set {XUX�1 : X 2 G}, for some U . It
is useful, however, to think of each conjugacy class in
SU(N) or U(N) as a set of all matrices with some par-
ticular spectrum; for example, all matrices with eigenval-
ues {ei3⇡/12, ei5⇡/12, e�i8⇡/12

} form a conjugacy class in
SU(3). Intuitively, a kernel should therefore move density
between possible N -tuples of eigenvalues while preserving
the eigenvector structure. In Appendix A we prove that
this intuition is exact: a kernel can generally be defined
as an invertible map that acts on the list of eigenvalues
of the input matrix, is equivariant under permutations of
the eigenvalues, and leaves the eigenvectors unchanged.
In our applications, we therefore structure the kernel to
accept a matrix-valued input, diagonalize it to produce
an (arbitrarily ordered) list of eigenvalues and eigenvec-
tors, transform the eigenvalues in a permutation equiv-
ariant fashion, then reconstruct the matrix using the new
eigenvalues. Fig. 2 depicts how this spectral flow is ap-
plied in the context of a gauge equivariant coupling layer.

Permutation equivariance is required to ensure that
the kernel acts only based on the spectrum, not the par-
ticular order of eigenvalues produced during diagonaliza-
tion. Normalizing flows that are permutation equivari-
ant have previously been investigated in the machine-
learning community to learn densities over sets (such as
point-clouds, objects in a 3D scene, particles in molecu-
lar dynamics, and particle tracks in collider events) [42–
44, 46–53]. Such approaches are directly applicable to
kernels for U(N) variables (see Appendix E), because the
eigenvalues can be transformed independently. For an
SU(N) variable, however, the constraint det U = 1 must
additionally be satisfied, which prevents these methods
from being straightforwardly applied. As an example,
Figure 4 depicts the space of eigenvalues of SU(2), SU(3),
and SU(4) variables and illustrates the constrained sur-
face of possible eigenvalues as well as the cells on this
surface that are related by permutations in each case.
To be equivariant, a spectral flow for SU(N) must trans-
form values within each cell identically.

In this section, we describe special-case constructions
of permutation equivariant transformations on the eigen-
values of an SU(2) or SU(3) variable, then generalize
the approach to SU(N). In each case, we demonstrate
the expressivity of these transformations by construct-
ing flow-based models in terms of these transformations
and training the models to learn several target families
of densities that are invariant under matrix conjugation.
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FIG. 2. Decomposition of a single gauge equivariant coupling
layer. Outer gray sections depict the general formulation of
gauge equivariant flows detailed in Ref. [11]. Inner colored
sections detail the kernel we construct in Sec. III for a single
SU(N) variable.
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g2
<latexit sha1_base64="APyp7iOenZZ25oyZN+BqLZ0hFao=">AAACJ3ichVDLSgMxFE3qq1atrS7dBIvgqswUQZdFNy4r2ge0Q8mkd6ahmcyQZIQy9BPc6jf4Ne5El/6JaTsLawUPBA7nnMu9OX4iuDaO84kLG5tb2zvF3dLe/kH5sFI96ug4VQzaLBax6vlUg+AS2oYbAb1EAY18AV1/cjP3u4+gNI/lg5km4EU0lDzgjBor3YfDxrBSc+rOAmSduDmpoRytYRWXB6OYpRFIwwTVuu86ifEyqgxnAmalQaohoWxCQ+hbKmkE2ssWt87ImVVGJIiVfdKQhfpzIqOR1tPIt8mImrH+7c3FPz1f0QmYle0Zo5KBmP2X66cmuPIyLpPUgGTLI4NUEBOTeWlkxBUwI6aWUKa4/SdhY6ooM7bakm3Q/d3XOuk06q5Td+8uas3rvMsiOkGn6By56BI10S1qoTZiKERP6Bm94Ff8ht/xxzJawPnMMVoB/voGBvGlvA==</latexit><latexit sha1_base64="APyp7iOenZZ25oyZN+BqLZ0hFao=">AAACJ3ichVDLSgMxFE3qq1atrS7dBIvgqswUQZdFNy4r2ge0Q8mkd6ahmcyQZIQy9BPc6jf4Ne5El/6JaTsLawUPBA7nnMu9OX4iuDaO84kLG5tb2zvF3dLe/kH5sFI96ug4VQzaLBax6vlUg+AS2oYbAb1EAY18AV1/cjP3u4+gNI/lg5km4EU0lDzgjBor3YfDxrBSc+rOAmSduDmpoRytYRWXB6OYpRFIwwTVuu86ifEyqgxnAmalQaohoWxCQ+hbKmkE2ssWt87ImVVGJIiVfdKQhfpzIqOR1tPIt8mImrH+7c3FPz1f0QmYle0Zo5KBmP2X66cmuPIyLpPUgGTLI4NUEBOTeWlkxBUwI6aWUKa4/SdhY6ooM7bakm3Q/d3XOuk06q5Td+8uas3rvMsiOkGn6By56BI10S1qoTZiKERP6Bm94Ff8ht/xxzJawPnMMVoB/voGBvGlvA==</latexit><latexit sha1_base64="APyp7iOenZZ25oyZN+BqLZ0hFao=">AAACJ3ichVDLSgMxFE3qq1atrS7dBIvgqswUQZdFNy4r2ge0Q8mkd6ahmcyQZIQy9BPc6jf4Ne5El/6JaTsLawUPBA7nnMu9OX4iuDaO84kLG5tb2zvF3dLe/kH5sFI96ug4VQzaLBax6vlUg+AS2oYbAb1EAY18AV1/cjP3u4+gNI/lg5km4EU0lDzgjBor3YfDxrBSc+rOAmSduDmpoRytYRWXB6OYpRFIwwTVuu86ifEyqgxnAmalQaohoWxCQ+hbKmkE2ssWt87ImVVGJIiVfdKQhfpzIqOR1tPIt8mImrH+7c3FPz1f0QmYle0Zo5KBmP2X66cmuPIyLpPUgGTLI4NUEBOTeWlkxBUwI6aWUKa4/SdhY6ooM7bakm3Q/d3XOuk06q5Td+8uas3rvMsiOkGn6By56BI10S1qoTZiKERP6Bm94Ff8ht/xxzJawPnMMVoB/voGBvGlvA==</latexit><latexit sha1_base64="APyp7iOenZZ25oyZN+BqLZ0hFao=">AAACJ3ichVDLSgMxFE3qq1atrS7dBIvgqswUQZdFNy4r2ge0Q8mkd6ahmcyQZIQy9BPc6jf4Ne5El/6JaTsLawUPBA7nnMu9OX4iuDaO84kLG5tb2zvF3dLe/kH5sFI96ug4VQzaLBax6vlUg+AS2oYbAb1EAY18AV1/cjP3u4+gNI/lg5km4EU0lDzgjBor3YfDxrBSc+rOAmSduDmpoRytYRWXB6OYpRFIwwTVuu86ifEyqgxnAmalQaohoWxCQ+hbKmkE2ssWt87ImVVGJIiVfdKQhfpzIqOR1tPIt8mImrH+7c3FPz1f0QmYle0Zo5KBmP2X66cmuPIyLpPUgGTLI4NUEBOTeWlkxBUwI6aWUKa4/SdhY6ooM7bakm3Q/d3XOuk06q5Td+8uas3rvMsiOkGn6By56BI10S1qoTZiKERP6Bm94Ff8ht/xxzJawPnMMVoB/voGBvGlvA==</latexit>

g3
<latexit sha1_base64="qZaaXUgMKO7ekhVgncJhOuM8+4I=">AAACKHichVDLSsNAFJ2pr1q1trp0EyyCq5KooMuiG5cV7APaUCbTm3boZBJmboQS+gtu9Rv8GnfSrV9i0mZhW8EDA4dzzuXeOV4khUHbntPC1vbO7l5xv3RweFQ+rlRP2iaMNYcWD2Woux4zIIWCFgqU0I00sMCT0PEmD5nfeQFtRKiecRqBG7CREr7gDDNpNLguDSo1u24vYG0SJyc1kqM5qNJyfxjyOACFXDJjeo4doZswjYJLmJX6sYGI8QkbQS+ligVg3GRx7My6SJWh5Yc6fQqthfp7ImGBMdPAS5MBw7FZ9zLxT8/TbAK4sj3hTHGQs/9yvRj9OzcRKooRFF8e6cfSwtDKWrOGQgNHOU0J41qk/7T4mGnGMe02a9BZ72uTtK/qjl13nm5qjfu8yyI5I+fkkjjkljTII2mSFuFkTF7JG3mnH/STftH5Mlqg+cwpWQH9/gFAWqXR</latexit><latexit sha1_base64="qZaaXUgMKO7ekhVgncJhOuM8+4I=">AAACKHichVDLSsNAFJ2pr1q1trp0EyyCq5KooMuiG5cV7APaUCbTm3boZBJmboQS+gtu9Rv8GnfSrV9i0mZhW8EDA4dzzuXeOV4khUHbntPC1vbO7l5xv3RweFQ+rlRP2iaMNYcWD2Woux4zIIWCFgqU0I00sMCT0PEmD5nfeQFtRKiecRqBG7CREr7gDDNpNLguDSo1u24vYG0SJyc1kqM5qNJyfxjyOACFXDJjeo4doZswjYJLmJX6sYGI8QkbQS+ligVg3GRx7My6SJWh5Yc6fQqthfp7ImGBMdPAS5MBw7FZ9zLxT8/TbAK4sj3hTHGQs/9yvRj9OzcRKooRFF8e6cfSwtDKWrOGQgNHOU0J41qk/7T4mGnGMe02a9BZ72uTtK/qjl13nm5qjfu8yyI5I+fkkjjkljTII2mSFuFkTF7JG3mnH/STftH5Mlqg+cwpWQH9/gFAWqXR</latexit><latexit sha1_base64="qZaaXUgMKO7ekhVgncJhOuM8+4I=">AAACKHichVDLSsNAFJ2pr1q1trp0EyyCq5KooMuiG5cV7APaUCbTm3boZBJmboQS+gtu9Rv8GnfSrV9i0mZhW8EDA4dzzuXeOV4khUHbntPC1vbO7l5xv3RweFQ+rlRP2iaMNYcWD2Woux4zIIWCFgqU0I00sMCT0PEmD5nfeQFtRKiecRqBG7CREr7gDDNpNLguDSo1u24vYG0SJyc1kqM5qNJyfxjyOACFXDJjeo4doZswjYJLmJX6sYGI8QkbQS+ligVg3GRx7My6SJWh5Yc6fQqthfp7ImGBMdPAS5MBw7FZ9zLxT8/TbAK4sj3hTHGQs/9yvRj9OzcRKooRFF8e6cfSwtDKWrOGQgNHOU0J41qk/7T4mGnGMe02a9BZ72uTtK/qjl13nm5qjfu8yyI5I+fkkjjkljTII2mSFuFkTF7JG3mnH/STftH5Mlqg+cwpWQH9/gFAWqXR</latexit><latexit sha1_base64="UWLLxPiKWMhGxtZ4WXFidNyb6Ow=">AAACFnichZDNSsNAFIVv6l+NVdu1m2ARXJXEjS4FNy4r2B9oQ7mZ3LRDJ5MwMxFK6Au49Rl8Gnfixrdx+rOwreCBgcM5d5g7X5QLro3vfzuVvf2Dw6PqsXtSc0/Pzuu1rs4KxajDMpGpfoSaBJfUMdwI6ueKMI0E9aLpw6LvvZDSPJPPZpZTmOJY8oQzNDZqj+pNv+Uv5e2aYG2asNao4ZwN44wVKUnDBGo9CPzchCUqw5mguTssNOXIpjimgbUSU9Jhudxz7l3ZJPaSTNkjjbdMf98oMdV6lkZ2MkUz0dvdIvyzixROyWy8XjKUjMT8v7lBYZK7sOQyLwxJtloyKYRnMm8BzIu5ImbEzBpkitt/emyCCpmxWF0LMNjGtWu6N63AbwVPPlThAi7hGgK4hXt4hDZ0gEEMr/DmvDsfzucKdMVZE2/AhpyvH8ZHoic=</latexit><latexit sha1_base64="IAVOls6bMcvyFoFxXqrfGStxJHk=">AAACHXichZDNSsNAFIVv6l+ttbZu3QwWwVVJdKFLwY3LCvYH2lBuprft0MkkzEyEEvoKbvUZfBp30rcxabuwreCBgcM5d5g7XxBLYazrLpzC3v7B4VHxuHRSPq2cVWvltokSzanFIxnpboCGpFDUssJK6saaMAwkdYLpY953XkkbEakXO4vJD3GsxEhwtHk0HtyWBtW623CXYrvGW5s6rNUc1JxKfxjxJCRluURjep4bWz9FbQWXNC/1E0Mx8imOqZdZhSEZP10uO2dXWTJko0hnR1m2TH/fSDE0ZhYG2WSIdmK2uzz8sws0TsluvJ5yVJzk/L+5XmJH934qVJxYUny15CiRzEYsp8aGQhO3cpYZ5Fpk/2R8ghq5zdjmBL1tXrumfdPw3Ib37EIRLuASrsGDO3iAJ2hCCzhM4A3e4cP5dL6c7xXrgrOGfg4bchY/HWqkPg==</latexit><latexit sha1_base64="IAVOls6bMcvyFoFxXqrfGStxJHk=">AAACHXichZDNSsNAFIVv6l+ttbZu3QwWwVVJdKFLwY3LCvYH2lBuprft0MkkzEyEEvoKbvUZfBp30rcxabuwreCBgcM5d5g7XxBLYazrLpzC3v7B4VHxuHRSPq2cVWvltokSzanFIxnpboCGpFDUssJK6saaMAwkdYLpY953XkkbEakXO4vJD3GsxEhwtHk0HtyWBtW623CXYrvGW5s6rNUc1JxKfxjxJCRluURjep4bWz9FbQWXNC/1E0Mx8imOqZdZhSEZP10uO2dXWTJko0hnR1m2TH/fSDE0ZhYG2WSIdmK2uzz8sws0TsluvJ5yVJzk/L+5XmJH934qVJxYUny15CiRzEYsp8aGQhO3cpYZ5Fpk/2R8ghq5zdjmBL1tXrumfdPw3Ib37EIRLuASrsGDO3iAJ2hCCzhM4A3e4cP5dL6c7xXrgrOGfg4bchY/HWqkPg==</latexit><latexit sha1_base64="/baqA/b8uPYTSDSquGfm946SQYE=">AAACKHichVDLSgMxFE3qq9ZXq0s3wSK4KjO60GXRjcsK9gHtUO6kt21oJjMkGaEM/QW3+g1+jTvp1i9xpp2FbQUPBA7nnMu9OX4khbGOM6eFre2d3b3ifung8Oj4pFw5bZkw1hybPJSh7vhgUAqFTSusxE6kEQJfYtufPGR++wW1EaF6ttMIvQBGSgwFB5tJo/5NqV+uOjVnAbZJ3JxUSY5Gv0KPe4OQxwEqyyUY03WdyHoJaCu4xFmpFxuMgE9ghN2UKgjQeMni2Bm7TJUBG4Y6fcqyhfp7IoHAmGngp8kA7Nise5n4p+drmKBd2Z5wUBzl7L9cN7bDOy8RKootKr48chhLZkOWtcYGQiO3cpoS4Fqk/2R8DBq4TbvNGnTX+9okreua69TcJ6dav8+7LJJzckGuiEtuSZ08kgZpEk7G5JW8kXf6QT/pF50vowWaz5yRFdDvHz8apc0=</latexit><latexit sha1_base64="qZaaXUgMKO7ekhVgncJhOuM8+4I=">AAACKHichVDLSsNAFJ2pr1q1trp0EyyCq5KooMuiG5cV7APaUCbTm3boZBJmboQS+gtu9Rv8GnfSrV9i0mZhW8EDA4dzzuXeOV4khUHbntPC1vbO7l5xv3RweFQ+rlRP2iaMNYcWD2Woux4zIIWCFgqU0I00sMCT0PEmD5nfeQFtRKiecRqBG7CREr7gDDNpNLguDSo1u24vYG0SJyc1kqM5qNJyfxjyOACFXDJjeo4doZswjYJLmJX6sYGI8QkbQS+ligVg3GRx7My6SJWh5Yc6fQqthfp7ImGBMdPAS5MBw7FZ9zLxT8/TbAK4sj3hTHGQs/9yvRj9OzcRKooRFF8e6cfSwtDKWrOGQgNHOU0J41qk/7T4mGnGMe02a9BZ72uTtK/qjl13nm5qjfu8yyI5I+fkkjjkljTII2mSFuFkTF7JG3mnH/STftH5Mlqg+cwpWQH9/gFAWqXR</latexit><latexit sha1_base64="qZaaXUgMKO7ekhVgncJhOuM8+4I=">AAACKHichVDLSsNAFJ2pr1q1trp0EyyCq5KooMuiG5cV7APaUCbTm3boZBJmboQS+gtu9Rv8GnfSrV9i0mZhW8EDA4dzzuXeOV4khUHbntPC1vbO7l5xv3RweFQ+rlRP2iaMNYcWD2Woux4zIIWCFgqU0I00sMCT0PEmD5nfeQFtRKiecRqBG7CREr7gDDNpNLguDSo1u24vYG0SJyc1kqM5qNJyfxjyOACFXDJjeo4doZswjYJLmJX6sYGI8QkbQS+ligVg3GRx7My6SJWh5Yc6fQqthfp7ImGBMdPAS5MBw7FZ9zLxT8/TbAK4sj3hTHGQs/9yvRj9OzcRKooRFF8e6cfSwtDKWrOGQgNHOU0J41qk/7T4mGnGMe02a9BZ72uTtK/qjl13nm5qjfu8yyI5I+fkkjjkljTII2mSFuFkTF7JG3mnH/STftH5Mlqg+cwpWQH9/gFAWqXR</latexit><latexit sha1_base64="qZaaXUgMKO7ekhVgncJhOuM8+4I=">AAACKHichVDLSsNAFJ2pr1q1trp0EyyCq5KooMuiG5cV7APaUCbTm3boZBJmboQS+gtu9Rv8GnfSrV9i0mZhW8EDA4dzzuXeOV4khUHbntPC1vbO7l5xv3RweFQ+rlRP2iaMNYcWD2Woux4zIIWCFgqU0I00sMCT0PEmD5nfeQFtRKiecRqBG7CREr7gDDNpNLguDSo1u24vYG0SJyc1kqM5qNJyfxjyOACFXDJjeo4doZswjYJLmJX6sYGI8QkbQS+ligVg3GRx7My6SJWh5Yc6fQqthfp7ImGBMdPAS5MBw7FZ9zLxT8/TbAK4sj3hTHGQs/9yvRj9OzcRKooRFF8e6cfSwtDKWrOGQgNHOU0J41qk/7T4mGnGMe02a9BZ72uTtK/qjl13nm5qjfu8yyI5I+fkkjjkljTII2mSFuFkTF7JG3mnH/STftH5Mlqg+cwpWQH9/gFAWqXR</latexit><latexit sha1_base64="qZaaXUgMKO7ekhVgncJhOuM8+4I=">AAACKHichVDLSsNAFJ2pr1q1trp0EyyCq5KooMuiG5cV7APaUCbTm3boZBJmboQS+gtu9Rv8GnfSrV9i0mZhW8EDA4dzzuXeOV4khUHbntPC1vbO7l5xv3RweFQ+rlRP2iaMNYcWD2Woux4zIIWCFgqU0I00sMCT0PEmD5nfeQFtRKiecRqBG7CREr7gDDNpNLguDSo1u24vYG0SJyc1kqM5qNJyfxjyOACFXDJjeo4doZswjYJLmJX6sYGI8QkbQS+ligVg3GRx7My6SJWh5Yc6fQqthfp7ImGBMdPAS5MBw7FZ9zLxT8/TbAK4sj3hTHGQs/9yvRj9OzcRKooRFF8e6cfSwtDKWrOGQgNHOU0J41qk/7T4mGnGMe02a9BZ72uTtK/qjl13nm5qjfu8yyI5I+fkkjjkljTII2mSFuFkTF7JG3mnH/STftH5Mlqg+cwpWQH9/gFAWqXR</latexit><latexit sha1_base64="qZaaXUgMKO7ekhVgncJhOuM8+4I=">AAACKHichVDLSsNAFJ2pr1q1trp0EyyCq5KooMuiG5cV7APaUCbTm3boZBJmboQS+gtu9Rv8GnfSrV9i0mZhW8EDA4dzzuXeOV4khUHbntPC1vbO7l5xv3RweFQ+rlRP2iaMNYcWD2Woux4zIIWCFgqU0I00sMCT0PEmD5nfeQFtRKiecRqBG7CREr7gDDNpNLguDSo1u24vYG0SJyc1kqM5qNJyfxjyOACFXDJjeo4doZswjYJLmJX6sYGI8QkbQS+ligVg3GRx7My6SJWh5Yc6fQqthfp7ImGBMdPAS5MBw7FZ9zLxT8/TbAK4sj3hTHGQs/9yvRj9OzcRKooRFF8e6cfSwtDKWrOGQgNHOU0J41qk/7T4mGnGMe02a9BZ72uTtK/qjl13nm5qjfu8yyI5I+fkkjjkljTII2mSFuFkTF7JG3mnH/STftH5Mlqg+cwpWQH9/gFAWqXR</latexit><latexit sha1_base64="qZaaXUgMKO7ekhVgncJhOuM8+4I=">AAACKHichVDLSsNAFJ2pr1q1trp0EyyCq5KooMuiG5cV7APaUCbTm3boZBJmboQS+gtu9Rv8GnfSrV9i0mZhW8EDA4dzzuXeOV4khUHbntPC1vbO7l5xv3RweFQ+rlRP2iaMNYcWD2Woux4zIIWCFgqU0I00sMCT0PEmD5nfeQFtRKiecRqBG7CREr7gDDNpNLguDSo1u24vYG0SJyc1kqM5qNJyfxjyOACFXDJjeo4doZswjYJLmJX6sYGI8QkbQS+ligVg3GRx7My6SJWh5Yc6fQqthfp7ImGBMdPAS5MBw7FZ9zLxT8/TbAK4sj3hTHGQs/9yvRj9OzcRKooRFF8e6cfSwtDKWrOGQgNHOU0J41qk/7T4mGnGMe02a9BZ72uTtK/qjl13nm5qjfu8yyI5I+fkkjjkljTII2mSFuFkTF7JG3mnH/STftH5Mlqg+cwpWQH9/gFAWqXR</latexit>

g4
<latexit sha1_base64="4wxtPWNDnmCH0dgSYyQ3K0rC1ac=">AAACJ3ichVDLSgMxFE3qq1atrS7dBIvgqsxIQZdFNy4r2ge0Q8mkd6ahmcyQZIQy9BPc6jf4Ne5El/6JaTsLawUPBA7nnMu9OX4iuDaO84kLG5tb2zvF3dLe/kH5sFI96ug4VQzaLBax6vlUg+AS2oYbAb1EAY18AV1/cjP3u4+gNI/lg5km4EU0lDzgjBor3YfDxrBSc+rOAmSduDmpoRytYRWXB6OYpRFIwwTVuu86ifEyqgxnAmalQaohoWxCQ+hbKmkE2ssWt87ImVVGJIiVfdKQhfpzIqOR1tPIt8mImrH+7c3FPz1f0QmYle0Zo5KBmP2X66cmuPIyLpPUgGTLI4NUEBOTeWlkxBUwI6aWUKa4/SdhY6ooM7bakm3Q/d3XOulc1F2n7t41as3rvMsiOkGn6By56BI10S1qoTZiKERP6Bm94Ff8ht/xxzJawPnMMVoB/voGCnOlvg==</latexit><latexit sha1_base64="4wxtPWNDnmCH0dgSYyQ3K0rC1ac=">AAACJ3ichVDLSgMxFE3qq1atrS7dBIvgqsxIQZdFNy4r2ge0Q8mkd6ahmcyQZIQy9BPc6jf4Ne5El/6JaTsLawUPBA7nnMu9OX4iuDaO84kLG5tb2zvF3dLe/kH5sFI96ug4VQzaLBax6vlUg+AS2oYbAb1EAY18AV1/cjP3u4+gNI/lg5km4EU0lDzgjBor3YfDxrBSc+rOAmSduDmpoRytYRWXB6OYpRFIwwTVuu86ifEyqgxnAmalQaohoWxCQ+hbKmkE2ssWt87ImVVGJIiVfdKQhfpzIqOR1tPIt8mImrH+7c3FPz1f0QmYle0Zo5KBmP2X66cmuPIyLpPUgGTLI4NUEBOTeWlkxBUwI6aWUKa4/SdhY6ooM7bakm3Q/d3XOulc1F2n7t41as3rvMsiOkGn6By56BI10S1qoTZiKERP6Bm94Ff8ht/xxzJawPnMMVoB/voGCnOlvg==</latexit><latexit sha1_base64="4wxtPWNDnmCH0dgSYyQ3K0rC1ac=">AAACJ3ichVDLSgMxFE3qq1atrS7dBIvgqsxIQZdFNy4r2ge0Q8mkd6ahmcyQZIQy9BPc6jf4Ne5El/6JaTsLawUPBA7nnMu9OX4iuDaO84kLG5tb2zvF3dLe/kH5sFI96ug4VQzaLBax6vlUg+AS2oYbAb1EAY18AV1/cjP3u4+gNI/lg5km4EU0lDzgjBor3YfDxrBSc+rOAmSduDmpoRytYRWXB6OYpRFIwwTVuu86ifEyqgxnAmalQaohoWxCQ+hbKmkE2ssWt87ImVVGJIiVfdKQhfpzIqOR1tPIt8mImrH+7c3FPz1f0QmYle0Zo5KBmP2X66cmuPIyLpPUgGTLI4NUEBOTeWlkxBUwI6aWUKa4/SdhY6ooM7bakm3Q/d3XOulc1F2n7t41as3rvMsiOkGn6By56BI10S1qoTZiKERP6Bm94Ff8ht/xxzJawPnMMVoB/voGCnOlvg==</latexit><latexit sha1_base64="4wxtPWNDnmCH0dgSYyQ3K0rC1ac=">AAACJ3ichVDLSgMxFE3qq1atrS7dBIvgqsxIQZdFNy4r2ge0Q8mkd6ahmcyQZIQy9BPc6jf4Ne5El/6JaTsLawUPBA7nnMu9OX4iuDaO84kLG5tb2zvF3dLe/kH5sFI96ug4VQzaLBax6vlUg+AS2oYbAb1EAY18AV1/cjP3u4+gNI/lg5km4EU0lDzgjBor3YfDxrBSc+rOAmSduDmpoRytYRWXB6OYpRFIwwTVuu86ifEyqgxnAmalQaohoWxCQ+hbKmkE2ssWt87ImVVGJIiVfdKQhfpzIqOR1tPIt8mImrH+7c3FPz1f0QmYle0Zo5KBmP2X66cmuPIyLpPUgGTLI4NUEBOTeWlkxBUwI6aWUKa4/SdhY6ooM7bakm3Q/d3XOulc1F2n7t41as3rvMsiOkGn6By56BI10S1qoTZiKERP6Bm94Ff8ht/xxzJawPnMMVoB/voGCnOlvg==</latexit>

. . .

FIG. 3. Our choice of plaquettes to update [Pµ⌫(x), yellow],
gauge invariant context for that transformation [I1 and I2,
green], the corresponding updated link [Uµ(x), blue], and the
plaquettes passively modified as a result of the link update
[Pµ⌫(x̃), red] for two-dimensional gauge theory. A repeating
cycle of rotations and translations are applied to the pattern
for successive coupling layers; composition of 8 coupling layers
is su�cient to update every link once for this pattern.

kernel is used to transform untraced loops of links start-
ing and ending at a common point (whose spectrum has
physical, gauge-invariant meaning). Here, we specify a
general method to construct such kernels and investigate
application of these kernels to sampling probability den-
sities on single SU(N) or U(N) variables (representing
marginal distributions on open loops in the full gauge
theory).

In the language of groups, a kernel should move den-
sity between conjugacy classes while preserving struc-
ture within those classes. Each conjugacy class is de-
fined by a set {XUX�1 : X 2 G}, for some U . It
is useful, however, to think of each conjugacy class in
SU(N) or U(N) as a set of all matrices with some par-
ticular spectrum; for example, all matrices with eigenval-
ues {ei3⇡/12, ei5⇡/12, e�i8⇡/12

} form a conjugacy class in
SU(3). Intuitively, a kernel should therefore move density
between possible N -tuples of eigenvalues while preserving
the eigenvector structure. In Appendix A we prove that
this intuition is exact: a kernel can generally be defined
as an invertible map that acts on the list of eigenvalues
of the input matrix, is equivariant under permutations of
the eigenvalues, and leaves the eigenvectors unchanged.
In our applications, we therefore structure the kernel to
accept a matrix-valued input, diagonalize it to produce
an (arbitrarily ordered) list of eigenvalues and eigenvec-
tors, transform the eigenvalues in a permutation equiv-
ariant fashion, then reconstruct the matrix using the new
eigenvalues. Fig. 2 depicts how this spectral flow is ap-
plied in the context of a gauge equivariant coupling layer.

Permutation equivariance is required to ensure that
the kernel acts only based on the spectrum, not the par-
ticular order of eigenvalues produced during diagonaliza-
tion. Normalizing flows that are permutation equivari-
ant have previously been investigated in the machine-
learning community to learn densities over sets (such as
point-clouds, objects in a 3D scene, particles in molecu-
lar dynamics, and particle tracks in collider events) [42–
44, 46–53]. Such approaches are directly applicable to
kernels for U(N) variables (see Appendix E), because the
eigenvalues can be transformed independently. For an
SU(N) variable, however, the constraint det U = 1 must
additionally be satisfied, which prevents these methods
from being straightforwardly applied. As an example,
Figure 4 depicts the space of eigenvalues of SU(2), SU(3),
and SU(4) variables and illustrates the constrained sur-
face of possible eigenvalues as well as the cells on this
surface that are related by permutations in each case.
To be equivariant, a spectral flow for SU(N) must trans-
form values within each cell identically.

In this section, we describe special-case constructions
of permutation equivariant transformations on the eigen-
values of an SU(2) or SU(3) variable, then generalize
the approach to SU(N). In each case, we demonstrate
the expressivity of these transformations by construct-
ing flow-based models in terms of these transformations
and training the models to learn several target families
of densities that are invariant under matrix conjugation.
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FIG. 2. Decomposition of a single gauge equivariant coupling
layer. Outer gray sections depict the general formulation of
gauge equivariant flows detailed in Ref. [11]. Inner colored
sections detail the kernel we construct in Sec. III for a single
SU(N) variable.
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. . .

FIG. 3. Our choice of plaquettes to update [Pµ⌫(x), yellow],
gauge invariant context for that transformation [I1 and I2,
green], the corresponding updated link [Uµ(x), blue], and the
plaquettes passively modified as a result of the link update
[Pµ⌫(x̃), red] for two-dimensional gauge theory. A repeating
cycle of rotations and translations are applied to the pattern
for successive coupling layers; composition of 8 coupling layers
is su�cient to update every link once for this pattern.

kernel is used to transform untraced loops of links start-
ing and ending at a common point (whose spectrum has
physical, gauge-invariant meaning). Here, we specify a
general method to construct such kernels and investigate
application of these kernels to sampling probability den-
sities on single SU(N) or U(N) variables (representing
marginal distributions on open loops in the full gauge
theory).

In the language of groups, a kernel should move den-
sity between conjugacy classes while preserving struc-
ture within those classes. Each conjugacy class is de-
fined by a set {XUX�1 : X 2 G}, for some U . It
is useful, however, to think of each conjugacy class in
SU(N) or U(N) as a set of all matrices with some par-
ticular spectrum; for example, all matrices with eigenval-
ues {ei3⇡/12, ei5⇡/12, e�i8⇡/12

} form a conjugacy class in
SU(3). Intuitively, a kernel should therefore move density
between possible N -tuples of eigenvalues while preserving
the eigenvector structure. In Appendix A we prove that
this intuition is exact: a kernel can generally be defined
as an invertible map that acts on the list of eigenvalues
of the input matrix, is equivariant under permutations of
the eigenvalues, and leaves the eigenvectors unchanged.
In our applications, we therefore structure the kernel to
accept a matrix-valued input, diagonalize it to produce
an (arbitrarily ordered) list of eigenvalues and eigenvec-
tors, transform the eigenvalues in a permutation equiv-
ariant fashion, then reconstruct the matrix using the new
eigenvalues. Fig. 2 depicts how this spectral flow is ap-
plied in the context of a gauge equivariant coupling layer.

Permutation equivariance is required to ensure that
the kernel acts only based on the spectrum, not the par-
ticular order of eigenvalues produced during diagonaliza-
tion. Normalizing flows that are permutation equivari-
ant have previously been investigated in the machine-
learning community to learn densities over sets (such as
point-clouds, objects in a 3D scene, particles in molecu-
lar dynamics, and particle tracks in collider events) [42–
44, 46–53]. Such approaches are directly applicable to
kernels for U(N) variables (see Appendix E), because the
eigenvalues can be transformed independently. For an
SU(N) variable, however, the constraint det U = 1 must
additionally be satisfied, which prevents these methods
from being straightforwardly applied. As an example,
Figure 4 depicts the space of eigenvalues of SU(2), SU(3),
and SU(4) variables and illustrates the constrained sur-
face of possible eigenvalues as well as the cells on this
surface that are related by permutations in each case.
To be equivariant, a spectral flow for SU(N) must trans-
form values within each cell identically.

In this section, we describe special-case constructions
of permutation equivariant transformations on the eigen-
values of an SU(2) or SU(3) variable, then generalize
the approach to SU(N). In each case, we demonstrate
the expressivity of these transformations by construct-
ing flow-based models in terms of these transformations
and training the models to learn several target families
of densities that are invariant under matrix conjugation.
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⌫

<latexit sha1_base64="3C0HiAm+hgVAw6FNqb9y4lWpXE4=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoN6KXjxWtB/QhrLZTtqlm03Y3Qgl9Cd48aCIV3+RN/+N2zYHbX0w8Hhvhpl5QSK4Nq777RTW1jc2t4rbpZ3dvf2D8uFRS8epYthksYhVJ6AaBZfYNNwI7CQKaRQIbAfj25nffkKleSwfzSRBP6JDyUPOqLHSQ0+m/XLFrbpzkFXi5aQCORr98ldvELM0QmmYoFp3PTcxfkaV4UzgtNRLNSaUjekQu5ZKGqH2s/mpU3JmlQEJY2VLGjJXf09kNNJ6EgW2M6JmpJe9mfif101NeOVnXCapQckWi8JUEBOT2d9kwBUyIyaWUKa4vZWwEVWUGZtOyYbgLb+8SloXVa9Wvb6vVeo3eRxFOIFTOAcPLqEOd9CAJjAYwjO8wpsjnBfn3flYtBacfOYY/sD5/AFiw43j</latexit>
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<latexit sha1_base64="g3vERbzU3kfXibT9Kek4KMf3Qbg=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoPgKexKQL0FvXhMwDwgWcLspDcZMzu7zMyKIeQLvHhQxKuf5M2/cZLsQRMLGoqqbrq7gkRwbVz328mtrW9sbuW3Czu7e/sHxcOjpo5TxbDBYhGrdkA1Ci6xYbgR2E4U0igQ2ApGtzO/9YhK81jem3GCfkQHkoecUWOl+lOvWHLL7hxklXgZKUGGWq/41e3HLI1QGiao1h3PTYw/ocpwJnBa6KYaE8pGdIAdSyWNUPuT+aFTcmaVPgljZUsaMld/T0xopPU4CmxnRM1QL3sz8T+vk5rwyp9wmaQGJVssClNBTExmX5M+V8iMGFtCmeL2VsKGVFFmbDYFG4K3/PIqaV6UvUr5ul4pVW+yOPJwAqdwDh5cQhXuoAYNYIDwDK/w5jw4L86787FozTnZzDH8gfP5A+oZjQg=</latexit>
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<latexit sha1_base64="lP8chDqyi2ir38K4EGudN9sFXSU=">AAACOXicbZDNSgMxFIUz/lv/qi7dBItQN2VGBHUnunE5gqOFTlsy6Z02NMkMSUYtQ1/LjW/hTnDjQhG3voBprVBbLwROzncvyT1Rypk2rvvszMzOzS8sLi0XVlbX1jeKm1vXOskUhYAmPFHViGjgTEJgmOFQTRUQEXG4ibrnA35zC0qzRF6ZXgp1QdqSxYwSY61m0Q8aYaqYgGYosvL9Pg45xIYoldxh/xflloUy61vuN/KwRdptUP1xOxheBqpZLLkVd1h4WngjUUKj8pvFp7CV0EyANJQTrWuem5p6TpRhlEO/EGYaUkK7pA01KyURoOv5cPM+3rNOC8eJskcaPHTHJ3IitO6JyHYKYjp6kg3M/1gtM/FxPWcyzQxI+vNQnHFsEjyIEbeYAmp4zwpCFbN/xbRDFKHGhl2wIXiTK0+L64OKd1g5uTwsnZ6N4lhCO2gXlZGHjtApukA+ChBFD+gFvaF359F5dT6cz5/WGWc0s43+lPP1DSUqrls=</latexit>

FIG. 2. Decomposition of a single gauge equivariant coupling
layer. Outer gray sections depict the general formulation of
gauge equivariant flows detailed in Ref. [11]. Inner colored
sections detail the kernel we construct in Sec. III for a single
SU(N) variable.
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<latexit sha1_base64="FHlAIcudLN8h4WC/aaokIIW/pKo="></latexit>

Uµ(x)

<latexit sha1_base64="WRM6ulgpHsfUbDC6IQBsJrQDZsg="></latexit>

g1
<latexit sha1_base64="map9deGC9bkZkPqVdq4CVGlL7ZI=">AAACJ3ichVDLSgMxFE3qq1atrS7dBIvgqsyIoMuiG5cV7QPaoWTSO9PQTGZIMkIZ+glu9Rv8GneiS//EtJ2FbQUPBA7nnMu9OX4iuDaO84ULG5tb2zvF3dLe/kH5sFI9aus4VQxaLBax6vpUg+ASWoYbAd1EAY18AR1/fDvzO0+gNI/lo5kk4EU0lDzgjBorPYQDd1CpOXVnDrJO3JzUUI7moIrL/WHM0gikYYJq3XOdxHgZVYYzAdNSP9WQUDamIfQslTQC7WXzW6fkzCpDEsTKPmnIXP09kdFI60nk22REzUivejPxT89XdAxmaXvGqGQgpv/leqkJrr2MyyQ1INniyCAVxMRkVhoZcgXMiIkllClu/0nYiCrKjK22ZBt0V/taJ+2LuuvU3fvLWuMm77KITtApOkcuukINdIeaqIUYCtEzekGv+A2/4w/8uYgWcD5zjJaAv38ABTCluw==</latexit><latexit sha1_base64="map9deGC9bkZkPqVdq4CVGlL7ZI=">AAACJ3ichVDLSgMxFE3qq1atrS7dBIvgqsyIoMuiG5cV7QPaoWTSO9PQTGZIMkIZ+glu9Rv8GneiS//EtJ2FbQUPBA7nnMu9OX4iuDaO84ULG5tb2zvF3dLe/kH5sFI9aus4VQxaLBax6vpUg+ASWoYbAd1EAY18AR1/fDvzO0+gNI/lo5kk4EU0lDzgjBorPYQDd1CpOXVnDrJO3JzUUI7moIrL/WHM0gikYYJq3XOdxHgZVYYzAdNSP9WQUDamIfQslTQC7WXzW6fkzCpDEsTKPmnIXP09kdFI60nk22REzUivejPxT89XdAxmaXvGqGQgpv/leqkJrr2MyyQ1INniyCAVxMRkVhoZcgXMiIkllClu/0nYiCrKjK22ZBt0V/taJ+2LuuvU3fvLWuMm77KITtApOkcuukINdIeaqIUYCtEzekGv+A2/4w/8uYgWcD5zjJaAv38ABTCluw==</latexit><latexit sha1_base64="map9deGC9bkZkPqVdq4CVGlL7ZI=">AAACJ3ichVDLSgMxFE3qq1atrS7dBIvgqsyIoMuiG5cV7QPaoWTSO9PQTGZIMkIZ+glu9Rv8GneiS//EtJ2FbQUPBA7nnMu9OX4iuDaO84ULG5tb2zvF3dLe/kH5sFI9aus4VQxaLBax6vpUg+ASWoYbAd1EAY18AR1/fDvzO0+gNI/lo5kk4EU0lDzgjBorPYQDd1CpOXVnDrJO3JzUUI7moIrL/WHM0gikYYJq3XOdxHgZVYYzAdNSP9WQUDamIfQslTQC7WXzW6fkzCpDEsTKPmnIXP09kdFI60nk22REzUivejPxT89XdAxmaXvGqGQgpv/leqkJrr2MyyQ1INniyCAVxMRkVhoZcgXMiIkllClu/0nYiCrKjK22ZBt0V/taJ+2LuuvU3fvLWuMm77KITtApOkcuukINdIeaqIUYCtEzekGv+A2/4w/8uYgWcD5zjJaAv38ABTCluw==</latexit><latexit sha1_base64="map9deGC9bkZkPqVdq4CVGlL7ZI=">AAACJ3ichVDLSgMxFE3qq1atrS7dBIvgqsyIoMuiG5cV7QPaoWTSO9PQTGZIMkIZ+glu9Rv8GneiS//EtJ2FbQUPBA7nnMu9OX4iuDaO84ULG5tb2zvF3dLe/kH5sFI9aus4VQxaLBax6vpUg+ASWoYbAd1EAY18AR1/fDvzO0+gNI/lo5kk4EU0lDzgjBorPYQDd1CpOXVnDrJO3JzUUI7moIrL/WHM0gikYYJq3XOdxHgZVYYzAdNSP9WQUDamIfQslTQC7WXzW6fkzCpDEsTKPmnIXP09kdFI60nk22REzUivejPxT89XdAxmaXvGqGQgpv/leqkJrr2MyyQ1INniyCAVxMRkVhoZcgXMiIkllClu/0nYiCrKjK22ZBt0V/taJ+2LuuvU3fvLWuMm77KITtApOkcuukINdIeaqIUYCtEzekGv+A2/4w/8uYgWcD5zjJaAv38ABTCluw==</latexit>

g2
<latexit sha1_base64="APyp7iOenZZ25oyZN+BqLZ0hFao=">AAACJ3ichVDLSgMxFE3qq1atrS7dBIvgqswUQZdFNy4r2ge0Q8mkd6ahmcyQZIQy9BPc6jf4Ne5El/6JaTsLawUPBA7nnMu9OX4iuDaO84kLG5tb2zvF3dLe/kH5sFI96ug4VQzaLBax6vlUg+AS2oYbAb1EAY18AV1/cjP3u4+gNI/lg5km4EU0lDzgjBor3YfDxrBSc+rOAmSduDmpoRytYRWXB6OYpRFIwwTVuu86ifEyqgxnAmalQaohoWxCQ+hbKmkE2ssWt87ImVVGJIiVfdKQhfpzIqOR1tPIt8mImrH+7c3FPz1f0QmYle0Zo5KBmP2X66cmuPIyLpPUgGTLI4NUEBOTeWlkxBUwI6aWUKa4/SdhY6ooM7bakm3Q/d3XOuk06q5Td+8uas3rvMsiOkGn6By56BI10S1qoTZiKERP6Bm94Ff8ht/xxzJawPnMMVoB/voGBvGlvA==</latexit><latexit sha1_base64="APyp7iOenZZ25oyZN+BqLZ0hFao=">AAACJ3ichVDLSgMxFE3qq1atrS7dBIvgqswUQZdFNy4r2ge0Q8mkd6ahmcyQZIQy9BPc6jf4Ne5El/6JaTsLawUPBA7nnMu9OX4iuDaO84kLG5tb2zvF3dLe/kH5sFI96ug4VQzaLBax6vlUg+AS2oYbAb1EAY18AV1/cjP3u4+gNI/lg5km4EU0lDzgjBor3YfDxrBSc+rOAmSduDmpoRytYRWXB6OYpRFIwwTVuu86ifEyqgxnAmalQaohoWxCQ+hbKmkE2ssWt87ImVVGJIiVfdKQhfpzIqOR1tPIt8mImrH+7c3FPz1f0QmYle0Zo5KBmP2X66cmuPIyLpPUgGTLI4NUEBOTeWlkxBUwI6aWUKa4/SdhY6ooM7bakm3Q/d3XOuk06q5Td+8uas3rvMsiOkGn6By56BI10S1qoTZiKERP6Bm94Ff8ht/xxzJawPnMMVoB/voGBvGlvA==</latexit><latexit sha1_base64="APyp7iOenZZ25oyZN+BqLZ0hFao=">AAACJ3ichVDLSgMxFE3qq1atrS7dBIvgqswUQZdFNy4r2ge0Q8mkd6ahmcyQZIQy9BPc6jf4Ne5El/6JaTsLawUPBA7nnMu9OX4iuDaO84kLG5tb2zvF3dLe/kH5sFI96ug4VQzaLBax6vlUg+AS2oYbAb1EAY18AV1/cjP3u4+gNI/lg5km4EU0lDzgjBor3YfDxrBSc+rOAmSduDmpoRytYRWXB6OYpRFIwwTVuu86ifEyqgxnAmalQaohoWxCQ+hbKmkE2ssWt87ImVVGJIiVfdKQhfpzIqOR1tPIt8mImrH+7c3FPz1f0QmYle0Zo5KBmP2X66cmuPIyLpPUgGTLI4NUEBOTeWlkxBUwI6aWUKa4/SdhY6ooM7bakm3Q/d3XOuk06q5Td+8uas3rvMsiOkGn6By56BI10S1qoTZiKERP6Bm94Ff8ht/xxzJawPnMMVoB/voGBvGlvA==</latexit><latexit sha1_base64="APyp7iOenZZ25oyZN+BqLZ0hFao=">AAACJ3ichVDLSgMxFE3qq1atrS7dBIvgqswUQZdFNy4r2ge0Q8mkd6ahmcyQZIQy9BPc6jf4Ne5El/6JaTsLawUPBA7nnMu9OX4iuDaO84kLG5tb2zvF3dLe/kH5sFI96ug4VQzaLBax6vlUg+AS2oYbAb1EAY18AV1/cjP3u4+gNI/lg5km4EU0lDzgjBor3YfDxrBSc+rOAmSduDmpoRytYRWXB6OYpRFIwwTVuu86ifEyqgxnAmalQaohoWxCQ+hbKmkE2ssWt87ImVVGJIiVfdKQhfpzIqOR1tPIt8mImrH+7c3FPz1f0QmYle0Zo5KBmP2X66cmuPIyLpPUgGTLI4NUEBOTeWlkxBUwI6aWUKa4/SdhY6ooM7bakm3Q/d3XOuk06q5Td+8uas3rvMsiOkGn6By56BI10S1qoTZiKERP6Bm94Ff8ht/xxzJawPnMMVoB/voGBvGlvA==</latexit>

g3
<latexit sha1_base64="qZaaXUgMKO7ekhVgncJhOuM8+4I=">AAACKHichVDLSsNAFJ2pr1q1trp0EyyCq5KooMuiG5cV7APaUCbTm3boZBJmboQS+gtu9Rv8GnfSrV9i0mZhW8EDA4dzzuXeOV4khUHbntPC1vbO7l5xv3RweFQ+rlRP2iaMNYcWD2Woux4zIIWCFgqU0I00sMCT0PEmD5nfeQFtRKiecRqBG7CREr7gDDNpNLguDSo1u24vYG0SJyc1kqM5qNJyfxjyOACFXDJjeo4doZswjYJLmJX6sYGI8QkbQS+ligVg3GRx7My6SJWh5Yc6fQqthfp7ImGBMdPAS5MBw7FZ9zLxT8/TbAK4sj3hTHGQs/9yvRj9OzcRKooRFF8e6cfSwtDKWrOGQgNHOU0J41qk/7T4mGnGMe02a9BZ72uTtK/qjl13nm5qjfu8yyI5I+fkkjjkljTII2mSFuFkTF7JG3mnH/STftH5Mlqg+cwpWQH9/gFAWqXR</latexit><latexit sha1_base64="qZaaXUgMKO7ekhVgncJhOuM8+4I=">AAACKHichVDLSsNAFJ2pr1q1trp0EyyCq5KooMuiG5cV7APaUCbTm3boZBJmboQS+gtu9Rv8GnfSrV9i0mZhW8EDA4dzzuXeOV4khUHbntPC1vbO7l5xv3RweFQ+rlRP2iaMNYcWD2Woux4zIIWCFgqU0I00sMCT0PEmD5nfeQFtRKiecRqBG7CREr7gDDNpNLguDSo1u24vYG0SJyc1kqM5qNJyfxjyOACFXDJjeo4doZswjYJLmJX6sYGI8QkbQS+ligVg3GRx7My6SJWh5Yc6fQqthfp7ImGBMdPAS5MBw7FZ9zLxT8/TbAK4sj3hTHGQs/9yvRj9OzcRKooRFF8e6cfSwtDKWrOGQgNHOU0J41qk/7T4mGnGMe02a9BZ72uTtK/qjl13nm5qjfu8yyI5I+fkkjjkljTII2mSFuFkTF7JG3mnH/STftH5Mlqg+cwpWQH9/gFAWqXR</latexit><latexit sha1_base64="qZaaXUgMKO7ekhVgncJhOuM8+4I=">AAACKHichVDLSsNAFJ2pr1q1trp0EyyCq5KooMuiG5cV7APaUCbTm3boZBJmboQS+gtu9Rv8GnfSrV9i0mZhW8EDA4dzzuXeOV4khUHbntPC1vbO7l5xv3RweFQ+rlRP2iaMNYcWD2Woux4zIIWCFgqU0I00sMCT0PEmD5nfeQFtRKiecRqBG7CREr7gDDNpNLguDSo1u24vYG0SJyc1kqM5qNJyfxjyOACFXDJjeo4doZswjYJLmJX6sYGI8QkbQS+ligVg3GRx7My6SJWh5Yc6fQqthfp7ImGBMdPAS5MBw7FZ9zLxT8/TbAK4sj3hTHGQs/9yvRj9OzcRKooRFF8e6cfSwtDKWrOGQgNHOU0J41qk/7T4mGnGMe02a9BZ72uTtK/qjl13nm5qjfu8yyI5I+fkkjjkljTII2mSFuFkTF7JG3mnH/STftH5Mlqg+cwpWQH9/gFAWqXR</latexit><latexit sha1_base64="UWLLxPiKWMhGxtZ4WXFidNyb6Ow=">AAACFnichZDNSsNAFIVv6l+NVdu1m2ARXJXEjS4FNy4r2B9oQ7mZ3LRDJ5MwMxFK6Au49Rl8Gnfixrdx+rOwreCBgcM5d5g7X5QLro3vfzuVvf2Dw6PqsXtSc0/Pzuu1rs4KxajDMpGpfoSaBJfUMdwI6ueKMI0E9aLpw6LvvZDSPJPPZpZTmOJY8oQzNDZqj+pNv+Uv5e2aYG2asNao4ZwN44wVKUnDBGo9CPzchCUqw5mguTssNOXIpjimgbUSU9Jhudxz7l3ZJPaSTNkjjbdMf98oMdV6lkZ2MkUz0dvdIvyzixROyWy8XjKUjMT8v7lBYZK7sOQyLwxJtloyKYRnMm8BzIu5ImbEzBpkitt/emyCCpmxWF0LMNjGtWu6N63AbwVPPlThAi7hGgK4hXt4hDZ0gEEMr/DmvDsfzucKdMVZE2/AhpyvH8ZHoic=</latexit><latexit sha1_base64="IAVOls6bMcvyFoFxXqrfGStxJHk=">AAACHXichZDNSsNAFIVv6l+ttbZu3QwWwVVJdKFLwY3LCvYH2lBuprft0MkkzEyEEvoKbvUZfBp30rcxabuwreCBgcM5d5g7XxBLYazrLpzC3v7B4VHxuHRSPq2cVWvltokSzanFIxnpboCGpFDUssJK6saaMAwkdYLpY953XkkbEakXO4vJD3GsxEhwtHk0HtyWBtW623CXYrvGW5s6rNUc1JxKfxjxJCRluURjep4bWz9FbQWXNC/1E0Mx8imOqZdZhSEZP10uO2dXWTJko0hnR1m2TH/fSDE0ZhYG2WSIdmK2uzz8sws0TsluvJ5yVJzk/L+5XmJH934qVJxYUny15CiRzEYsp8aGQhO3cpYZ5Fpk/2R8ghq5zdjmBL1tXrumfdPw3Ib37EIRLuASrsGDO3iAJ2hCCzhM4A3e4cP5dL6c7xXrgrOGfg4bchY/HWqkPg==</latexit><latexit sha1_base64="IAVOls6bMcvyFoFxXqrfGStxJHk=">AAACHXichZDNSsNAFIVv6l+ttbZu3QwWwVVJdKFLwY3LCvYH2lBuprft0MkkzEyEEvoKbvUZfBp30rcxabuwreCBgcM5d5g7XxBLYazrLpzC3v7B4VHxuHRSPq2cVWvltokSzanFIxnpboCGpFDUssJK6saaMAwkdYLpY953XkkbEakXO4vJD3GsxEhwtHk0HtyWBtW623CXYrvGW5s6rNUc1JxKfxjxJCRluURjep4bWz9FbQWXNC/1E0Mx8imOqZdZhSEZP10uO2dXWTJko0hnR1m2TH/fSDE0ZhYG2WSIdmK2uzz8sws0TsluvJ5yVJzk/L+5XmJH934qVJxYUny15CiRzEYsp8aGQhO3cpYZ5Fpk/2R8ghq5zdjmBL1tXrumfdPw3Ib37EIRLuASrsGDO3iAJ2hCCzhM4A3e4cP5dL6c7xXrgrOGfg4bchY/HWqkPg==</latexit><latexit sha1_base64="/baqA/b8uPYTSDSquGfm946SQYE=">AAACKHichVDLSgMxFE3qq9ZXq0s3wSK4KjO60GXRjcsK9gHtUO6kt21oJjMkGaEM/QW3+g1+jTvp1i9xpp2FbQUPBA7nnMu9OX4khbGOM6eFre2d3b3ifung8Oj4pFw5bZkw1hybPJSh7vhgUAqFTSusxE6kEQJfYtufPGR++wW1EaF6ttMIvQBGSgwFB5tJo/5NqV+uOjVnAbZJ3JxUSY5Gv0KPe4OQxwEqyyUY03WdyHoJaCu4xFmpFxuMgE9ghN2UKgjQeMni2Bm7TJUBG4Y6fcqyhfp7IoHAmGngp8kA7Nise5n4p+drmKBd2Z5wUBzl7L9cN7bDOy8RKootKr48chhLZkOWtcYGQiO3cpoS4Fqk/2R8DBq4TbvNGnTX+9okreua69TcJ6dav8+7LJJzckGuiEtuSZ08kgZpEk7G5JW8kXf6QT/pF50vowWaz5yRFdDvHz8apc0=</latexit><latexit sha1_base64="qZaaXUgMKO7ekhVgncJhOuM8+4I=">AAACKHichVDLSsNAFJ2pr1q1trp0EyyCq5KooMuiG5cV7APaUCbTm3boZBJmboQS+gtu9Rv8GnfSrV9i0mZhW8EDA4dzzuXeOV4khUHbntPC1vbO7l5xv3RweFQ+rlRP2iaMNYcWD2Woux4zIIWCFgqU0I00sMCT0PEmD5nfeQFtRKiecRqBG7CREr7gDDNpNLguDSo1u24vYG0SJyc1kqM5qNJyfxjyOACFXDJjeo4doZswjYJLmJX6sYGI8QkbQS+ligVg3GRx7My6SJWh5Yc6fQqthfp7ImGBMdPAS5MBw7FZ9zLxT8/TbAK4sj3hTHGQs/9yvRj9OzcRKooRFF8e6cfSwtDKWrOGQgNHOU0J41qk/7T4mGnGMe02a9BZ72uTtK/qjl13nm5qjfu8yyI5I+fkkjjkljTII2mSFuFkTF7JG3mnH/STftH5Mlqg+cwpWQH9/gFAWqXR</latexit><latexit sha1_base64="qZaaXUgMKO7ekhVgncJhOuM8+4I=">AAACKHichVDLSsNAFJ2pr1q1trp0EyyCq5KooMuiG5cV7APaUCbTm3boZBJmboQS+gtu9Rv8GnfSrV9i0mZhW8EDA4dzzuXeOV4khUHbntPC1vbO7l5xv3RweFQ+rlRP2iaMNYcWD2Woux4zIIWCFgqU0I00sMCT0PEmD5nfeQFtRKiecRqBG7CREr7gDDNpNLguDSo1u24vYG0SJyc1kqM5qNJyfxjyOACFXDJjeo4doZswjYJLmJX6sYGI8QkbQS+ligVg3GRx7My6SJWh5Yc6fQqthfp7ImGBMdPAS5MBw7FZ9zLxT8/TbAK4sj3hTHGQs/9yvRj9OzcRKooRFF8e6cfSwtDKWrOGQgNHOU0J41qk/7T4mGnGMe02a9BZ72uTtK/qjl13nm5qjfu8yyI5I+fkkjjkljTII2mSFuFkTF7JG3mnH/STftH5Mlqg+cwpWQH9/gFAWqXR</latexit><latexit sha1_base64="qZaaXUgMKO7ekhVgncJhOuM8+4I=">AAACKHichVDLSsNAFJ2pr1q1trp0EyyCq5KooMuiG5cV7APaUCbTm3boZBJmboQS+gtu9Rv8GnfSrV9i0mZhW8EDA4dzzuXeOV4khUHbntPC1vbO7l5xv3RweFQ+rlRP2iaMNYcWD2Woux4zIIWCFgqU0I00sMCT0PEmD5nfeQFtRKiecRqBG7CREr7gDDNpNLguDSo1u24vYG0SJyc1kqM5qNJyfxjyOACFXDJjeo4doZswjYJLmJX6sYGI8QkbQS+ligVg3GRx7My6SJWh5Yc6fQqthfp7ImGBMdPAS5MBw7FZ9zLxT8/TbAK4sj3hTHGQs/9yvRj9OzcRKooRFF8e6cfSwtDKWrOGQgNHOU0J41qk/7T4mGnGMe02a9BZ72uTtK/qjl13nm5qjfu8yyI5I+fkkjjkljTII2mSFuFkTF7JG3mnH/STftH5Mlqg+cwpWQH9/gFAWqXR</latexit><latexit sha1_base64="qZaaXUgMKO7ekhVgncJhOuM8+4I=">AAACKHichVDLSsNAFJ2pr1q1trp0EyyCq5KooMuiG5cV7APaUCbTm3boZBJmboQS+gtu9Rv8GnfSrV9i0mZhW8EDA4dzzuXeOV4khUHbntPC1vbO7l5xv3RweFQ+rlRP2iaMNYcWD2Woux4zIIWCFgqU0I00sMCT0PEmD5nfeQFtRKiecRqBG7CREr7gDDNpNLguDSo1u24vYG0SJyc1kqM5qNJyfxjyOACFXDJjeo4doZswjYJLmJX6sYGI8QkbQS+ligVg3GRx7My6SJWh5Yc6fQqthfp7ImGBMdPAS5MBw7FZ9zLxT8/TbAK4sj3hTHGQs/9yvRj9OzcRKooRFF8e6cfSwtDKWrOGQgNHOU0J41qk/7T4mGnGMe02a9BZ72uTtK/qjl13nm5qjfu8yyI5I+fkkjjkljTII2mSFuFkTF7JG3mnH/STftH5Mlqg+cwpWQH9/gFAWqXR</latexit><latexit sha1_base64="qZaaXUgMKO7ekhVgncJhOuM8+4I=">AAACKHichVDLSsNAFJ2pr1q1trp0EyyCq5KooMuiG5cV7APaUCbTm3boZBJmboQS+gtu9Rv8GnfSrV9i0mZhW8EDA4dzzuXeOV4khUHbntPC1vbO7l5xv3RweFQ+rlRP2iaMNYcWD2Woux4zIIWCFgqU0I00sMCT0PEmD5nfeQFtRKiecRqBG7CREr7gDDNpNLguDSo1u24vYG0SJyc1kqM5qNJyfxjyOACFXDJjeo4doZswjYJLmJX6sYGI8QkbQS+ligVg3GRx7My6SJWh5Yc6fQqthfp7ImGBMdPAS5MBw7FZ9zLxT8/TbAK4sj3hTHGQs/9yvRj9OzcRKooRFF8e6cfSwtDKWrOGQgNHOU0J41qk/7T4mGnGMe02a9BZ72uTtK/qjl13nm5qjfu8yyI5I+fkkjjkljTII2mSFuFkTF7JG3mnH/STftH5Mlqg+cwpWQH9/gFAWqXR</latexit><latexit sha1_base64="qZaaXUgMKO7ekhVgncJhOuM8+4I=">AAACKHichVDLSsNAFJ2pr1q1trp0EyyCq5KooMuiG5cV7APaUCbTm3boZBJmboQS+gtu9Rv8GnfSrV9i0mZhW8EDA4dzzuXeOV4khUHbntPC1vbO7l5xv3RweFQ+rlRP2iaMNYcWD2Woux4zIIWCFgqU0I00sMCT0PEmD5nfeQFtRKiecRqBG7CREr7gDDNpNLguDSo1u24vYG0SJyc1kqM5qNJyfxjyOACFXDJjeo4doZswjYJLmJX6sYGI8QkbQS+ligVg3GRx7My6SJWh5Yc6fQqthfp7ImGBMdPAS5MBw7FZ9zLxT8/TbAK4sj3hTHGQs/9yvRj9OzcRKooRFF8e6cfSwtDKWrOGQgNHOU0J41qk/7T4mGnGMe02a9BZ72uTtK/qjl13nm5qjfu8yyI5I+fkkjjkljTII2mSFuFkTF7JG3mnH/STftH5Mlqg+cwpWQH9/gFAWqXR</latexit>
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FIG. 3. Our choice of plaquettes to update [Pµ⌫(x), yellow],
gauge invariant context for that transformation [I1 and I2,
green], the corresponding updated link [Uµ(x), blue], and the
plaquettes passively modified as a result of the link update
[Pµ⌫(x̃), red] for two-dimensional gauge theory. A repeating
cycle of rotations and translations are applied to the pattern
for successive coupling layers; composition of 8 coupling layers
is su�cient to update every link once for this pattern.

kernel is used to transform untraced loops of links start-
ing and ending at a common point (whose spectrum has
physical, gauge-invariant meaning). Here, we specify a
general method to construct such kernels and investigate
application of these kernels to sampling probability den-
sities on single SU(N) or U(N) variables (representing
marginal distributions on open loops in the full gauge
theory).

In the language of groups, a kernel should move den-
sity between conjugacy classes while preserving struc-
ture within those classes. Each conjugacy class is de-
fined by a set {XUX�1 : X 2 G}, for some U . It
is useful, however, to think of each conjugacy class in
SU(N) or U(N) as a set of all matrices with some par-
ticular spectrum; for example, all matrices with eigenval-
ues {ei3⇡/12, ei5⇡/12, e�i8⇡/12

} form a conjugacy class in
SU(3). Intuitively, a kernel should therefore move density
between possible N -tuples of eigenvalues while preserving
the eigenvector structure. In Appendix A we prove that
this intuition is exact: a kernel can generally be defined
as an invertible map that acts on the list of eigenvalues
of the input matrix, is equivariant under permutations of
the eigenvalues, and leaves the eigenvectors unchanged.
In our applications, we therefore structure the kernel to
accept a matrix-valued input, diagonalize it to produce
an (arbitrarily ordered) list of eigenvalues and eigenvec-
tors, transform the eigenvalues in a permutation equiv-
ariant fashion, then reconstruct the matrix using the new
eigenvalues. Fig. 2 depicts how this spectral flow is ap-
plied in the context of a gauge equivariant coupling layer.

Permutation equivariance is required to ensure that
the kernel acts only based on the spectrum, not the par-
ticular order of eigenvalues produced during diagonaliza-
tion. Normalizing flows that are permutation equivari-
ant have previously been investigated in the machine-
learning community to learn densities over sets (such as
point-clouds, objects in a 3D scene, particles in molecu-
lar dynamics, and particle tracks in collider events) [42–
44, 46–53]. Such approaches are directly applicable to
kernels for U(N) variables (see Appendix E), because the
eigenvalues can be transformed independently. For an
SU(N) variable, however, the constraint det U = 1 must
additionally be satisfied, which prevents these methods
from being straightforwardly applied. As an example,
Figure 4 depicts the space of eigenvalues of SU(2), SU(3),
and SU(4) variables and illustrates the constrained sur-
face of possible eigenvalues as well as the cells on this
surface that are related by permutations in each case.
To be equivariant, a spectral flow for SU(N) must trans-
form values within each cell identically.

In this section, we describe special-case constructions
of permutation equivariant transformations on the eigen-
values of an SU(2) or SU(3) variable, then generalize
the approach to SU(N). In each case, we demonstrate
the expressivity of these transformations by construct-
ing flow-based models in terms of these transformations
and training the models to learn several target families
of densities that are invariant under matrix conjugation.

6

Uµ(x)

<latexit sha1_base64="Cn6Sv5U8YcR38+JDxgGUjyH6ZSk=">AAAB8HicbVBNSwMxEJ31s9avqkcvwSLUS9mVgnorevFYwW0r7VKyabYNTbJLkhXL0l/hxYMiXv053vw3pu0etPXBwOO9GWbmhQln2rjut7Oyura+sVnYKm7v7O7tlw4OmzpOFaE+iXms2iHWlDNJfcMMp+1EUSxCTlvh6Gbqtx6p0iyW92ac0EDggWQRI9hY6cHvdUVaeTpDvVLZrbozoGXi5aQMORq90le3H5NUUGkIx1p3PDcxQYaVYYTTSbGbappgMsID2rFUYkF1kM0OnqBTq/RRFCtb0qCZ+nsiw0LrsQhtp8BmqBe9qfif10lNdBlkTCapoZLMF0UpRyZG0+9RnylKDB9bgoli9lZEhlhhYmxGRRuCt/jyMmmeV71a9equVq5f53EU4BhOoAIeXEAdbqEBPhAQ8Ayv8OYo58V5dz7mrStOPnMEf+B8/gC8t4+7</latexit>

Pµ⌫(x)

<latexit sha1_base64="7ThYkL0hd54foPdguk9iSPVf91o=">AAAB9HicbVDLSgNBEOyNrxhfUY9eBoMQL2FXAuot6MVjBPOA7BJmJ5NkyOzsOo9gWPIdXjwo4tWP8ebfOEn2oIkFDUVVN91dYcKZ0q777eTW1jc2t/LbhZ3dvf2D4uFRU8VGEtogMY9lO8SKciZoQzPNaTuRFEchp61wdDvzW2MqFYvFg54kNIjwQLA+I1hbKah3Uz8yvjDT8tN5t1hyK+4caJV4GSlBhnq3+OX3YmIiKjThWKmO5yY6SLHUjHA6LfhG0QSTER7QjqUCR1QF6fzoKTqzSg/1Y2lLaDRXf0+kOFJqEoW2M8J6qJa9mfif1zG6fxWkTCRGU0EWi/qGIx2jWQKoxyQlmk8swUQyeysiQywx0Tangg3BW355lTQvKl61cn1fLdVusjjycAKnUAYPLqEGd1CHBhB4hGd4hTdn7Lw4787HojXnZDPH8AfO5w+GA5H1</latexit>

U 0
µ
(x)

<latexit sha1_base64="SIWB+K7EDU4oFteuMCWV8qWzo+E=">AAAB+nicbVBNT8JAEN3iF+JX0aOXjcQEL6Q1JOqN6MUjJhZIoDbbZQsbdrfN7lYllZ/ixYPGePWXePPfuEAPCr5kkpf3ZjIzL0wYVdpxvq3Cyura+kZxs7S1vbO7Z5f3WypOJSYejlksOyFShFFBPE01I51EEsRDRtrh6Grqt++JVDQWt3qcEJ+jgaARxUgbKbDL3l0vkZSTIOvxdFJ9PAnsilNzZoDLxM1JBeRoBvZXrx/jlBOhMUNKdV0n0X6GpKaYkUmplyqSIDxCA9I1VCBOlJ/NTp/AY6P0YRRLU0LDmfp7IkNcqTEPTSdHeqgWvan4n9dNdXTuZ1QkqSYCzxdFKYM6htMcYJ9KgjUbG4KwpOZWiIdIIqxNWiUTgrv48jJpndbceu3ipl5pXOZxFMEhOAJV4IIz0ADXoAk8gMEDeAav4M16sl6sd+tj3lqw8pkD8AfW5w8bLJPr</latexit>

C
on

vo
lu

tio
n 

an
d 

M
as

ki
ng

 P
at

te
rn {✓i}

N�1
i=1

<latexit sha1_base64="NAND7h9dFICORU8qa4Uyr8hKzt8=">AAACAXicbVBNS8NAEN3Ur1q/ol4EL8EieLEkUlAPQtGLJ6lgP6CJYbPdtks3m7A7EUqIF/+KFw+KePVfePPfuG1z0NYHA4/3ZpiZF8ScKbDtb6OwsLi0vFJcLa2tb2xumds7TRUlktAGiXgk2wFWlDNBG8CA03YsKQ4DTlvB8Grstx6oVCwSdzCKqRfivmA9RjBoyTf33NSFAQXsMzfzU3bhZPfpzbGT+WbZrtgTWPPEyUkZ5aj75pfbjUgSUgGEY6U6jh2Dl2IJjHCaldxE0RiTIe7TjqYCh1R56eSDzDrUStfqRVKXAGui/p5IcajUKAx0Z4hhoGa9sfif10mgd+alTMQJUEGmi3oJtyCyxnFYXSYpAT7SBBPJ9K0WGWCJCejQSjoEZ/bledI8qTjVyvlttVy7zOMoon10gI6Qg05RDV2jOmoggh7RM3pFb8aT8WK8Gx/T1oKRz+yiPzA+fwA5yJbB</latexit>

{✓i0}
N�1
i0=1

<latexit sha1_base64="agrLQlFTh5VIBRe2SUu92yJGg7g=">AAACBXicbVDLSsNAFJ3UV62vqEtdBIvoxpJIQV0IRTeupIJ9QBPDZDpph04ezNwIJWTjxl9x40IRt/6DO//GSZuFVg9c7uGce5m5x4s5k2CaX1ppbn5hcam8XFlZXVvf0De32jJKBKEtEvFIdD0sKWchbQEDTruxoDjwOO14o8vc79xTIVkU3sI4pk6AByHzGcGgJFfftVMbhhSwm7KDzM7ydm5ld+n1kZW5etWsmRMYf4lVkCoq0HT1T7sfkSSgIRCOpexZZgxOigUwwmlWsRNJY0xGeEB7ioY4oNJJJ1dkxr5S+oYfCVUhGBP150aKAynHgacmAwxDOevl4n9eLwH/1ElZGCdAQzJ9yE+4AZGRR2L0maAE+FgRTARTfzXIEAtMQAVXUSFYsyf/Je3jmlWvnd3Uq42LIo4y2kF76BBZ6AQ10BVqohYi6AE9oRf0qj1qz9qb9j4dLWnFzjb6Be3jG+KNmC8=</latexit>

{✓0
i0}

N�1
i0=1

<latexit sha1_base64="veIdSv0tzvL5vSspuNq3gp5vwDw=">AAACDHicbVDLSsNAFJ34rPVVdekmWEQ3lkQK6kIounElFewDmrRMprft0MmDmRuhhHyAG3/FjQtF3PoB7vwbJ20X2npgmMM55zJzjxcJrtCyvo2FxaXlldXcWn59Y3Nru7CzW1dhLBnUWChC2fSoAsEDqCFHAc1IAvU9AQ1veJ35jQeQiofBPY4icH3aD3iPM4pa6hSKTuLgAJC2nUhyHzoJP0qdNLsu7bSd3J7YqU5ZJWsMc57YU1IkU1Q7hS+nG7LYhwCZoEq1bCtCN6ESOROQ5p1YQUTZkPahpWlAfVBuMl4mNQ+10jV7odQnQHOs/p5IqK/UyPd00qc4ULNeJv7ntWLsnbsJD6IYIWCTh3qxMDE0s2bMLpfAUIw0oUxy/VeTDaikDHV/eV2CPbvyPKmfluxy6eKuXKxcTevIkX1yQI6JTc5IhdyQKqkRRh7JM3klb8aT8WK8Gx+T6IIxndkjf2B8/gCNnJtM</latexit>

{✓0
i
}

N�1
i=1

<latexit sha1_base64="Y2ULtb9Qbm1CwAkE92ntvPA6C5g=">AAACCnicbVC7SgNBFJ31GeMrammzGgQbw64E1EII2lhJBPOA7GaZndwkQ2YfzNwVwrK1jb9iY6GIrV9g5984eRSaeOBeDufcy8w9fiy4Qsv6NhYWl5ZXVnNr+fWNza3tws5uXUWJZFBjkYhk06cKBA+hhhwFNGMJNPAFNPzB9chvPIBUPArvcRiDG9BeyLucUdSSVzhwUgf7gLTtxJIH4KU8czLdL+2snd6e2JlXKFolawxznthTUiRTVL3Cl9OJWBJAiExQpVq2FaObUomcCcjyTqIgpmxAe9DSNKQBKDcdn5KZR1rpmN1I6grRHKu/N1IaKDUMfD0ZUOyrWW8k/ue1EuyeuykP4wQhZJOHuokwMTJHuZgdLoGhGGpCmeT6rybrU0kZ6vTyOgR79uR5Uj8t2eXSxV25WLmaxpEj++SQHBObnJEKuSFVUiOMPJJn8krejCfjxXg3PiajC8Z0Z4/8gfH5A7efmuo=</latexit>

Eigen Decomposition

Extract Angle 
Coordinates

Canonical Permutation

Flow in 
Canonical Cell

Invert 
Canonical Permutation

Recover Eigenvalues

Eigen Recomposition

{�0
i
}

N

i=1

<latexit sha1_base64="BI08NHrQyoe5ihJLVgGMz7CiR9I=">AAACB3icbVDLSsNAFJ3UV62vqEtBgkVwVRIpqAuh6MaVVLAPaNIwmUzaoTOTMDMRSsjOjb/ixoUibv0Fd/6N0zYLbT0wcDjnXO7cEySUSGXb30ZpaXllda28XtnY3NreMXf32jJOBcItFNNYdAMoMSUctxRRFHcTgSELKO4Eo+uJ33nAQpKY36txgj0GB5xEBEGlJd88dDOX6ngI+24iCMM+cXM/I5dO3s9uc9+s2jV7CmuROAWpggJN3/xywxilDHOFKJSy59iJ8jIoFEEU5xU3lTiBaAQHuKcphwxLL5vekVvHWgmtKBb6cWVN1d8TGWRSjlmgkwyqoZz3JuJ/Xi9V0bmXEZ6kCnM0WxSl1FKxNSnFConASNGxJhAJov9qoSEUECldXUWX4MyfvEjapzWnXru4q1cbV0UdZXAAjsAJcMAZaIAb0AQtgMAjeAav4M14Ml6Md+NjFi0Zxcw++APj8weJl5nB</latexit>

Ei
ge

nv
ec

to
rs

Sp
ec

tra
l F

lo
w

M
ax

im
al

 T
or

us
 F

lo
w

P 0
µ⌫

(x)

<latexit sha1_base64="vM7JbFcCBYq7+gAvOgY2FAJohN8=">AAAB/3icbVDLSsNAFJ3UV62vqODGzWAR6qYkUlB3RTcuK9gHNDFMptN26MwkzEzEErPwV9y4UMStv+HOv3HaZqGtBy4czrmXe+8JY0aVdpxvq7C0vLK6VlwvbWxube/Yu3stFSUSkyaOWCQ7IVKEUUGammpGOrEkiIeMtMPR1cRv3xOpaCRu9TgmPkcDQfsUI22kwD5o3KVeLCknWZB6PPFEklUeTgK77FSdKeAicXNSBjkagf3l9SKccCI0ZkipruvE2k+R1BQzkpW8RJEY4REakK6hAnGi/HR6fwaPjdKD/UiaEhpO1d8TKeJKjXloOjnSQzXvTcT/vG6i++d+SkWcaCLwbFE/YVBHcBIG7FFJsGZjQxCW1NwK8RBJhLWJrGRCcOdfXiSt06pbq17c1Mr1yzyOIjgER6ACXHAG6uAaNEATYPAInsEreLOerBfr3fqYtRasfGYf/IH1+QNRVJZP</latexit>

Pe
rm

ut
at

io
n

{�i}
N

i=1

<latexit sha1_base64="n6GVA8pTaM8IbkU/B8dU1IJTOpM=">AAACAHicbVDLSsNAFL2pr1pfURcu3ASL4KokUlAXQtGNK6lgH9DEMJlM2qGTSZiZCCVk46+4caGIWz/DnX/j9LHQ1gMDh3PO5c49QcqoVLb9bZSWlldW18rrlY3Nre0dc3evLZNMYNLCCUtEN0CSMMpJS1HFSDcVBMUBI51geD32O49ESJrwezVKiRejPqcRxUhpyTcP3NxlOh4in7qFn9NLp3jIbwvfrNo1ewJrkTgzUoUZmr755YYJzmLCFWZIyp5jp8rLkVAUM1JU3EySFOEh6pOephzFRHr55IDCOtZKaEWJ0I8ra6L+nshRLOUoDnQyRmog572x+J/Xy1R07uWUp5kiHE8XRRmzVGKN27BCKghWbKQJwoLqv1p4gATCSndW0SU48ycvkvZpzanXLu7q1cbVrI4yHMIRnIADZ9CAG2hCCzAU8Ayv8GY8GS/Gu/ExjZaM2cw+/IHx+QPty5ak</latexit>
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<latexit sha1_base64="V+rtU+C6tADWNshmKyaSzhCn2xo=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKexKQL0FvXiMYB6QXcLsZDYZMzuzzEMIIf/gxYMiXv0fb/6Nk2QPmljQUFR1090VZ5xp4/vfXmFtfWNzq7hd2tnd2z8oHx61tLSK0CaRXKpOjDXlTNCmYYbTTqYoTmNO2/Hodua3n6jSTIoHM85olOKBYAkj2DipFaY2FLZXrvhVfw60SoKcVCBHo1f+CvuS2JQKQzjWuhv4mYkmWBlGOJ2WQqtphskID2jXUYFTqqPJ/NopOnNKHyVSuRIGzdXfExOcaj1OY9eZYjPUy95M/M/rWpNcRRMmMmuoIItFieXISDR7HfWZosTwsSOYKOZuRWSIFSbGBVRyIQTLL6+S1kU1qFWv72uV+k0eRxFO4BTOIYBLqMMdNKAJBB7hGV7hzZPei/fufSxaC14+cwx/4H3+ALh2jz8=</latexit>

µ

<latexit sha1_base64="f07fvjvEmfORWUNjRlniwZ57t5Q=">AAAB6nicbVBNSwMxEJ3Ur1q/qh69BIvgqexKQb0VvXisaD+gXUo2zbahSXZJskJZ+hO8eFDEq7/Im//GtN2Dtj4YeLw3w8y8MBHcWM/7RoW19Y3NreJ2aWd3b/+gfHjUMnGqKWvSWMS6ExLDBFesabkVrJNoRmQoWDsc38789hPThsfq0U4SFkgyVDzilFgnPfRk2i9XvKo3B14lfk4qkKPRL3/1BjFNJVOWCmJM1/cSG2REW04Fm5Z6qWEJoWMyZF1HFZHMBNn81Ck+c8oAR7F2pSyeq78nMiKNmcjQdUpiR2bZm4n/ed3URldBxlWSWqboYlGUCmxjPPsbD7hm1IqJI4Rq7m7FdEQ0odalU3Ih+Msvr5LWRdWvVa/va5X6TR5HEU7gFM7Bh0uowx00oAkUhvAMr/CGBHpB7+hj0VpA+cwx/AH6/AFhPo3i</latexit>

⌫

<latexit sha1_base64="3C0HiAm+hgVAw6FNqb9y4lWpXE4=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoN6KXjxWtB/QhrLZTtqlm03Y3Qgl9Cd48aCIV3+RN/+N2zYHbX0w8Hhvhpl5QSK4Nq777RTW1jc2t4rbpZ3dvf2D8uFRS8epYthksYhVJ6AaBZfYNNwI7CQKaRQIbAfj25nffkKleSwfzSRBP6JDyUPOqLHSQ0+m/XLFrbpzkFXi5aQCORr98ldvELM0QmmYoFp3PTcxfkaV4UzgtNRLNSaUjekQu5ZKGqH2s/mpU3JmlQEJY2VLGjJXf09kNNJ6EgW2M6JmpJe9mfif101NeOVnXCapQckWi8JUEBOT2d9kwBUyIyaWUKa4vZWwEVWUGZtOyYbgLb+8SloXVa9Wvb6vVeo3eRxFOIFTOAcPLqEOd9CAJjAYwjO8wpsjnBfn3flYtBacfOYY/sD5/AFiw43j</latexit>
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<latexit sha1_base64="g3vERbzU3kfXibT9Kek4KMf3Qbg=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoPgKexKQL0FvXhMwDwgWcLspDcZMzu7zMyKIeQLvHhQxKuf5M2/cZLsQRMLGoqqbrq7gkRwbVz328mtrW9sbuW3Czu7e/sHxcOjpo5TxbDBYhGrdkA1Ci6xYbgR2E4U0igQ2ApGtzO/9YhK81jem3GCfkQHkoecUWOl+lOvWHLL7hxklXgZKUGGWq/41e3HLI1QGiao1h3PTYw/ocpwJnBa6KYaE8pGdIAdSyWNUPuT+aFTcmaVPgljZUsaMld/T0xopPU4CmxnRM1QL3sz8T+vk5rwyp9wmaQGJVssClNBTExmX5M+V8iMGFtCmeL2VsKGVFFmbDYFG4K3/PIqaV6UvUr5ul4pVW+yOPJwAqdwDh5cQhXuoAYNYIDwDK/w5jw4L86787FozTnZzDH8gfP5A+oZjQg=</latexit>
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<latexit sha1_base64="lP8chDqyi2ir38K4EGudN9sFXSU="></latexit>

FIG. 2. Decomposition of a single gauge equivariant coupling
layer. Outer gray sections depict the general formulation of
gauge equivariant flows detailed in Ref. [11]. Inner colored
sections detail the kernel we construct in Sec. III for a single
SU(N) variable.
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<latexit sha1_base64="FHlAIcudLN8h4WC/aaokIIW/pKo="></latexit>

Uµ(x)

<latexit sha1_base64="WRM6ulgpHsfUbDC6IQBsJrQDZsg="></latexit>

g1
<latexit sha1_base64="map9deGC9bkZkPqVdq4CVGlL7ZI=">AAACJ3ichVDLSgMxFE3qq1atrS7dBIvgqsyIoMuiG5cV7QPaoWTSO9PQTGZIMkIZ+glu9Rv8GneiS//EtJ2FbQUPBA7nnMu9OX4iuDaO84ULG5tb2zvF3dLe/kH5sFI9aus4VQxaLBax6vpUg+ASWoYbAd1EAY18AR1/fDvzO0+gNI/lo5kk4EU0lDzgjBorPYQDd1CpOXVnDrJO3JzUUI7moIrL/WHM0gikYYJq3XOdxHgZVYYzAdNSP9WQUDamIfQslTQC7WXzW6fkzCpDEsTKPmnIXP09kdFI60nk22REzUivejPxT89XdAxmaXvGqGQgpv/leqkJrr2MyyQ1INniyCAVxMRkVhoZcgXMiIkllClu/0nYiCrKjK22ZBt0V/taJ+2LuuvU3fvLWuMm77KITtApOkcuukINdIeaqIUYCtEzekGv+A2/4w/8uYgWcD5zjJaAv38ABTCluw==</latexit><latexit sha1_base64="map9deGC9bkZkPqVdq4CVGlL7ZI=">AAACJ3ichVDLSgMxFE3qq1atrS7dBIvgqsyIoMuiG5cV7QPaoWTSO9PQTGZIMkIZ+glu9Rv8GneiS//EtJ2FbQUPBA7nnMu9OX4iuDaO84ULG5tb2zvF3dLe/kH5sFI9aus4VQxaLBax6vpUg+ASWoYbAd1EAY18AR1/fDvzO0+gNI/lo5kk4EU0lDzgjBorPYQDd1CpOXVnDrJO3JzUUI7moIrL/WHM0gikYYJq3XOdxHgZVYYzAdNSP9WQUDamIfQslTQC7WXzW6fkzCpDEsTKPmnIXP09kdFI60nk22REzUivejPxT89XdAxmaXvGqGQgpv/leqkJrr2MyyQ1INniyCAVxMRkVhoZcgXMiIkllClu/0nYiCrKjK22ZBt0V/taJ+2LuuvU3fvLWuMm77KITtApOkcuukINdIeaqIUYCtEzekGv+A2/4w/8uYgWcD5zjJaAv38ABTCluw==</latexit><latexit sha1_base64="map9deGC9bkZkPqVdq4CVGlL7ZI=">AAACJ3ichVDLSgMxFE3qq1atrS7dBIvgqsyIoMuiG5cV7QPaoWTSO9PQTGZIMkIZ+glu9Rv8GneiS//EtJ2FbQUPBA7nnMu9OX4iuDaO84ULG5tb2zvF3dLe/kH5sFI9aus4VQxaLBax6vpUg+ASWoYbAd1EAY18AR1/fDvzO0+gNI/lo5kk4EU0lDzgjBorPYQDd1CpOXVnDrJO3JzUUI7moIrL/WHM0gikYYJq3XOdxHgZVYYzAdNSP9WQUDamIfQslTQC7WXzW6fkzCpDEsTKPmnIXP09kdFI60nk22REzUivejPxT89XdAxmaXvGqGQgpv/leqkJrr2MyyQ1INniyCAVxMRkVhoZcgXMiIkllClu/0nYiCrKjK22ZBt0V/taJ+2LuuvU3fvLWuMm77KITtApOkcuukINdIeaqIUYCtEzekGv+A2/4w/8uYgWcD5zjJaAv38ABTCluw==</latexit><latexit sha1_base64="map9deGC9bkZkPqVdq4CVGlL7ZI=">AAACJ3ichVDLSgMxFE3qq1atrS7dBIvgqsyIoMuiG5cV7QPaoWTSO9PQTGZIMkIZ+glu9Rv8GneiS//EtJ2FbQUPBA7nnMu9OX4iuDaO84ULG5tb2zvF3dLe/kH5sFI9aus4VQxaLBax6vpUg+ASWoYbAd1EAY18AR1/fDvzO0+gNI/lo5kk4EU0lDzgjBorPYQDd1CpOXVnDrJO3JzUUI7moIrL/WHM0gikYYJq3XOdxHgZVYYzAdNSP9WQUDamIfQslTQC7WXzW6fkzCpDEsTKPmnIXP09kdFI60nk22REzUivejPxT89XdAxmaXvGqGQgpv/leqkJrr2MyyQ1INniyCAVxMRkVhoZcgXMiIkllClu/0nYiCrKjK22ZBt0V/taJ+2LuuvU3fvLWuMm77KITtApOkcuukINdIeaqIUYCtEzekGv+A2/4w/8uYgWcD5zjJaAv38ABTCluw==</latexit>

g2
<latexit sha1_base64="APyp7iOenZZ25oyZN+BqLZ0hFao=">AAACJ3ichVDLSgMxFE3qq1atrS7dBIvgqswUQZdFNy4r2ge0Q8mkd6ahmcyQZIQy9BPc6jf4Ne5El/6JaTsLawUPBA7nnMu9OX4iuDaO84kLG5tb2zvF3dLe/kH5sFI96ug4VQzaLBax6vlUg+AS2oYbAb1EAY18AV1/cjP3u4+gNI/lg5km4EU0lDzgjBor3YfDxrBSc+rOAmSduDmpoRytYRWXB6OYpRFIwwTVuu86ifEyqgxnAmalQaohoWxCQ+hbKmkE2ssWt87ImVVGJIiVfdKQhfpzIqOR1tPIt8mImrH+7c3FPz1f0QmYle0Zo5KBmP2X66cmuPIyLpPUgGTLI4NUEBOTeWlkxBUwI6aWUKa4/SdhY6ooM7bakm3Q/d3XOuk06q5Td+8uas3rvMsiOkGn6By56BI10S1qoTZiKERP6Bm94Ff8ht/xxzJawPnMMVoB/voGBvGlvA==</latexit><latexit sha1_base64="APyp7iOenZZ25oyZN+BqLZ0hFao=">AAACJ3ichVDLSgMxFE3qq1atrS7dBIvgqswUQZdFNy4r2ge0Q8mkd6ahmcyQZIQy9BPc6jf4Ne5El/6JaTsLawUPBA7nnMu9OX4iuDaO84kLG5tb2zvF3dLe/kH5sFI96ug4VQzaLBax6vlUg+AS2oYbAb1EAY18AV1/cjP3u4+gNI/lg5km4EU0lDzgjBor3YfDxrBSc+rOAmSduDmpoRytYRWXB6OYpRFIwwTVuu86ifEyqgxnAmalQaohoWxCQ+hbKmkE2ssWt87ImVVGJIiVfdKQhfpzIqOR1tPIt8mImrH+7c3FPz1f0QmYle0Zo5KBmP2X66cmuPIyLpPUgGTLI4NUEBOTeWlkxBUwI6aWUKa4/SdhY6ooM7bakm3Q/d3XOuk06q5Td+8uas3rvMsiOkGn6By56BI10S1qoTZiKERP6Bm94Ff8ht/xxzJawPnMMVoB/voGBvGlvA==</latexit><latexit sha1_base64="APyp7iOenZZ25oyZN+BqLZ0hFao=">AAACJ3ichVDLSgMxFE3qq1atrS7dBIvgqswUQZdFNy4r2ge0Q8mkd6ahmcyQZIQy9BPc6jf4Ne5El/6JaTsLawUPBA7nnMu9OX4iuDaO84kLG5tb2zvF3dLe/kH5sFI96ug4VQzaLBax6vlUg+AS2oYbAb1EAY18AV1/cjP3u4+gNI/lg5km4EU0lDzgjBor3YfDxrBSc+rOAmSduDmpoRytYRWXB6OYpRFIwwTVuu86ifEyqgxnAmalQaohoWxCQ+hbKmkE2ssWt87ImVVGJIiVfdKQhfpzIqOR1tPIt8mImrH+7c3FPz1f0QmYle0Zo5KBmP2X66cmuPIyLpPUgGTLI4NUEBOTeWlkxBUwI6aWUKa4/SdhY6ooM7bakm3Q/d3XOuk06q5Td+8uas3rvMsiOkGn6By56BI10S1qoTZiKERP6Bm94Ff8ht/xxzJawPnMMVoB/voGBvGlvA==</latexit><latexit sha1_base64="APyp7iOenZZ25oyZN+BqLZ0hFao=">AAACJ3ichVDLSgMxFE3qq1atrS7dBIvgqswUQZdFNy4r2ge0Q8mkd6ahmcyQZIQy9BPc6jf4Ne5El/6JaTsLawUPBA7nnMu9OX4iuDaO84kLG5tb2zvF3dLe/kH5sFI96ug4VQzaLBax6vlUg+AS2oYbAb1EAY18AV1/cjP3u4+gNI/lg5km4EU0lDzgjBor3YfDxrBSc+rOAmSduDmpoRytYRWXB6OYpRFIwwTVuu86ifEyqgxnAmalQaohoWxCQ+hbKmkE2ssWt87ImVVGJIiVfdKQhfpzIqOR1tPIt8mImrH+7c3FPz1f0QmYle0Zo5KBmP2X66cmuPIyLpPUgGTLI4NUEBOTeWlkxBUwI6aWUKa4/SdhY6ooM7bakm3Q/d3XOuk06q5Td+8uas3rvMsiOkGn6By56BI10S1qoTZiKERP6Bm94Ff8ht/xxzJawPnMMVoB/voGBvGlvA==</latexit>

g3
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FIG. 3. Our choice of plaquettes to update [Pµ⌫(x), yellow],
gauge invariant context for that transformation [I1 and I2,
green], the corresponding updated link [Uµ(x), blue], and the
plaquettes passively modified as a result of the link update
[Pµ⌫(x̃), red] for two-dimensional gauge theory. A repeating
cycle of rotations and translations are applied to the pattern
for successive coupling layers; composition of 8 coupling layers
is su�cient to update every link once for this pattern.

kernel is used to transform untraced loops of links start-
ing and ending at a common point (whose spectrum has
physical, gauge-invariant meaning). Here, we specify a
general method to construct such kernels and investigate
application of these kernels to sampling probability den-
sities on single SU(N) or U(N) variables (representing
marginal distributions on open loops in the full gauge
theory).

In the language of groups, a kernel should move den-
sity between conjugacy classes while preserving struc-
ture within those classes. Each conjugacy class is de-
fined by a set {XUX�1 : X 2 G}, for some U . It
is useful, however, to think of each conjugacy class in
SU(N) or U(N) as a set of all matrices with some par-
ticular spectrum; for example, all matrices with eigenval-
ues {ei3⇡/12, ei5⇡/12, e�i8⇡/12

} form a conjugacy class in
SU(3). Intuitively, a kernel should therefore move density
between possible N -tuples of eigenvalues while preserving
the eigenvector structure. In Appendix A we prove that
this intuition is exact: a kernel can generally be defined
as an invertible map that acts on the list of eigenvalues
of the input matrix, is equivariant under permutations of
the eigenvalues, and leaves the eigenvectors unchanged.
In our applications, we therefore structure the kernel to
accept a matrix-valued input, diagonalize it to produce
an (arbitrarily ordered) list of eigenvalues and eigenvec-
tors, transform the eigenvalues in a permutation equiv-
ariant fashion, then reconstruct the matrix using the new
eigenvalues. Fig. 2 depicts how this spectral flow is ap-
plied in the context of a gauge equivariant coupling layer.

Permutation equivariance is required to ensure that
the kernel acts only based on the spectrum, not the par-
ticular order of eigenvalues produced during diagonaliza-
tion. Normalizing flows that are permutation equivari-
ant have previously been investigated in the machine-
learning community to learn densities over sets (such as
point-clouds, objects in a 3D scene, particles in molecu-
lar dynamics, and particle tracks in collider events) [42–
44, 46–53]. Such approaches are directly applicable to
kernels for U(N) variables (see Appendix E), because the
eigenvalues can be transformed independently. For an
SU(N) variable, however, the constraint det U = 1 must
additionally be satisfied, which prevents these methods
from being straightforwardly applied. As an example,
Figure 4 depicts the space of eigenvalues of SU(2), SU(3),
and SU(4) variables and illustrates the constrained sur-
face of possible eigenvalues as well as the cells on this
surface that are related by permutations in each case.
To be equivariant, a spectral flow for SU(N) must trans-
form values within each cell identically.

In this section, we describe special-case constructions
of permutation equivariant transformations on the eigen-
values of an SU(2) or SU(3) variable, then generalize
the approach to SU(N). In each case, we demonstrate
the expressivity of these transformations by construct-
ing flow-based models in terms of these transformations
and training the models to learn several target families
of densities that are invariant under matrix conjugation.
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Demonstration of accelerated sampling in U(1) field theory 
(2D, L=16) [Kanwar et al., 2003.06413]

Application: U(1) field theory
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FIG. 2. An example of a variable splitting based on a tiled
4 ⇥ 1 pattern with an actively updated link U i ⌘ Uµ(x) and
1 ⇥ 1 loop U iSi ⌘ Pµ⌫(x) located at x, a passively updated
1⇥ 1 loop at ex = x� ⌫̂, and two frozen traced 1⇥ 1 loops at
x+ ⌫̂ and x+ 2⌫̂ included in the set Ii.

which implies that U 0i
! eU 0i transforms according to

Eq. (2),

eU 0i = h
�
⌦(x) U iSi ⌦†(x)|Ii

�
⌦(x)Si†⌦†(x + µ̂)

= ⌦(x)U 0i⌦†(x + µ̂).
(5)

To ensure invertibility, the product of links Si must not
contain any links in UA.

For an Abelian group, the transformation property
in Eq. (4) is trivially satisfied by any kernel. In
the U(1) gauge theory considered below, we there-
fore define the kernel using invertible flows parame-
terized by neural networks. For non-Abelian theo-
ries, it has been shown that it is possible to con-
struct invertible functions on spheres [63] and surjec-
tive functions on general Lie groups [64]. If these ap-
proaches can be generalized to produce invertible func-
tions with convergent power expansions, they will sat-
isfy the necessary kernel transformation property, since
h(XWX†) =

P
n ↵n(XWX†)n = X h(W ) X†.

An example of a variable splitting suitable for both
Abelian and non-Abelian gauge theories is given by the
pattern depicted in Fig. 2. In this example, the set of
updated links UA consists of vertical links spaced by 4
sites, and the products U iSi are 1 ⇥ 1 loops adjacent to
each U i. This is su�ciently sparse such that every Si

is independent of all updated links in UA, and a non-
trivial set of invariants Ii (e.g. all traced 1⇥ 1 loops that
are not adjacent to updated links) can be constructed
to parametrize the transformation. Composing coupling
layers using rotations and o↵sets of the pattern allows all
links to be updated.2

2 For example, composing 8 such layers is su�cient to update all
links in 2D.

Using gauge-equivariant coupling layers constructed in
terms of kernels generalizes the “trivializing map” pro-
posed in Ref. [65]. There, repeatedly applying a spe-
cific kernel based on gradients of the action theoretically
trivializes a gauge theory, i.e. maps the Euclidean time
distribution to a uniform one. The family of gauge equiv-
ariant flows defined here includes the trivializing map in
the limit of a large number of coupling layers and arbi-
trarily expressive kernel, indicating that in this limiting
case exact sampling as described in Ref. [65] is possible.
However, the approach presented here allows for more
general and inexpensive parametrizations of h. These
can be optimized to produce flows that similarly trivial-
ize the theory, and which may have a lower cost of evalu-
ation than implementations of the analytical trivializing
map [66].
Application to U(1) gauge theory.— Gauge theory with

a U(1) gauge group defined in two spacetime dimensions
is the quenched limit of 1 + 1D electrodynamics, i.e. the
Schwinger model [67]. The full Schwinger model repro-
duces many features of quantum chromodynamics (con-
finement, an axial anomaly, topology, and chiral symme-
try breaking) while being analytically tractable. Even in
the quenched limit, the well-defined gauge field topology
results in severe critical slowing down of MCMC meth-
ods for sampling lattice discretizations of the model as
the coupling is taken to criticality. We consider the lat-
tice discretization given by the Wilson gauge action [68],

S(U) := ��
X

x

Re P (x), (6)

where P (x) is the plaquette at x defined in terms of link
variables Uµ(x) 2 U(1),

P (x) := U0(x)U1(x + 0̂)U†

0 (x + 1̂)U†

1 (x), (7)

and x = (x0, x1) runs over coordinates in an L⇥L square
lattice with periodic boundary conditions. Physical infor-
mation may be extracted from the model by considering
expectation values of observables O under the Euclidean
time path integral,

hOi :=
1

Z

Z
DU O(U)e�S(U), (8)

where
R

DU denotes integration over the product of
Haar measures for each link, and Z =

R
DU e�S(U). In

this study, three key observables were considered:

1. Expectation values of powers of plaquettes.

2. Expectation values of ` ⇥ ` Wilson loops W`⇥` =Q
x2`⇥` P (x).

3. Topological susceptibility �Q = hQ2/V i, where
topological charge Q := 1

2⇡

P
x arg (P (x)) is de-

fined in terms of plaquette phase in the principal
interval, arg (P (x)) 2 [�⇡, ⇡].
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4

FIG. 3. Left: estimates of average Wilson loops hW`⇥`i mea-
sured on the finest ensemble studied here (� = 7). Right:
estimates of topological susceptibility measured on the three
finest ensembles studied here (� = 5, 6, 7). All values are plot-
ted as ratios to the exact results. The flow-based estimates
are consistent with the exact values, while the HMC and Heat
Bath estimates have larger uncertainties and also significantly
deviate from the exact values in some cases.

To investigate critical slowing down, we studied the
theory at a fixed lattice size, L = 16, using seven choices
of the parameter � = {1, 2, 3, 4, 5, 6, 7}; the theory ap-
proaches the continuum limit as � ! 1. For each pa-
rameter choice, we trained gauge invariant flow-based
models using a uniform prior distribution and a composi-
tion of 24 gauge-equivariant coupling layers. The kernels
h were chosen to be mixtures of Non-Compact Projec-
tions [63], which are suitable for U(1) group elements;
in particular, we used 6 components for each mixture
and parameterized each transformation with a convolu-
tional neural network. The model architecture was held
fixed across all choices of �, ensuring identical cost to
draw samples for each parameter choice. To train the
models, we minimized the Kullback-Leibler divergence
between the model density q(U) and the target density
e�S(U)/Z. Training was halted when the loss function
reached a plateau. For this proof-of-principle study, we
did not perform extensive optimization over the variable
splitting pattern, neural network architecture, or train-
ing hyperparameters, and it is likely that better models
can be trained.

After training, the flow-based models were used to gen-
erate proposals for a Metropolis independence Markov
chain [25], producing ensembles of 100, 000 samples each.
For comparison, ensembles of identical size were pro-
duced using the HMC and Heat Bath algorithms. For
all choices of �, we fixed the HMC trajectory length to
achieve > 80% acceptance rate when using a leapfrog in-
tegrator with 5 steps. Each HB step was defined as one
sweep, i.e. a single update of every link. To within 10%,
the computational cost per HMC trajectory was equal
to the cost per proposal from the flow-based model in
a single-threaded CPU environment, while the cost per
Heat Bath step was half that of HMC or flow.

Using samples from a flow-based model as proposals
within a Markov chain ensures unbiased estimates after

1 2 3 4 5 6 7

�
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� int
Q
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Flow

FIG. 4. Integrated autocorrelation time for the topological
charge, ⌧ int

Q , measured on ensembles of 16 ⇥ 16 lattices gen-
erated using HMC, Heat Bath, and the flow-based algorithm.
Ten replicas of each ensemble were used to estimate errors,
which are smaller than the plot markers for most points.

thermalization; at the finite ensemble size used here, all
observables were found to agree with analytical results
within statistical uncertainties. Of the observables we
studied, local quantities like powers of plaquettes and
expectation values of small Wilson loops were estimated
more precisely by HMC and HB than with the flow-based
algorithm. However, Fig. 3 shows that for observables
with larger extent such as W`⇥` with ` � 4, and par-
ticularly for �Q, large autocorrelations in the HMC and
HB samples result in estimates that deviate from the ex-
act values and have lower precision than the flow-based
estimates.

For Markov chain methods, the characteristic length of
autocorrelations for an observable O can be defined by
the integrated autocorrelation time ⌧ int

O
[69]. Fig. 4 com-

pares ⌧ int
Q for HMC and HB to that in the flow-based al-

gorithm as an indicator of how well the three methods ex-
plore the distribution of topological charge. For all three
methods, ⌧ int

Q grows as � is increased towards the con-
tinuum limit. However, this problem is far less severe for
the flow-based algorithm than for HMC or HB. For exam-
ple, the autocorrelation time in the flow-based algorithm
is approximately 10 at the largest value of �, whereas
⌧ int
Q ⇡ 4000 for HB and ⌧ int

Q ⇡ 15000 for HMC. Account-
ing for the relative cost per step of each Markov chain,
the flow-based Metropolis sampler is therefore roughly
1500 times more e�cient than HMC and 200 times more
e�cient than Heat Bath in determining topological quan-
tities. A promising possibility for further development is
mixing flow-based Markov chain steps with HMC tra-
jectories or Heat Bath sweeps to gain the benefits of
standard Markov chain steps for local observables and
of the flow-based algorithm for extended and topological
observables.

Summary.— Critical slowing down of sampling in lat-
tice gauge theories is an obstacle to precisely estimat-
ing quantities of physical interest as critical limits of the

• Efficient sampling of different 
topological sectors 

• Cost of sample from flow model  
~ cost of HMC trajectory  
i.e., flow model orders of magnitude 
more efficient at large coupling 

• Increase in autocorrelation time in 
flow samples at large coupling 
resulting from lower model quality 
           illustrates trade-off between 
sampling cost and model 
development/training 
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We define a class of machine-learned flow-based sampling algorithms for lattice gauge theories
that are gauge-invariant by construction. We demonstrate the application of this framework to
U(1) gauge theory in two spacetime dimensions, and find that near critical points in parameter
space the approach is orders of magnitude more e�cient at sampling topological quantities than
more traditional sampling procedures such as Hybrid Monte Carlo and Heat Bath.

Many important physical theories are described by La-
grangians that are invariant under local symmetry trans-
formations that form Lie groups; such theories are named
gauge theories. For example, the Standard Model of
particle physics, which is our most accurate descrip-
tion of Nature at the shortest length-scales, is a quan-
tum field theory centered around the action of three
gauge groups [1–4], and several important condensed
matter systems can be described by e↵ective gauge theo-
ries [5–8]. In the strong-coupling limit, these theories are
non-perturbative, and numerical formulations on discrete
spacetime lattices o↵er the only known way to compute
properties of interest from first principles.

Calculations within lattice frameworks typically pro-
ceed by estimating expectation values of observables
using Markov Chain Monte Carlo (MCMC) to sam-
ple from thermodynamic distributions or Euclidean-time
path integrals. In both cases, samples U (typically high-
dimensional) are drawn from an exponentially weighted
distribution p(U) = e�S(U)/Z, where the physics is en-
coded in an energy or action functional S(U), and the
normalizing constant Z is unknown. When MCMC sam-
pling from the distribution p(U) is e�cient, precise phys-
ical predictions can be made from the theory. However,
as the model parameters are tuned towards criticality,
e.g. to describe universal properties of condensed mat-
ter theories or to access the continuum limit of quantum
field theories, critical slowing down (CSD) can cause the
computational cost of sampling to diverge [9].

Specialized approaches have been developed to avoid
CSD for specific theories [10–19]. For several theories of
interest, however, CSD obstructs calculations. This is
true in particular for the lattice formulation of quantum
chromodynamics (QCD) [20–22], which enables calcula-
tions of non-perturbative phenomena arising from the
Standard Model of particle physics. Recently, there has
been progress in the development of flow-based gener-
ative models which can be trained to directly produce
samples from a given probability distribution; early suc-
cess has been demonstrated in theories of bosonic matter,
spin systems, molecular systems, and for Brownian mo-
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FIG. 1. Standard approaches (HMC and HB) to MCMC sam-
pling for U(1) gauge theory explore the distribution of topo-
logical charge Q very slowly compared with the flow-based
approach introduced here. Results are shown for coupling
� = 7 on a 16⇥ 16 lattice, see Eq. (6). The first (second) half
of the Markov chain history is displayed for HMC (HB).

tion [23–33]. This progress builds on the great success of
flow-based approaches for image, text, and structured ob-
ject generation [34–41], as well as non-flow-based machine
learning techniques applied to sampling for physics [42–
46]. If flow-based algorithms can be designed and imple-
mented at the scale of state-of-the-art calculations, they
would enable e�cient sampling in lattice theories that
are currently hindered by CSD.

In this Letter, we develop a provably correct flow-based
sampling algorithm designed for lattice gauge theories,
including lattice QCD. We demonstrate the application
of this approach to U(1) gauge theory in two spacetime
dimensions. This theory is solvable, and thus provides a
testing ground where the accuracy of numerical methods
can be checked. Two standard MCMC approaches, Hy-
brid Monte Carlo (HMC) [47] and Heat Bath (HB) [48–
50], su↵er from critical slowing down in this theory; for
example, Fig. 1 depicts Markov chain histories for sam-
pling near the continuum limit, in which both methods
explore topological sectors very slowly. Using our flow-
based algorithm, independent samples of field configu-
rations are produced with appropriate frequency from
each topological sector, enabling far more accurate esti-
mation of topological quantities at a given computational
cost. Critical to the success of this approach is enforc-
ing exact gauge symmetry in the flow-based distribution:
when the symmetry is enforced, we can successfully train

ar
X

iv
:2

00
3.

06
41

3v
1 

 [h
ep

-la
t] 

 1
3 

M
ar

 2
02

0

MIT-CTP/5181

Equivariant flow-based sampling for lattice gauge theory

Gurtej Kanwar,1 Michael S. Albergo,2 Denis Boyda,1 Kyle Cranmer,2 Daniel C. Hackett,1
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We define a class of machine-learned flow-based sampling algorithms for lattice gauge theories
that are gauge-invariant by construction. We demonstrate the application of this framework to
U(1) gauge theory in two spacetime dimensions, and find that near critical points in parameter
space the approach is orders of magnitude more e�cient at sampling topological quantities than
more traditional sampling procedures such as Hybrid Monte Carlo and Heat Bath.

Many important physical theories are described by La-
grangians that are invariant under local symmetry trans-
formations that form Lie groups; such theories are named
gauge theories. For example, the Standard Model of
particle physics, which is our most accurate descrip-
tion of Nature at the shortest length-scales, is a quan-
tum field theory centered around the action of three
gauge groups [1–4], and several important condensed
matter systems can be described by e↵ective gauge theo-
ries [5–8]. In the strong-coupling limit, these theories are
non-perturbative, and numerical formulations on discrete
spacetime lattices o↵er the only known way to compute
properties of interest from first principles.

Calculations within lattice frameworks typically pro-
ceed by estimating expectation values of observables
using Markov Chain Monte Carlo (MCMC) to sam-
ple from thermodynamic distributions or Euclidean-time
path integrals. In both cases, samples U (typically high-
dimensional) are drawn from an exponentially weighted
distribution p(U) = e�S(U)/Z, where the physics is en-
coded in an energy or action functional S(U), and the
normalizing constant Z is unknown. When MCMC sam-
pling from the distribution p(U) is e�cient, precise phys-
ical predictions can be made from the theory. However,
as the model parameters are tuned towards criticality,
e.g. to describe universal properties of condensed mat-
ter theories or to access the continuum limit of quantum
field theories, critical slowing down (CSD) can cause the
computational cost of sampling to diverge [9].

Specialized approaches have been developed to avoid
CSD for specific theories [10–19]. For several theories of
interest, however, CSD obstructs calculations. This is
true in particular for the lattice formulation of quantum
chromodynamics (QCD) [20–22], which enables calcula-
tions of non-perturbative phenomena arising from the
Standard Model of particle physics. Recently, there has
been progress in the development of flow-based gener-
ative models which can be trained to directly produce
samples from a given probability distribution; early suc-
cess has been demonstrated in theories of bosonic matter,
spin systems, molecular systems, and for Brownian mo-
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FIG. 1. Standard approaches (HMC and HB) to MCMC sam-
pling for U(1) gauge theory explore the distribution of topo-
logical charge Q very slowly compared with the flow-based
approach introduced here. Results are shown for coupling
� = 7 on a 16⇥ 16 lattice, see Eq. (6). The first (second) half
of the Markov chain history is displayed for HMC (HB).

tion [23–33]. This progress builds on the great success of
flow-based approaches for image, text, and structured ob-
ject generation [34–41], as well as non-flow-based machine
learning techniques applied to sampling for physics [42–
46]. If flow-based algorithms can be designed and imple-
mented at the scale of state-of-the-art calculations, they
would enable e�cient sampling in lattice theories that
are currently hindered by CSD.

In this Letter, we develop a provably correct flow-based
sampling algorithm designed for lattice gauge theories,
including lattice QCD. We demonstrate the application
of this approach to U(1) gauge theory in two spacetime
dimensions. This theory is solvable, and thus provides a
testing ground where the accuracy of numerical methods
can be checked. Two standard MCMC approaches, Hy-
brid Monte Carlo (HMC) [47] and Heat Bath (HB) [48–
50], su↵er from critical slowing down in this theory; for
example, Fig. 1 depicts Markov chain histories for sam-
pling near the continuum limit, in which both methods
explore topological sectors very slowly. Using our flow-
based algorithm, independent samples of field configu-
rations are produced with appropriate frequency from
each topological sector, enabling far more accurate esti-
mation of topological quantities at a given computational
cost. Critical to the success of this approach is enforc-
ing exact gauge symmetry in the flow-based distribution:
when the symmetry is enforced, we can successfully train
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FIG. 2. An example of a variable splitting based on a tiled
4 ⇥ 1 pattern with an actively updated link U i ⌘ Uµ(x) and
1 ⇥ 1 loop U iSi ⌘ Pµ⌫(x) located at x, a passively updated
1⇥ 1 loop at ex = x� ⌫̂, and two frozen traced 1⇥ 1 loops at
x+ ⌫̂ and x+ 2⌫̂ included in the set Ii.

which implies that U 0i
! eU 0i transforms according to

Eq. (2),

eU 0i = h
�
⌦(x) U iSi ⌦†(x)|Ii

�
⌦(x)Si†⌦†(x + µ̂)

= ⌦(x)U 0i⌦†(x + µ̂).
(5)

To ensure invertibility, the product of links Si must not
contain any links in UA.

For an Abelian group, the transformation property
in Eq. (4) is trivially satisfied by any kernel. In
the U(1) gauge theory considered below, we there-
fore define the kernel using invertible flows parame-
terized by neural networks. For non-Abelian theo-
ries, it has been shown that it is possible to con-
struct invertible functions on spheres [63] and surjec-
tive functions on general Lie groups [64]. If these ap-
proaches can be generalized to produce invertible func-
tions with convergent power expansions, they will sat-
isfy the necessary kernel transformation property, since
h(XWX†) =

P
n ↵n(XWX†)n = X h(W ) X†.

An example of a variable splitting suitable for both
Abelian and non-Abelian gauge theories is given by the
pattern depicted in Fig. 2. In this example, the set of
updated links UA consists of vertical links spaced by 4
sites, and the products U iSi are 1 ⇥ 1 loops adjacent to
each U i. This is su�ciently sparse such that every Si

is independent of all updated links in UA, and a non-
trivial set of invariants Ii (e.g. all traced 1⇥ 1 loops that
are not adjacent to updated links) can be constructed
to parametrize the transformation. Composing coupling
layers using rotations and o↵sets of the pattern allows all
links to be updated.2

2 For example, composing 8 such layers is su�cient to update all
links in 2D.

Using gauge-equivariant coupling layers constructed in
terms of kernels generalizes the “trivializing map” pro-
posed in Ref. [65]. There, repeatedly applying a spe-
cific kernel based on gradients of the action theoretically
trivializes a gauge theory, i.e. maps the Euclidean time
distribution to a uniform one. The family of gauge equiv-
ariant flows defined here includes the trivializing map in
the limit of a large number of coupling layers and arbi-
trarily expressive kernel, indicating that in this limiting
case exact sampling as described in Ref. [65] is possible.
However, the approach presented here allows for more
general and inexpensive parametrizations of h. These
can be optimized to produce flows that similarly trivial-
ize the theory, and which may have a lower cost of evalu-
ation than implementations of the analytical trivializing
map [66].
Application to U(1) gauge theory.— Gauge theory with

a U(1) gauge group defined in two spacetime dimensions
is the quenched limit of 1 + 1D electrodynamics, i.e. the
Schwinger model [67]. The full Schwinger model repro-
duces many features of quantum chromodynamics (con-
finement, an axial anomaly, topology, and chiral symme-
try breaking) while being analytically tractable. Even in
the quenched limit, the well-defined gauge field topology
results in severe critical slowing down of MCMC meth-
ods for sampling lattice discretizations of the model as
the coupling is taken to criticality. We consider the lat-
tice discretization given by the Wilson gauge action [68],

S(U) := ��
X

x

Re P (x), (6)

where P (x) is the plaquette at x defined in terms of link
variables Uµ(x) 2 U(1),

P (x) := U0(x)U1(x + 0̂)U†

0 (x + 1̂)U†

1 (x), (7)

and x = (x0, x1) runs over coordinates in an L⇥L square
lattice with periodic boundary conditions. Physical infor-
mation may be extracted from the model by considering
expectation values of observables O under the Euclidean
time path integral,

hOi :=
1

Z

Z
DU O(U)e�S(U), (8)

where
R

DU denotes integration over the product of
Haar measures for each link, and Z =

R
DU e�S(U). In

this study, three key observables were considered:

1. Expectation values of powers of plaquettes.

2. Expectation values of ` ⇥ ` Wilson loops W`⇥` =Q
x2`⇥` P (x).

3. Topological susceptibility �Q = hQ2/V i, where
topological charge Q := 1

2⇡

P
x arg (P (x)) is de-

fined in terms of plaquette phase in the principal
interval, arg (P (x)) 2 [�⇡, ⇡].

Demonstration of accelerated sampling in U(1) field theory 
(2D, L=16) [Kanwar et al., 2003.06413]
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FIG. 2. An example of a variable splitting based on a tiled
4 ⇥ 1 pattern with an actively updated link U i ⌘ Uµ(x) and
1 ⇥ 1 loop U iSi ⌘ Pµ⌫(x) located at x, a passively updated
1⇥ 1 loop at ex = x� ⌫̂, and two frozen traced 1⇥ 1 loops at
x+ ⌫̂ and x+ 2⌫̂ included in the set Ii.

which implies that U 0i
! eU 0i transforms according to

Eq. (2),

eU 0i = h
�
⌦(x) U iSi ⌦†(x)|Ii

�
⌦(x)Si†⌦†(x + µ̂)

= ⌦(x)U 0i⌦†(x + µ̂).
(5)

To ensure invertibility, the product of links Si must not
contain any links in UA.

For an Abelian group, the transformation property
in Eq. (4) is trivially satisfied by any kernel. In
the U(1) gauge theory considered below, we there-
fore define the kernel using invertible flows parame-
terized by neural networks. For non-Abelian theo-
ries, it has been shown that it is possible to con-
struct invertible functions on spheres [63] and surjec-
tive functions on general Lie groups [64]. If these ap-
proaches can be generalized to produce invertible func-
tions with convergent power expansions, they will sat-
isfy the necessary kernel transformation property, since
h(XWX†) =

P
n ↵n(XWX†)n = X h(W ) X†.

An example of a variable splitting suitable for both
Abelian and non-Abelian gauge theories is given by the
pattern depicted in Fig. 2. In this example, the set of
updated links UA consists of vertical links spaced by 4
sites, and the products U iSi are 1 ⇥ 1 loops adjacent to
each U i. This is su�ciently sparse such that every Si

is independent of all updated links in UA, and a non-
trivial set of invariants Ii (e.g. all traced 1⇥ 1 loops that
are not adjacent to updated links) can be constructed
to parametrize the transformation. Composing coupling
layers using rotations and o↵sets of the pattern allows all
links to be updated.2

2 For example, composing 8 such layers is su�cient to update all
links in 2D.

Using gauge-equivariant coupling layers constructed in
terms of kernels generalizes the “trivializing map” pro-
posed in Ref. [65]. There, repeatedly applying a spe-
cific kernel based on gradients of the action theoretically
trivializes a gauge theory, i.e. maps the Euclidean time
distribution to a uniform one. The family of gauge equiv-
ariant flows defined here includes the trivializing map in
the limit of a large number of coupling layers and arbi-
trarily expressive kernel, indicating that in this limiting
case exact sampling as described in Ref. [65] is possible.
However, the approach presented here allows for more
general and inexpensive parametrizations of h. These
can be optimized to produce flows that similarly trivial-
ize the theory, and which may have a lower cost of evalu-
ation than implementations of the analytical trivializing
map [66].
Application to U(1) gauge theory.— Gauge theory with

a U(1) gauge group defined in two spacetime dimensions
is the quenched limit of 1 + 1D electrodynamics, i.e. the
Schwinger model [67]. The full Schwinger model repro-
duces many features of quantum chromodynamics (con-
finement, an axial anomaly, topology, and chiral symme-
try breaking) while being analytically tractable. Even in
the quenched limit, the well-defined gauge field topology
results in severe critical slowing down of MCMC meth-
ods for sampling lattice discretizations of the model as
the coupling is taken to criticality. We consider the lat-
tice discretization given by the Wilson gauge action [68],

S(U) := ��
X

x

Re P (x), (6)

where P (x) is the plaquette at x defined in terms of link
variables Uµ(x) 2 U(1),

P (x) := U0(x)U1(x + 0̂)U†

0 (x + 1̂)U†

1 (x), (7)

and x = (x0, x1) runs over coordinates in an L⇥L square
lattice with periodic boundary conditions. Physical infor-
mation may be extracted from the model by considering
expectation values of observables O under the Euclidean
time path integral,

hOi :=
1

Z

Z
DU O(U)e�S(U), (8)

where
R

DU denotes integration over the product of
Haar measures for each link, and Z =

R
DU e�S(U). In

this study, three key observables were considered:

1. Expectation values of powers of plaquettes.

2. Expectation values of ` ⇥ ` Wilson loops W`⇥` =Q
x2`⇥` P (x).

3. Topological susceptibility �Q = hQ2/V i, where
topological charge Q := 1

2⇡

P
x arg (P (x)) is de-

fined in terms of plaquette phase in the principal
interval, arg (P (x)) 2 [�⇡, ⇡].
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• First flow architectures for lattice field theory (scalar field theory) [Albergo et al., 1904.12072] 

• Gauge field theories 
• Flow transformations on compact, connected manifolds [Rezende et al., 2002.02428] 

• Gauge-equivariant architectures: Abelian field theories [Kanwar et al., 2003.06413, 2101.08176] 
• Gauge-equivariant architectures: non-Abelian field theories [Boyda et al., 2008.05456] 

• Theories with fermions  

• Architectures for theories with fermions [Albergo et al., 2106.05934]  
• Combining architectures for gauge fields and fermions [Albergo et al., 2202.11712] 
• Techniques to incorporate pseudofermions [Abbott et al., 2207.08945]  

• Initial application to QCD in 4D  
[Abbott et al., 2208.03832] 

• Architectures for QCD at scale [ongoing; Aurora Early Science Project]

Flow models for lattice QCD
• Ongoing program to develop flow model architectures for applications across 

lattice QCD

[see also tutorial notebook 2101.08176, work on multimodal distributions 2107.00734]
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• Scalable approach (needs new arch.):  
stochastic determinant estimators       

✴ Evaluate determinant using auxiliary 
(pseudofermion) degrees of freedom 
 

 
 

• Integrating out fermions 

          expensive fermion determinant 
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Flow models with fermions
Need new architectures to efficiently handle theories with fermions 
[Albergo et al., 2106.05934; Albergo et al., 2202.11712] 

Chiral condensate

Baseline

Number of configs

Flows with exact determinant  
evaluation work [Albergo et al., 2202.11712] 

• Existing gauge-equivariant architectures 

• Application to Schwinger model at near-
critical parameters 
[2D, Nf=2, β=2, L=16, κ=0.276] 

✴ HMC biased with underestimated errors 

✴ Flow-based sampling gives correct 
results and error estimates

(Plaquette) (Fermion determinant)

Pseudofermions
1.

2.
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Flow models with fermions
Joint architectures for gauge and pseudofermion fields   
[Abbott et al., 2207.08945]

Different flow models to approximate  
marginal and conditional distributions

fc(z |U ) ϕ

proposed 
configuration

“marginal” “conditional”

fm(χ) U
Same gauge architectures  
as for pure gauge theories

New conditional architectures 

χ

z
q(U )q(ϕ |U )

[Kanwar et al., 2003.06413, Boyda et al., 2008.05456]

[Abbott et al., 2207.08945]
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Flow models with fermions
Conditional model maps uncorrelated Gaussian to correlated Gaussian   
[Abbott et al., 2207.08945]

fc(z |U)
q(ϕ |U )

Approximates

“Frozen”

“Active”
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Flow models with fermions
Conditional model maps uncorrelated Gaussian to correlated Gaussian   
[Abbott et al., 2207.08945]

fc(z |U)
q(ϕ |U )

Approximates

ϕ(x + μ)

Uμ(x) ϕ(x + μ)

“Frozen”

“Active”

Parallel transport

ϕ(x)
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Flow models with fermions
Conditional model maps uncorrelated Gaussian to correlated Gaussian   
[Abbott et al., 2207.08945]

fc(z |U)
q(ϕ |U )
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Parallel transport
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U†
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Iterate

“Parallel Transport Convolutional Network”

Trainable coefficients

ϕ(x)

Uμ(x) ϕ(x + μ)

U†
μ(x − μ) ϕ(x − μ)⋯

Gauge-equivariant  
linear combinations
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Flow models with fermions
Conditional model maps uncorrelated Gaussian to correlated Gaussian   
[Abbott et al., 2207.08945]
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Flow models with fermions
Conditional model maps uncorrelated Gaussian to correlated Gaussian   
[Abbott et al., 2207.08945]
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Use joint models more efficiently:  

• Draw multiple pseudofermion samples at fixed 
gauge field to improve stochastic estimate of 
weights: 

• Does not require re-evaluating observables

Flow models with fermions
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Reduce problem difficulty: 

• Combine with preconditioning e.g., 
even-odd or Hasenbusch factorisation 



Phiala Shanahan, MIT

• First flow architectures for lattice field theory (scalar field theory) [Albergo et al., 1904.12072] 

• Gauge field theories 
• Flow transformations on compact, connected manifolds [Rezende et al., 2002.02428] 

• Gauge-equivariant architectures: Abelian field theories [Kanwar et al., 2003.06413, 2101.08176] 
• Gauge-equivariant architectures: non-Abelian field theories [Boyda et al., 2008.05456] 

• Theories with fermions  

• Architectures for theories with fermions [Albergo et al., 2106.05934]  
• Combining architectures for gauge fields and fermions [Albergo et al., 2202.11712] 
• Techniques to incorporate pseudofermions [Abbott et al., 2207.08945]  

• Initial application to QCD in 4D  
[Abbott et al., 2208.03832] 

• Architectures for QCD at scale [ongoing; Aurora Early Science Project]

Flow models for lattice QCD
• Ongoing program to develop flow model architectures for applications across 

lattice QCD

[see also tutorial notebook 2101.08176, work on multimodal distributions 2107.00734]
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Flow models for QCD in 4D

37

Initial QCD demonstration [Abbott et al., 2208.03832] 

• Direct combination of published results on gauge-equivariant flows and 
pseudofermions [Boyda et al., 2008.05456, Abbott et al., 2207.08945] 

• Illustration at straightforward parameters V=44, Nf=2, β=1, κ=0.1 

• Observables from flow ensemble in precise agreement with HMC at high statistics 
(65k samples) 

• Development and scaling of QCD-specific architectures in full swing — stay tuned!

Marginal: 
• Haar-uniform base 

distribution 

• 48 gauge-
equivariant spline 
coupling layers 

• Spatially 
separated 
convolutions in 
spectral flow to 
define spline 
parameters

Conditional: 
• Gaussian base 

distribution 

• 36 pseudofermion 
coupling layers built 
from parallel 
transport 
convolutional 
networks 

• Alternating spin and 
spatial masking 
pattern
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Flow models for QCD in 4D
Initial QCD demonstration [Abbott et al., 2208.03832] 

• Direct combination of published results on gauge-equivariant flows and 
pseudofermions [Boyda et al., 2008.05456, Abbott et al., 2207.08945] 

• Illustration at straightforward parameters V=44, Nf=2, β=1, κ=0.1 

• Observables from flow ensemble in precise agreement with HMC at high statistics 
(65k samples) 

• Development and scaling of QCD-specific architectures in full swing — stay tuned!
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Outlook: Flow models for lattice QCD
)ORZ�EDVHG�JHQHUDWLYH�PRGHOV

1RUPDOL]LQJ�IORZV�HQDEOH�DSSUR[LPDWH
VDPSOLQJ�LQIHUHQFH�IRU�FRPSOLFDWHG�GLVWULEXWLRQV�

��

,QYHUWLEOH
	

7UDFWDEOH�
-DFRELDQ

(DVLO\�VDPSOHG $SSUR[LPDWHV�
GHVLUHG�GLVW�

>5H]HQGH�	�0RKDPHG�����������@

)ORZ�EDVHG�JHQHUDWLYH�PRGHOV

1RUPDOL]LQJ�IORZV�HQDEOH�DSSUR[LPDWH
VDPSOLQJ�LQIHUHQFH�IRU�FRPSOLFDWHG�GLVWULEXWLRQV�

��

,QYHUWLEOH
	

7UDFWDEOH�
-DFRELDQ

(DVLO\�VDPSOHG $SSUR[LPDWHV�
GHVLUHG�GLVW�

>5H]HQGH�	�0RKDPHG�����������@

)ORZ�EDVHG�JHQHUDWLYH�PRGHOV

1RUPDOL]LQJ�IORZV�HQDEOH�DSSUR[LPDWH
VDPSOLQJ�LQIHUHQFH�IRU�FRPSOLFDWHG�GLVWULEXWLRQV�

��

,QYHUWLEOH
	

7UDFWDEOH�
-DFRELDQ

(DVLO\�VDPSOHG $SSUR[LPDWHV�
GHVLUHG�GLVW�

>5H]HQGH�	�0RKDPHG�����������@

Sampling QCD field configurations with gauge-equivariant flow models Phiala E. Shanahan

1. Introduction

The rapid development of machine learning, and in particular deep learning, over the last
decade has spawned a new wave of algorithms for computational physics [1–3]. In lattice quantum
field theory, custom machine learning tools are being developed to accelerate almost every step
of the computational workflow [4], from configuration generation [5–38] to calculation or design
of observables [5, 18, 39–49] and various aspects of analysis [50–61], while maintaining rigorous
guarantees of exactness.

One particular approach to accelerating gauge field generation via machine learning is based
on the use of flow transformations as trivializing maps [62–65], as outlined in Sec. 2. Bespoke
flow architectures tailored to this application have been constructed, including gauge-equivariant
architectures designed for Abelian and non-Abelian gauge field theories [30, 31], and methods to
incorporate fermions [32, 66]. Proof-of-principle implementations have demonstrated success in
ameliorating important challenges such as critical slowing-down and topological freezing, as well
as the computation of thermodynamic quantities, in theories ranging from scalar field theory [5,
28, 35, 67, 68] through Yukawa theory [32], to the Schwinger model [9, 69] and SU(3) gauge field
theory with fermions in two dimensions [66].

The following sections outline how recent developments may be combined to construct flow
transformations to enable sampling of QCD gauge field configurations, and present the first numer-
ical demonstration of this technique applied to lattice QCD.

2. Flow transformations of lattice field configurations

In the machine learning lexicon, a flow transformation [63–65] is a di�eomorphism between
manifolds, defined with a large number of free parameters such that it can be optimized, or trained,
to some objective. Precisely, a flow 5 maps samples I from a ‘prior’ or base distribution A (I) to
samples i = 5 (I) 5 (I) distributed according to

@(i) = A (I) | det m 5 (I)/mI |�1 . (1)

The free parameters of 5 are optimized such that @(i) approximates a ‘target’ probability distribution
?(i), i.e., @(i) ' ?(i). Typically this is achieved by minimization of a ‘loss function’ that
quantifies the di�erence between @(i) and ?(i), such as the Kullback-Leibler (KL) divergence [70]
or related measures. It is often convenient to define the loss function such that it can be computed
stochastically using only samples from A (I) (known as ‘self-training’ as no ‘training data’, i.e., no
samples from ?(i), are needed). Given a flow model 5 , samples from ?(i) can be obtained by
using samples drawn from the model distribution @(i) as proposals in the independence Metropolis
algorithm [71–73], or by reweighting.

Applications of flow models to lattice field theory are discussed in Refs. [5, 7–9, 23, 25, 27–
38, 68, 69, 74–77]. In the context of gauge field configuration generation, i (and I) are field
configurations, and the goal is to sample e�ciently from ?(i) = 1

Z 4�( (i) , where ((i) is the
Euclidean action of the theory and Z is a normalization constant. In the most direct approach, A (I)
can be taken as a trivial distribution (e.g., an independent uniform distribution over the Haar measure
on each link for a gauge theory), and 5 implements an approximation of a trivializing map [62].
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All fundamental components in place to begin exploration of flow 
models for lattice QCD! 

Significant efforts still required to exploit 
potential of flow models for lattice QCD 

• QCD-specific engineering and development 
only just beginning 

• Scaling to state-of-the-art requires 
engineering custom ML architectures to 
similar scale as largest industrial ML models 


