
WHAT LQCD SHOULD 
KNOW ABOUT 
STORAGE (IN 30 
MINUTES)

erhtjhtyhy

ROB LATHAM
Research Software Developer 
Math and Computer Science

LQCD Kickoff,

Dec 2022



Computing Platform

Embedded 

Storage

Platform 

Storage

Facility or 

Site 

Network

Platform 

Storage 

Fabric

Archival 

Storage

The 

World

Center-Wide 

Storage

Data 

Transfer 

Nodes

STORAGE IN AND AROUND THE PLATFORM

Data transfer 

nodes facilitate 

bulk data 

movement in/out of 

the facility.

Archival storage 

holds infrequently 

accessed data for 

extended time 

periods.

Center-wide 

storage allows 

sharing of data 

between systems.

Embedded storage is 

high BW, low latency, and 

located on node or in 

the platform fabric.

Platform storage

provides high 

capacity storage for 

data between runs.



Model complexity:

Spectral element mesh (top) 

for thermal hydraulics 

computation coupled with 

finite element mesh (bottom) 

for neutronics calculation

Scale complexity:

Spatial range from the 

reactor core, in 

meters, to fuel pellets, 

in millimeters

APPLICATION DATASET COMPLEXITY VS. I/O

▪ I/O systems have very simple data models

– Tree-based hierarchy of containers

– Some containers have streams of 
bytes (files)

– Others hold collections of other 
containers (directories or folders)

▪ Applications have data models 
appropriate to domain

– Multidimensional typed arrays, images 
composed of scan lines, records of 
variable length

– Headers, attributes on data

▪ Someone has to map from one to the 
other!
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Images from T. Tautges (Argonne) (upper left), M. Smith 

(Argonne) (lower left), and K. Smith (MIT) (right).



SURVEYING THE HPC I/O LANDSCAPE

As evidenced by today’s presentations, 
the HPC I/O landscape is deep and vast

• High-level data abstractions: HDF5, 
PnetCDF

• Parallel file systems: Lustre, GPFS
• Storage hardware: HDDs, SSDs, NVM

Understanding I/O behavior in this 
environment is difficult, much less turning 
observations into actionable I/O tuning 
decisions

A complex data management ecosystem

I/O Hardware

Application

Parallel File System

Data Model Support

Transformations

Technologies

S
to

ra
g
e
 a

b
s
tr

a
c
ti
o
n
s



MPI-IO
▪ I/O interface specification for use in MPI apps

▪ Data model is same as POSIX: stream of bytes in a file

▪ Features many improvements over POSIX:
– Collective I/O
– Noncontiguous I/O with MPI datatypes and file views
– Nonblocking I/O
– Fortran bindings (and additional languages)
– System for encoding files in a portable format (external32)

• Not self-describing – just a well-defined encoding of types

▪ Probably not going to use this directly, but powers higher level libraries (e.g. 
HDF5, or application-specific abstraction) 
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I/O TRANSFORMATIONS
Software between the application and the PFS performs transformations, 

primarily to improve performance
Process 0 Process 1 Process 2

File foo

Process 0 Process 1 Process 2

Folder foo/

File data.0

File index.0

File data.1

File index.1

File data.2

File index.2
When we think about I/O 
transformations, we consider 
the mapping of data between 
application processes and 
locations in file

◼Goals of transformations:

– Reduce number of I/O operations to PFS 
(avoid latency, improve bandwidth)

– Avoid lock contention (eliminate serialization)

– Hide huge number of clients from PFS servers

◼ “Transparent” transformations don’t change 
the final file layout

– File system is still aware of the actual data 
organization

– File can be later manipulated using serial 
POSIX I/O
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REQUEST SIZE AND I/O RATE

Tests run on 1K processes of HPE/Cray Theta at Argonne
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Request matches 

Lustre “stripe 

size”: good 

performance with 

low variability

Small 

deviations 

from “power 

of two” (e.g. 

1024k vs 

10^6) can 

tank 

performance

In general, 

larger 

requests 

better.



AVOIDING LOCK CONTENTION
▪ To avoid lock contention when writing to a shared file, we can 

reorganize data between processes

▪ Two-phase I/O splits I/O into a data reorganization phase and an interaction 
with the storage system (two-phase write depicted):
– Data exchanged between processes to match file layout
– 0th phase determines exchange schedule (not shown)

Phase 1: Data are exchanged between 

processes based on organization of data 

in file.

Phase 2: Data are written to file (storage 

servers) with large writes, no contention.
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PARALLEL NETCDF (PNETCDF)
▪ Based on original “Network Common Data Format” (netCDF) work from Unidata

– Derived from their source code

▪ Data Model:
– Collection of variables in single file
– Typed, multidimensional array variables
– Attributes on file and variables

▪ Features:
– C, Fortran, and F90 interfaces
– Portable data format (identical to netCDF)
– Noncontiguous I/O in memory using MPI datatypes
– Noncontiguous I/O in file using sub-arrays
– Collective I/O
– Non-blocking I/O

▪ Unrelated to netCDF-4 work

▪ Parallel-NetCDF tutorial:
– https://parallel-netcdf.github.io/wiki/QuickTutorial.html
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PARALLEL-NETCDF AND MPI-IO
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HEADER VARIABLE

OFFSET

PNETCDF

MPI-IO

Elements addressed with start[], count[] arrays

Elements addressed with SUBARRAY datatype

▪ ncmpi_put_vara_all describes access in terms of arrays, elements of 

arrays

– For example, “Give me a 3x3 subcube of this larger  1024x1024 array”

▪ Library translates into MPI-IO calls
– MPI_Type_create_subarray
– MPI_File_set_view
– MPI_File_write_all



HDF5
▪ Hierarchical Data Format, from The HDF Group (formerly of NCSA)

– https://www.hdfgroup.org/

▪ Data Model:
– Hierarchical data organization in single file
– Typed, multidimensional array storage
– Attributes on any HDF5 "object" (dataset, data, groups)

▪ Features:
– C, C++, Fortran, Java (JNI) interfaces

• Community-supported Python, Lua, R
– Portable data format
– Optional compression (even in parallel I/O mode)
– Chunking: efficient row or column oriented access
– Noncontiguous I/O (memory and file) with hyperslabs

▪ Parallel HDF5 tutorial:
– https://portal.hdfgroup.org/display/HDF5/Introduction+to+Parallel+HDF5
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COMPARING I/O LIBRARIES
▪ IOR to evaluate HDF5, PnetCDF somewhat artificial

– HLL typically hold structured data

▪ HDF5, PnetCDF demonstrate performance parity for these access sizes (6 MiB 
on Mira)

▪ I/O libraries deliver benefits with slight (if any) cost to performance

▪ Active work to improve efficiency (cf. HDF5 collective metadata)
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OTHER HIGH-LEVEL I/O LIBRARIES
▪ NetCDF-4: https://www.unidata.ucar.edu/software/netcdf

– netCDF API with HDF5 back-end

▪ ADIOS: https://adios2.readthedocs.io/
– Configurable (xml) I/O approaches

▪ SILO: https://wci.llnl.gov/simulation/computer-codes/silo
– A mesh and field library on top of HDF5 (and others)

▪ H5part: https://gitlab.psi.ch/H5hut/src/-/wikis/home
– simplified HDF5 API for particle simulations

▪ GIO: https://svn.pnl.gov/gcrm
– Targeting geodesic grids as part of GCRM

▪ SCORPIO: https://e3sm.org/scorpio-parallel-io-library/
– climate-oriented I/O library; supports raw binary, parallel-netCDF, or serial-

netCDF (from master)

▪ … Many more. My point: likely, one already exists for your domain
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DARSHAN DESIGN PRINCIPLES
▪ Darshan runtime library inserted at link 

time or at run time

▪ Transparent wrappers for I/O functions 
collect per-file statistics
– Statistics are stored in bounded 

memory at each rank
– At MPI_Finalize(), counters are 

reduced, compressed, and collectively 
written to a single log

▪ No communication or storage operations 
until shutdown

▪ Command-line tools used to post-
process Darshan logs
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(note that the Y axis start at 40 seconds, not 0)

Snyder et al., “Modular HPC I/O Characterization with Darshan,” in Proceedings of 5th 

Workshop on Extreme-scale Programming Tools (ESPT 2016), 2016. 

WHAT IS THE OVERHEAD OF DARSHAN I/O 
FUNCTION WRAPPING?
▪ Compare I/O time of IOR linked 

against different Darshan 
versions on NERSC Edison
– File-per-process workload
– 6,000 MPI processes
– >12 million instrumented calls

▪ Note use of box plots
– Ran each test 15 times
– I/O variation is a reality
– Consider I/O performance

as a distribution, not a
singular value
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JOB-LEVEL PERFORMANCE ANALYSIS
▪Darshan provides insight into the I/O 

behavior and performance of a job

▪ darshan-job-summary.pl creates a 

PDF file summarizing various 

aspects of I/O performance
– Percent of runtime spent in I/O

– Operation counts

– Access size histogram

– Access type histogram

– File usage
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Two+ decades of research, with more to go

▪ We understand MPI applications 

really well

▪ Library (HDF5) and middleware (MPI-

IO) good fit for bulk-synchronous 

▪ File system specific optimizations 

(GPFS, Lustre, DAOS) implemented 

in MPI-IO libraries

▪ Application-oriented libraries (e.g.

HDF5) insulate I/O tuning (bytes, 

offsets, servers) from application 

needs

▪ ML and AI ecosystems evolving 

rapidly, but haven’t converged

▪ Strongest MPI-IO optimizations 

(collective) poor fit for temporally 

“skewed” code

▪ Need to adjust current approaches for 

task-oriented codes 

▪ Don’t have a great story for GPU 

codes yet

STRENGTHS (L) AND WEAKNESSES (R)



Vision
Lowering the barriers to distributed 
services in computational science 
through compositional approaches.

Approach
• Familiar models (key/value, object, file)
• Easy to build, adapt, and deploy
• Lightweight, user-space components
• Modern hardware support

Impact
• Better, more capable services for specific use 

cases on high-end platforms
• Significant code reuse
• Ecosystem for rapid service development

• Deep Hyper story

http://www.mcs.anl.gov/research/projects/mochi/ HPC
Fast Transports

Scientific Data

User-level Threads

Cloud

Computing
Object Stores

Key-Value Stores

Distributed 

Computing
Group 

Membership/

Comm.

Software 

Engineering
Composability

Autonomics
Dist. Control

Adaptability

Mochi
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