
WHAT LQCD SHOULD
KNOW ABOUT
STORAGE (IN 30
MINUTES)

erhtjhtyhy

ROB LATHAM
Research Software Developer
Math and Computer Science

LQCD Kickoff,

Dec 2022

Computing Platform

Embedded

Storage

Platform

Storage

Facility or

Site

Network

Platform

Storage

Fabric

Archival

Storage

The

World

Center-Wide

Storage

Data

Transfer

Nodes

STORAGE IN AND AROUND THE PLATFORM

Data transfer

nodes facilitate

bulk data

movement in/out of

the facility.

Archival storage

holds infrequently

accessed data for

extended time

periods.

Center-wide

storage allows

sharing of data

between systems.

Embedded storage is

high BW, low latency, and

located on node or in

the platform fabric.

Platform storage

provides high

capacity storage for

data between runs.

Model complexity:

Spectral element mesh (top)

for thermal hydraulics

computation coupled with

finite element mesh (bottom)

for neutronics calculation

Scale complexity:

Spatial range from the

reactor core, in

meters, to fuel pellets,

in millimeters

APPLICATION DATASET COMPLEXITY VS. I/O

▪ I/O systems have very simple data models

– Tree-based hierarchy of containers

– Some containers have streams of
bytes (files)

– Others hold collections of other
containers (directories or folders)

▪ Applications have data models
appropriate to domain

– Multidimensional typed arrays, images
composed of scan lines, records of
variable length

– Headers, attributes on data

▪ Someone has to map from one to the
other!

3

3

Images from T. Tautges (Argonne) (upper left), M. Smith

(Argonne) (lower left), and K. Smith (MIT) (right).

SURVEYING THE HPC I/O LANDSCAPE

As evidenced by today’s presentations,
the HPC I/O landscape is deep and vast

• High-level data abstractions: HDF5,
PnetCDF

• Parallel file systems: Lustre, GPFS
• Storage hardware: HDDs, SSDs, NVM

Understanding I/O behavior in this
environment is difficult, much less turning
observations into actionable I/O tuning
decisions

A complex data management ecosystem

I/O Hardware

Application

Parallel File System

Data Model Support

Transformations

Technologies

S
to

ra
g
e
 a

b
s
tr

a
c
ti
o
n
s

MPI-IO
▪ I/O interface specification for use in MPI apps

▪ Data model is same as POSIX: stream of bytes in a file

▪ Features many improvements over POSIX:
– Collective I/O
– Noncontiguous I/O with MPI datatypes and file views
– Nonblocking I/O
– Fortran bindings (and additional languages)
– System for encoding files in a portable format (external32)

• Not self-describing – just a well-defined encoding of types

▪ Probably not going to use this directly, but powers higher level libraries (e.g.
HDF5, or application-specific abstraction)

5

I/O TRANSFORMATIONS
Software between the application and the PFS performs transformations,

primarily to improve performance
Process 0 Process 1 Process 2

File foo

Process 0 Process 1 Process 2

Folder foo/

File data.0

File index.0

File data.1

File index.1

File data.2

File index.2
When we think about I/O
transformations, we consider
the mapping of data between
application processes and
locations in file

◼Goals of transformations:

– Reduce number of I/O operations to PFS
(avoid latency, improve bandwidth)

– Avoid lock contention (eliminate serialization)

– Hide huge number of clients from PFS servers

◼ “Transparent” transformations don’t change
the final file layout

– File system is still aware of the actual data
organization

– File can be later manipulated using serial
POSIX I/O

162

REQUEST SIZE AND I/O RATE

Tests run on 1K processes of HPE/Cray Theta at Argonne

7

Request matches

Lustre “stripe

size”: good

performance with

low variability

Small

deviations

from “power

of two” (e.g.

1024k vs

10^6) can

tank

performance

In general,

larger

requests

better.

AVOIDING LOCK CONTENTION
▪ To avoid lock contention when writing to a shared file, we can

reorganize data between processes

▪ Two-phase I/O splits I/O into a data reorganization phase and an interaction
with the storage system (two-phase write depicted):
– Data exchanged between processes to match file layout
– 0th phase determines exchange schedule (not shown)

Phase 1: Data are exchanged between

processes based on organization of data

in file.

Phase 2: Data are written to file (storage

servers) with large writes, no contention.

167

PARALLEL NETCDF (PNETCDF)
▪ Based on original “Network Common Data Format” (netCDF) work from Unidata

– Derived from their source code

▪ Data Model:
– Collection of variables in single file
– Typed, multidimensional array variables
– Attributes on file and variables

▪ Features:
– C, Fortran, and F90 interfaces
– Portable data format (identical to netCDF)
– Noncontiguous I/O in memory using MPI datatypes
– Noncontiguous I/O in file using sub-arrays
– Collective I/O
– Non-blocking I/O

▪ Unrelated to netCDF-4 work

▪ Parallel-NetCDF tutorial:
– https://parallel-netcdf.github.io/wiki/QuickTutorial.html

9

https://parallel-netcdf.github.io/wiki/QuickTutorial.html

PARALLEL-NETCDF AND MPI-IO

10

HEADER VARIABLE

OFFSET

PNETCDF

MPI-IO

Elements addressed with start[], count[] arrays

Elements addressed with SUBARRAY datatype

▪ ncmpi_put_vara_all describes access in terms of arrays, elements of

arrays

– For example, “Give me a 3x3 subcube of this larger 1024x1024 array”

▪ Library translates into MPI-IO calls
– MPI_Type_create_subarray
– MPI_File_set_view
– MPI_File_write_all

HDF5
▪ Hierarchical Data Format, from The HDF Group (formerly of NCSA)

– https://www.hdfgroup.org/

▪ Data Model:
– Hierarchical data organization in single file
– Typed, multidimensional array storage
– Attributes on any HDF5 "object" (dataset, data, groups)

▪ Features:
– C, C++, Fortran, Java (JNI) interfaces

• Community-supported Python, Lua, R
– Portable data format
– Optional compression (even in parallel I/O mode)
– Chunking: efficient row or column oriented access
– Noncontiguous I/O (memory and file) with hyperslabs

▪ Parallel HDF5 tutorial:
– https://portal.hdfgroup.org/display/HDF5/Introduction+to+Parallel+HDF5

11

https://www.hdfgroup.org/
https://portal.hdfgroup.org/display/HDF5/Introduction+to+Parallel+HDF5

COMPARING I/O LIBRARIES
▪ IOR to evaluate HDF5, PnetCDF somewhat artificial

– HLL typically hold structured data

▪ HDF5, PnetCDF demonstrate performance parity for these access sizes (6 MiB
on Mira)

▪ I/O libraries deliver benefits with slight (if any) cost to performance

▪ Active work to improve efficiency (cf. HDF5 collective metadata)

12

OTHER HIGH-LEVEL I/O LIBRARIES
▪ NetCDF-4: https://www.unidata.ucar.edu/software/netcdf

– netCDF API with HDF5 back-end

▪ ADIOS: https://adios2.readthedocs.io/
– Configurable (xml) I/O approaches

▪ SILO: https://wci.llnl.gov/simulation/computer-codes/silo
– A mesh and field library on top of HDF5 (and others)

▪ H5part: https://gitlab.psi.ch/H5hut/src/-/wikis/home
– simplified HDF5 API for particle simulations

▪ GIO: https://svn.pnl.gov/gcrm
– Targeting geodesic grids as part of GCRM

▪ SCORPIO: https://e3sm.org/scorpio-parallel-io-library/
– climate-oriented I/O library; supports raw binary, parallel-netCDF, or serial-

netCDF (from master)

▪ … Many more. My point: likely, one already exists for your domain

13

https://www.unidata.ucar.edu/software/netcdf
https://adios2.readthedocs.io/
https://wci.llnl.gov/simulation/computer-codes/silo
https://gitlab.psi.ch/H5hut/src/-/wikis/home
https://e3sm.org/scorpio-parallel-io-library/

DARSHAN DESIGN PRINCIPLES
▪ Darshan runtime library inserted at link

time or at run time

▪ Transparent wrappers for I/O functions
collect per-file statistics
– Statistics are stored in bounded

memory at each rank
– At MPI_Finalize(), counters are

reduced, compressed, and collectively
written to a single log

▪ No communication or storage operations
until shutdown

▪ Command-line tools used to post-
process Darshan logs

14

Application

Application I/O access

Runtime libraries

File system access

File system

Block access

Storage devices

(note that the Y axis start at 40 seconds, not 0)

Snyder et al., “Modular HPC I/O Characterization with Darshan,” in Proceedings of 5th

Workshop on Extreme-scale Programming Tools (ESPT 2016), 2016.

WHAT IS THE OVERHEAD OF DARSHAN I/O
FUNCTION WRAPPING?
▪ Compare I/O time of IOR linked

against different Darshan
versions on NERSC Edison
– File-per-process workload
– 6,000 MPI processes
– >12 million instrumented calls

▪ Note use of box plots
– Ran each test 15 times
– I/O variation is a reality
– Consider I/O performance

as a distribution, not a
singular value

180

JOB-LEVEL PERFORMANCE ANALYSIS
▪Darshan provides insight into the I/O

behavior and performance of a job

▪ darshan-job-summary.pl creates a

PDF file summarizing various

aspects of I/O performance
– Percent of runtime spent in I/O

– Operation counts

– Access size histogram

– Access type histogram

– File usage

16

17

Two+ decades of research, with more to go

▪ We understand MPI applications

really well

▪ Library (HDF5) and middleware (MPI-

IO) good fit for bulk-synchronous

▪ File system specific optimizations

(GPFS, Lustre, DAOS) implemented

in MPI-IO libraries

▪ Application-oriented libraries (e.g.

HDF5) insulate I/O tuning (bytes,

offsets, servers) from application

needs

▪ ML and AI ecosystems evolving

rapidly, but haven’t converged

▪ Strongest MPI-IO optimizations

(collective) poor fit for temporally

“skewed” code

▪ Need to adjust current approaches for

task-oriented codes

▪ Don’t have a great story for GPU

codes yet

STRENGTHS (L) AND WEAKNESSES (R)

Vision
Lowering the barriers to distributed
services in computational science
through compositional approaches.

Approach
• Familiar models (key/value, object, file)
• Easy to build, adapt, and deploy
• Lightweight, user-space components
• Modern hardware support

Impact
• Better, more capable services for specific use

cases on high-end platforms
• Significant code reuse
• Ecosystem for rapid service development

• Deep Hyper story

http://www.mcs.anl.gov/research/projects/mochi/ HPC
Fast Transports

Scientific Data

User-level Threads

Cloud

Computing
Object Stores

Key-Value Stores

Distributed

Computing
Group

Membership/

Comm.

Software

Engineering
Composability

Autonomics
Dist. Control

Adaptability

Mochi

THANKS!

Phil Carns Matthieu Dorier Kevin Harms

Rob Latham Shane Snyder

Rob Ross

Danqing WuKevin Brown

