Graph partitioning for parallel tensor contractions

Aydin Buluc

Graph partitioning slide credits: Umit Catalyurek, James Demmel, John Gilbert, George Slota

https://sites.google.com/lbl.gov/cs267-spr2021/

Tensor contraction slide credits: Jie Chen, Robert Edwards

Definition of Graph Partitioning

- Given a graph $G = (N, E, W_N, W_E)$
 - N = nodes (or vertices),
 - W_N = node weights
 - E = edges
 - $W_E = edge weights$

- Ex: N = {tasks}, W_N = {task costs}, edge (j,k) in E means task j sends W_E(j,k) words to task k
- Choose a partition $N = N_1 U N_2 U \dots U N_P$ such that
 - The sum of the node weights in each $N_{j}\xspace$ is "about the same"
 - The sum of all edge weights of edges connecting all different pairs $N_j\,$ and N_k is minimized
- Ex: balance the work load, while minimizing communication
- Special case of $N = N_1 U N_2$: Graph Bisection

Definition of Graph Partitioning

- Given a graph $G = (N, E, W_N, W_E)$
 - N = nodes (or vertices),
 - W_N = node weights
 - E = edges
 - $W_E = edge weights$

- Ex: N = {tasks}, W_N = {task costs}, edge (j,k) in E means task j sends W_E(j,k) words to task k
- Choose a partition $N = N_1 U N_2 U \dots U N_P$ such that
 - The sum of the node weights in each $N_{j}\xspace$ is "about the same"
 - The sum of all edge weights of edges connecting all different pairs N_j and N_k is minimized (shown in black)
- Ex: balance the work load, while minimizing communication
- Special case of $N = N_1 U N_2$: Graph Bisection

Some Applications

- Telephone network design
 - Original application, algorithm due to Kernighan
- Load Balancing while Minimizing Communication
- Sparse Matrix times Vector Multiplication (SpMV)
 - Solving PDEs
 - $N = \{1,...,n\}$, (j,k) in E if A(j,k) nonzero,
 - $W_N(j) = #nonzeros in row j$, $W_E(j,k) = 1$
- VLSI Layout
 - N = {units on chip}, E = {wires}, W_E(j,k) = wire length
- Sparse Gaussian Elimination
 - Used to reorder rows and columns to increase parallelism, and to decrease "fill-in"
- Data mining and clustering
- Physical Mapping of DNA
- Image Segmentation

Sparse Matrix Vector Multiplication y = y +A*x Partitioning a Sparse Symmetric Matrix

A sparse matrix in the graph model

edge $(v_i, v_j) \in E \Rightarrow$ $y(i) \leftarrow y(i) + A(i,j) x(j) and y(j) \leftarrow y(j) + A(j,i) x(i)$

P₁ performs: $y(4) \leftarrow y(4) + A(4,7) x(7)$ and $y(5) \leftarrow y(5) + A(5,7) x(7)$ x(7) only needs to be communicated <u>once !</u>

A sparse matrix in the hypergraph model

- Column-net model for block-row distributions
- Rows are vertices, columns are nets (hyperedges)
- Each {vertex, net} pair represents unique nonzero net-cut metric: $cutsize(\Pi) = \Sigma_{n \in NE} w(n_i)$

connectivity-1 metric: $\operatorname{cutsize}(\Pi) = \sum_{n \in NE} w(n_i) (c(n_j) - 1)$

⇒ Connectivity is about the number of *parts* the hyperedge connects, not its number of pins (which is size)

Further Benefits of Hypergraph Model: Nonsymmetric Matrices

- Graph model of matrix has edge (i,j) if either A(i,j) or A(j,i) nonzero
- Same graph for A as $|A| + |A^T|$
- Ok for symmetric matrices, what about nonsymmetric?
 - Try A upper triangular

Graph Partitioning (Metis) Total Communication Volume= 254

Load imbalance ratio = 6%

Hypergraph Partitioning (PaToH) Total Communication Volume= 181 Load imbalance ratio = 0.1%

Summary: Graphs versus Hypergraphs

- Pros and cons
 - When matrix is non-symmetric, the graph partitioning model (using A+A^T) loses information, resulting in suboptimal partitioning in terms of communication and load balance.
 - Even when matrix is symmetric, graph cut size is not an accurate measurement of communication volume
 - Hypergraph partitioning model solves both these problems
 - However, hypergraph partitioning (PaToH) can be much more expensive than graph partitioning (METIS)
- Hypergraph partitioners: PaToH, HMETIS, ZOLTAN

Is Graph Partitioning a Solved Problem?

- Myths of partitioning due to Bruce Hendrickson
- 1. Edge cut = communication cost
- 2. Simple graphs are sufficient
- 3. Edge cut is the right metric
 - 4. Existing tools solve the problem
 - 5. Key is finding the right partition
 - 6. Graph partitioning is a solved problem
 - Slides and myths based on Bruce Hendrickson's: "Load Balancing Myths, Fictions & Legends"
- Another myth of partitioning due to Aydin Buluc
 - 1. Total communication volume determines runtime
 - Max is perhaps more relevant, depending on architecture

Myth: Partition Quality is Paramount

- When structure are changing dynamically during a simulation, need to partition dynamically
 - Speed may be more important than quality
 - Partitioner must run fast in parallel
 - Another chicken and egg problem here
 - Partition should be incremental
 - Change minimally relative to prior one
 - Must not use too much memory
- Recent research on streaming partitioning:
 - Stanton, I. and Kliot, G., "Streaming graph partitioning for large distributed graphs". KDD, 2012.
 - The idea is used by many graph processing systems such as PowerGraph and GPS

Multilevel graph partitioning is expensive

• A cheaper more scalable approach based on label propagation (example software: PULP)

- Randomly label with n = #verts labels
- Iteratively update each v ∈ V (G) with max per-label count over neighbors with ties broken randomly

Graph Partitioning with Label Propagation

• A cheaper more scalable approach based on label propagation (example software: PULP)

- Randomly label with n = #verts labels
- Iteratively update each v ∈ V (G) with max per-label count over neighbors with ties broken randomly
- Algorithm completes when no new updates possible; in large graphs, fixed iteration count

Challenges of using Graph Partitioning

- You will find many surveys on Graph Partitioning
 - · I helped write one too
 - Almost all content will be devoted to internals of GP algorithms
 - Multilevel, geometric, spectral, label propagation, etc.
- End user's challenge with GP is modeling
 - · It is almost like using numerical optimization software
 - Most of the time, the user doesn't care about the internal algorithm.
 - Yes, sometimes algorithm choice matters for performance but that is secondary after one gets a version up and running
 - Almost all problems need significant modeling investment
- What is the granularity of each task?
 - These are your vertices
- What are the dependencies between tasks?
 - These are your edges
- What are you minimizing? --often the communication
- What are your constraints? --often has to do with balance

- Original graph
 - Representing tensor contractions
- Red edges will be contracted first
 - Two-index Baryon-Baryon contraction
 - O(N⁴) flops, O(N³) memory

- Dual hyper-graph
 - "A" potential model for GP
- Consider the bi-partitioning shown
 - Initial contraction is "free"
 - Because both v₁ and v₆ are entirely stored in partition A

- V_5 e_6 e_4 e_3 **e**₇ e_8 V₁₋₆ e_5 V_4 **e**₉ V_3 $Cost = v_5 + v_3$
- Dual hyper-graph
 - "A" potential model for GP
- Consider the bi-partitioning shown
 - This contraction is also "free"
 - Because both v₂ and v₄ are entirely stored in partition A

- Original graph
 - Representing tensor contractions
- Red edges will be contracted now
 - Two-index Baryon-Baryon contraction
 - O(N⁴) flops, O(N³) memory

- Original graph
 - Representing tensor contractions
- Red edge will be contracted now
 - One-index Meson-Baryon contraction
 - O(N⁴) flops, O(N³) memory

- Dual hyper-graph
 - "A" potential model for GP
- Consider the bi-partitioning shown
 - This contraction is NOT "free"
 - Because both v5 spans multiple partitions; *its data needs to be replicated or communicated*

- Are we modeling this correctly? What do you think?
- What is the cost of the hyperedge v₅?
- Can we do this with graphs as opposed to hypergraphs
 - I draw it as a hypergraph solely because it avoids lots of clique-ish edges and it is easier to see the duality)

- This modeling has the following issue:
 - New hyperedges are formed at each contraction, hence our initial partitioning can not predict the future costs
 - In other words, the situation is dynamic. Similar challenge to what happens when trying to partition for graph traversal

- The contractions are expensive but maybe simulating them is less so?
- Can we simulate the contraction orders and model future hyperedges accordingly?
- Likely not feasible, as there are exponentially many future scenarios
- Maybe we can do it for a single graph but not for the gigantic DAG of all graphs

• Does repartitioning help? Or would it also incur the same communication?

What I didn't cover

- Multiple graphs Jie's talk
 - Change weights
 - Much larger problem
- Determinant ordering
 - Need to sync with Will
- Finding isomorphic graphs
 - I had an intern this summer working on a distributed memory version
 - We need some representative inputs from Jlab to test the code
 - GPU version next step

Aydin Buluc Senior Scientist, LBNL Adjunct Faculty, EECS, UC Berkeley http://passion.lbl.gov

Oguz Selvitopi Research Scientist (Career) LBNL

Expert in graph and hypergraph partitioning methods, GPU algorithms, distributed-memory algorithms