
Graph Based Contractions for Calculating
Correlation Functions

Jie Chen, Eloy Romero Alcalde, Frank Winter
and Robert Edwards

Redstar: Analysis Software Suite

Talking Points
● What is graph contraction?
● Redstar.

– Current optimizations.
● Reduce number of contraction calculations and run-time

memory footprint.
– Hadron contractions.

● Carry out real tensor contractions on CPUs and GPUs.
● Performance

– Mostly on GPUs.
– Observations.

● Challenges.

Correlation Functions and Graphs

Different Types of Graphs

Graph Nodes (V)

● Meson (2 quarks), Baryon (3 quarks)
● Meson

– Each vertex where α,β=0,1,2,3 (spins) and i,j ~ hundreds
(distillation space).

– e.g. each vertex occupies 384*384*16*16 = 37 MB

● Baryon
– Each vertex where α,β,γ=0,1,2,3 (spins) and i,j,k ~ 100s

(distillation space)
– e.g. each vertex occupies 128*128*128*16*64= 2GB, each vertex

occupies about 128*128*128*16*8=268 MB if only two upper spin
indices are used (α,β,γ=0,1).

Mαβ
ij

Bαβ γ
ijk

Graph Edges (E)
● Meson-Meson contraction

– Batched matrix multiplication with batch size <= 64
– for calculations, for memory

● Meson-Bryon contraction
– Batched tensor contraction with batch size <= 256
– calculation complexity, memory

● Baryon-Baryon Contraction
– One index contraction

● calculation complexity, memory
● Huge memory (e.g 128^4 * 16 * 16 = 68GB for two upper spins)
● Batched tensor contraction with batch size up to 1024

– Two-index contraction
● calculation complexity, memory.

Aαβ
ij Bβγ

jk

O(N3) O(N2)

Aαβ
ij Bβγ δ

jkl

O(N4) O(N3)

Aαβγ
ijk Bγδε

klm

O(N5) O(N4)

Aαβγ
ijk Bγβδ

jkl

O(N4) O(N3)

Try to avoid if possible

How Many Graphs ?

●
N is the number of freedom of
degrees

● Recently approaching 1M
graphs

● Calculations across many
time slices

Number of Graphs∝N !

Name a0 f0 a1 roper Deuterium Tritium

Graphs 19,041 27,999 385,512 84,894 119,191 6,208
Type MM MM MM MB BB BB

Vector Size 256 256 128 64 64 32

Graph Contractions

aαβ
ij bαβ

ij

Removal of one edge after another until two hadron
nodes are left

The sequence of the edge removal is important

Graph Contractions

Redstar Workflow

Graph Generation and Classification
(redstar_npt)

● Parallel contraction diagram and graph generations
(Wick Contraction)

● Parallel graph classifications to identify unique graphs

● Graph isomorphism problem.
● Perform canonical labeling of each graph in parallel.
● Identify unique graphs in O(n) time.

● Brendan D. McKay (Nauty)

GPU ???

Optimal Graph Contraction Path and
Memory Reduction

● There are many contraction paths for a graph.

● Each edge is assigned a weight (calculation cost/the number of
appearances in all the graphs, O(N))

An edge can appear in many graphs

N!/2 possible paths

Optimal Graph Contraction Path and
Memory Reduction

● Minimum spanning tree algorithm is used to select an optimal path to
reduce the number of contractions.

➢ Prefers 2-index contractions (smaller calculation cost)
➢ For meson systems, the edges with most appearances are chosen first.

● Similar graphs are grouped together during the construction of a
contraction queue to minimize the memory footprint of the intermediate
contraction results.

Optimal Graph Contraction Path and Memory
Reduction

Redstar and Hadron Contraction

● A gigantic DAG is created after the optimal contraction path is determined
for each graph.

● A contraction queue is constructed from the DAG. Independent contractions
can be grouped together to form arrays of contractions (vector-form
contractions).

Graph 3Graph 2
Graph 1

ExteriorContract

ExteriorContract

ExteriorContract

 ContractAll

 ContractAll

 ContractAll

 Delete

Independent

Hadron Contraction

● Batched tensor contractions on CPUs or GPUs
– Batched zgemm coupled with tensor permutation if needed.
– Vector-form of hadron contraction to increase batched zgemm

batch size on CPUs.
– Vector-form of hadron contraction to utilize multiple GPUs each

could use multiple streams.
➢ Each element in a contraction queue (an array) has no information about on

which GPU it executes.
➢ Hadron library utilizes an algorithm that decides where to put a contraction

based on where the contraction sources have been.
– Keep data locality high and maintain good load-balance.

Contraction APIs

HadronDistOperatorRep
 hadronExteriorContract(const HadronDistOperatorRep& src1_rep,
 int ind_j,
 const HadronDistOperatorRep& src2_rep,
 int ind_k);

 HadronDistOperatorRep
 hadronExteriorContract(const HadronDistOperatorRep& src1_rep,
 const std::vector<int>& ind_j,
 const HadronDistOperatorRep& src2_rep,
 const std::vector<int>& ind_k);

 std::vector<HadronDistOperatorRep>
 hadronExteriorContract(const std::vector<HadronDistOperatorRep>& src1,
 const std::vector<std::vector<int>>& ind_j,
 const std::vector<HadronDistOperatorRep>& src2,
 const std::vector<std::vector<int>>& ind_k);

C0 C1 C2 C3

g0 g1 g2 g3

More about the DAG and the Contraction
Queue

● Contraction queue is constructed from the DAG by breadth-first walk through of the DAG.
– No gpu information assigned to any contraction.

● Independent contractions are grouped together to form an array of contractions.
– NPT_BATCH_SIZE

● Array of contractions
– Increase batch size for batched zgemm on KNL (or many core CPU) to take advantage of computing

power of many cores.
● Works very well for KNL nodes.

– Each contraction in the array is carried out by a dedicated GPU if multiple GPUs are available.
● If the sources of all contractions in the array are different, we expect a linear speedup.
● Unfortunately, we have situation like : extcontract(a, 0, b, 1);

 extcontract(a, 1, b, 0);

 extcontract(a, 0, c, 1);

 extcontract(b, 0, c, 0);
– In this example, a, b, c have to be copied or moved to different GPUs.
– Multi-gpus may not provide any benefit.

Hadron Contraction on GPUs

● Performance bottlenecks
 Data in and out of GPUs kill the performance.

● Need to consolidate all the spin components on host side into a contiguous memory
block to reduce the number of memory copies.

● Need data reuse.
● Data stay on a GPU as long as possible unless they are needed on the host.
● Memory evictions due to the limited memory on a GPU.
● Data movements from one GPU to another.

 Many individual matrix multiplications perform poorly
● Data movements and not enough computation on a GPU.

 Naive tensor permutations perform terribly on GPUs
● Stride data access using the global memory on a GPU.

 Some matrix matrix multiplications are actually matrix vector multiplications
depending on how two tensors’ indices are folded.

● Needs to identify those cases and implement batched version of gemv.

Hadron Contraction on GPUs
Current Implementation and Optimizations

● Major components
 GPU memory managers

● One manager for one GPU.
● cuda or hip malloc and free are going through the manager.

– Contiguous gpu/host memory block to reduce I/O
● Manages data evictions (improved LRU) and data reuse.
● Intermediate contraction values stay on GPUs.

 GPU matrix/tensor contraction kernels
● Batched zgemm from cublas/hipblas.
● Customized batched zgemv, zdotu, accumulate, contractall.

 GPU tensor transpose library (GPUTT)
● Fast tensor transpose using the best transpose algorithm according to the shape of a tensor

and the permutation indices. Again based on cutt by Dmitry I. Lyakh.
● Batched transpose.
● Permuted data stay on a GPU.

 Smart multi-gpu data placement algorithm for vector-form contractions.

ACM TACO Journal
paper

IPDPS 22

Performance of Hadron Contraction on GPUs

Performance of Hadron Contraction on GPUs

Random Inputs
Random Pairs

Redstar_npt execution time for 1-timeslice (one GPU)

27

● Recent redstar_npt runs on our test configurations.
● KNL 7250 host, MI100, MI250 and A100.

Name Nref Torig KNL MI100 MI250 A100

1 a0 256 260.7 87.95 11.94 8.23 5.96

2 f0 256 412.2 138.89 21.14 12.63 10.55

3 a1 128 1427.11 866.70 107.56 64.28 63.22

4 Roper 10
64

778.2
3488.05 1933.64 219.86 1238.44

5 Deuterium 10
64

1471.9
3637.48 517.21 286.58 191.21

6 Tritium 10
32

1735
8208.01 2970.04 1803.66 1269.93

Redstar Performance

28

Redstar Performance

29

Performance speed-up values of a GPU over a single KNL host for calculating
Correlation functions of multi-hadron systems.

Redstar Performance (Figure of Merit)

30

FOM ∝(
N target

N ref
)

p

×timing P is 3 for a0, f0,a1, 4 for Roper, and 5 Deuterium and Tritium
Ntarget = 256

Redstar Performance on Multiple GPUs

31NPT_BATCH_SIZE = Number of GPUs

● For meson systems, no gpu memory evictions. The performance degradation is caused by GPU to
GPU/Host movements and relative small matrix size (N=256 for a0, f0 and N=128 for a1).

● Define Ts as time to calculate contractions on a single GPU, BW as the effective unidirectional
bandwidth between GPUs/Host, Nflops number of flops for all contractions, CNgflops as the gflops/s
for one contraction for matrix size N, Nbytes number of bytes transferred, Tn as the execution
time on n gpus.

 Tn = Ts – Nflops / (CNgflops * 10^9) + Nflops / (CNgflops * 10^9)/n + Nbytes/BW



Redstar Performance on Multiple GPUs:
Impact of data movements

a0 2gpu a0 4gpu f0 2gpu f0 4gpu a1 2gpu a1 4gpu

Tn 13.75 15.78 27.21 29.01 189.28 207.14

Ts 11.94 11.94 21.14 21.14 107.56 107.56

Nflops 2.52*1013 2.52*1013 5.79*1013 5.79*1013 5.26*1013 5.26*1013

CNgflops 3991 3991 3991 3991 1699 1699

Nbytes(GB) 115.63 145.19 195.66 236.20 681.93 1051.94

BW (GB/s) 23.28 22.18 14.68 12.59 7.01 8.56

● For Baryon systems, data transfers and gpu memory evictions affect
the performance.



Redstar Performance on Multiple GPUs

Name # GPUs N # Flops Evictions Bytes (GB) Time (sec)

1 32356 1933.64

Roper 2 64 2.83x1014 15290 3200 1073.32

4 1671 5725 429.06

1 17767 517.21

Deuterium 2 64 1.42x1015 235 8986 522.56

4 667 14552 425.58

1 2749 2970.04

Tritium 2 32 7.69x1015 2671 753 1790.77

4 2354 1113 1323.79

Reduce Data Movements on Multi-GPUs
by Partitioning the DAG

● Divide the DAG into multiple similar sized partitions
with minimal number of edges crossing the borders
of the partitions.

GPU 1 GPU 2 GPU 3

Near Term Challenges

● Redstar and hadron contractions
 Reduce data movements on multi-gpu.

● Hopefully partitioning the DAG will reduce the data movements.
● Each partition of contractions is handled by a GPU through a separate contraction queue.

 Baryon-Baryon contractions on GPUs
● One single contraction cannot fit on a single GPU.

– Using multiple GPUs need to move partial GPU contraction results back to the host.
● Memory evictions becomes difficult because each object is not small.
● When to split a contraction on multiple GPUs ?

 Graph Isomorphism on GPUs?
● Can we beat Nauty ?

 Optimal graph contractions.
● Is local optimal selection = global optimal ?

 Multi-host redtar_npt through MPIs.
● Still need to do partitioning the DAG (which host to do which parts of the DAG).

 Intel CPU/GPUs.

	Slide 1
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 22
	Slide 23
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35

