PRECISE TIMING WITH A MICRO PATTERN GASEOUS DETECTOR PROPOSAL # 3

o Klaus Dehmelt

EIC-related Generic R&D Proposal Review Meeting

o November 16, 2022

The State University of New York

THE PICOSEC – HOW IT STARTED

- ${\rm o}$ Bunch crossing at HL-LHC with $\sigma_z \sim 5~cm \Rightarrow \sigma_t \sim 170~ps$
- o Detector with time resolution of ~ 20 ps needed \rightarrow reduce background
- Hermetic timing coverage requires large area coverage
- MPGD \rightarrow MicroMegas presently the best candidate
- Use the fastest signal generator \rightarrow Cherenkov radiation
- We will make use of a demonstrated concept
- Possible alternative MPGD: µRWell

THE PICOSEC – CONCEPT

• Fastest signal generator

- o Let charged particle traverse high n_r-medium
- o "Instantaneous" generation of Cherenkov photons
- o Convert photons to electrons \rightarrow at identical z-position (ideally)
- o Amplify electrons after extremely short trip \rightarrow anode readout

THE PICOSEC – CONCEPT

• Fastest signal generator

- o Let charged particle traverse high n_r-medium
- o "Instantaneous" generation of Cherenkov photons
- o Convert photons to electrons \rightarrow at identical z-position (ideally)
- o Amplify electrons after extremely short trip \rightarrow anode readout
- Gas: $Ne-C_2H_6-CF_4$ (80-10-10) (COMPASS gas)
- Possibly use as photo-

detector

a hi	A A A A A A A A A A A A A A A A A A A
	What with the second
	PICOSEC
	Micromegas

THE PICOSEC - CONCEPT

Fastest signal generator

- Let charged particle traverse high n_r-medium
- o "Instantaneous" generation of Cherenkov photons
- \circ Convert photons to electrons \rightarrow at identical z-position (ideally)
- \circ Amplify electrons after extremely short trip \rightarrow anode readout
- \circ Gas: Ne-C₂H₆-CF₄ (80-10-10) (COMPASS gas)
- Possibly use as photo-

detector

K. Dehmelt

- o Possible alternative
 - **•** Replace MM with μ RWell

DLC layer (<0.1 µm)

R~100 MΩ/□

Film glue -

Rigid PCB readout electrode

TESTBEAM O CERN (2021) Beam tests: time resolution for MIPs

MgF2 radiator 3 mm thick 18 nm Csl on 5.5 nm Cr Bulk MicroMegas "COMPASS gas" Optimum operation point: Vdrift/Vanode: -475V/+275V

Best result: 24 ± 0.3 ps

N_{p.e.} = 10.1 ± 0.7

Mean number of p.e. per muon produced in the CsI photocathode

* Stony Brook University The State University of New York

8

Æ

PROSPECTS

Robustness

More robust photocathode

Picosec baseline cathode is Csl:

Pro

high quantum efficency (10 p.e/μ) -> better time resolution

Cons

- poor robustness agains IBF and discharges,
- · difficult to handle and store due to the sensitivity to humidity

Research for alternative photocathodes/protection layers

- Metallic photocathodes
 - 20 nm Cr -> 0.66 p.e/µ, time resolution 189 ps
 - + 6 nm Al -> 1.69 p.e/ μ , time resolution 71 ps
 - 10 nm Al (on 5 mm MgF₂) -> 2.2 p.e/μ, time resolution 57 ps
- DLC
 - 2.5 nm -> 3.7 p.e/μ (550V/275V, 40 ps)
 - 5 nm -> 3.7 p.e/μ
 - 7.5 nm -> 2.2 p.e/μ
 - 10 nm ->1.7 p.e/μ

• B4C

• Shows better QE than DLC. with UV light test in the lab.

https://indico.cern.ch/event/757322/contributions/3387110/attachments/1839691/3015624/MPGD2019_WangXu_f.pdf Sohl, Lukas. Development of PICOSEC-Micromegas for fast timing in high rate environments. Diss. Université Paris-Saclay, 2020. K. Dehmelt

11/16/2022

Center for Frontiers

3 mm MgF, + DLC of different thicknesses

SUMMARY

• PICOSEC: detector concept with large potential

- o Simple construction
- o Affordable
- o Excellent timing performance
- o Can be used as fast photo-detector
- o Electronics to be verified
- Has large room for improvements
- o PICOSEC Collaboration highly competent and enthusiastic

QUESTIONNAIRE

• EICGENR&D2022_03: Precise Timing with a Micro Pattern Gaseous Detector

- 1. Please elaborate on the role and potential advantages of using a PICOSEC detector for the EIC. Based on reasonable assumptions about the radiator/photocathode/gas gain structure, how would this technology compare to LGADs for use as an EIC TOF detector in terms of multiple scattering, heat generation, and services?
- 2. Please show a diagram of where the PICOSEC detector would be placed in the experiment.
- 3. Describe in detail the proposed scope of work for Year 1.
- 4. What generic R&D and achieved milestones would be sufficient to establish that this technology is a viable candidate for an EIC TOF detector? (Further refinements in the radiator, photocathode, and gas gain structures are inherently open ended, but a final configuration could be established using project R&D.)
- 5. Regarding labor: Can you detail the %FTE participation by other collaborators? Which part of the project could be accomplished without funding for a PhD student?

POTENTIAL ADVANTAGE OF PICOSEC IN EIC

- Timing resolution $\sigma_{t} \sim 20 \text{ps}$
- Possibly track point usage
- Large area coverage
- Could be mounted on existing infrastructure
- Costs

POSSIBLE COMPARISON TO LGAD

10

Center for Frontiers

MULTIPLE SCATTERING/HEAT **GENERATION/SERVICES**

- Radiation length: X/X₀ of $O(5\%) \rightarrow$ material is 75% driven by radiator
- Heat generation: 78 mW/ch with electronics under development \rightarrow 780 W/m²
- Services: gas supply and power supply

Micromegas

Housing +MgF₂

Cuivre de ba

EPOXY

7.494 dr

Passivation

15

0.028

0.028

Ep. 1.6

27

Ep.

K. Dehmelt

* Stony Brook University | The State University of New York

+

5 u

50 µ

0.1 μr

28 µn

17 μn

28 µn

17 μη

1.6 n

17 μm

BOT

PLACEMENT IN EIC DETECTOR

• For instance, EPIC:

K. Dehmelt

Possible Picosec location

12

PLACEMENT IN EIC DETECTOR

Center for Frontiers in Nuclear Science

PROPOSED SCOPE YEAR 1

Familiarize with MM-Picosec

- o Get detector in operating conditions and compare with GDD-FT device
- Establish mechanical stability
 - Investigate and develop mechanical structure with minimal material impact

Explore readout electronics

o Investigate and demonstrate feasibility of readout electronics

Laboratory testing with light source

- o Verify photon-yield
- o Investigate performance
- Verify timing resolution
- Testbeam at CERN

GENERIC R&D AND MILESTONES

Generic R&D

- Investigate electronics performance with MM-Picosec
- o Improve stability with minimum material supply
- o Investigate large area readout performance
- o Replace MM with μ RWell, verify performance (2nd + years)

Possibly achieving milestones with

- o Demonstrate electronics performance
- o Demonstrate stability improvement
- o Demonstrate large area readout capability

• Possibly achieving milestones with further refinements

- Verify improved photon-yield with modified photo-cathode/radiator
- o Similar timing resolution of μRWell compared to MM $\rightarrow \sigma_t \sim 20 \text{ ps}$
- o Demonstrate performance equivalent of μRWell compared to MM

%FTE FROM COLLABORATORS/ NO STUDENT SUPPORT

- Project needs a person dedicated to topic \rightarrow Ph.D. student
- Collaborator contributions: consulting, test beam support

Item	Nominal Budget	Year 1	Year 2	Year 3	Total
1	Salary Ph.D. student	\$ 61,525	\$ 63,201	\$ 64,927	\$ 189,653
2	Travel costs (Test Beam)	\$ 7,975	\$ 15,950	\$ 15,950	\$ 39,875
3	Picosec Amplification Structure	\$ 4,080	\$ 4,250		\$ 8,330
4	Radiator	\$ 1,224	\$ 1,500		\$ 2,724
5	Sapphire window	\$ 510			\$ 510
6	Aluminum housing	\$ 1,020			\$ 1,020
7	Outer PCB	\$ 1,530	\$ 1,530		\$ 3,060
8	Preamplifier	\$ 4,590			\$ 4,590
9	Digitizer SAMPIC 128 CH	\$ 12,240			\$ 12,240
	Total	\$ 94,694	\$ 86,431	\$ 80,877	\$ 262,002

* Stony Brook University | The State University of New York

11/16/2022

%FTE FROM COLLABORATORS/ NO STUDENT SUPPORT

- Project needs person dedicated to topic \rightarrow Ph.D. student
- Collaborator contributions: consulting, test beam support
- Budget reduction → personnel cost reduction → significantly project delay

Item	Nominal Budget -20%	Year 1	Year 2	Year 3	Total
1	Salary Ph.D. student	\$ 46,144	\$ 47,401	\$ 48,695	\$ 142,240
2	Travel costs (Test Beam)	\$ 4,417	\$ 14,464	\$ 16,007	\$ 34,888
3	Picosec Amplification Structure	\$ 4,080	\$ 4,250		\$ 8,330
4	Radiator	\$ 1,224	\$ 1,500		\$ 2,724
5	Sapphire window	\$ 510			\$ 510
6	Aluminumhousing	\$ 1,020			\$ 1,020
7	Outer PCB	\$ 1,530	\$ 1,530		\$ 3,060
8	Preamplifier	\$ 4,590			\$ 4,590
9	Digitizer SAMPIC 128 CH	\$ 12,240			\$ 12,240
	Total	\$75,755	\$ 69,145	\$ 64,702	\$ 209,602

%FTE FROM COLLABORATORS/ NO STUDENT SUPPORT

- Project needs person dedicated to topic \rightarrow Ph.D. student
- Collaborator contributions: consulting, test beam support
- Budget reduction → personnel cost reduction → significantly project delay → project not feasible

Item	Nominal Budget - 40%	Year 1	Year 2	Year 3	Total
1	Salary Ph.D. student	\$ 30,763	\$ 31,601	\$ 32,464	\$ 94,827
2	Travel costs (Test Beam)	\$ 859	\$ 12,978	\$ 16,062	\$ 29,899
3	Picosec Amplification Structure	\$ 4,080	\$ 4,250		\$ 8,330
4	Radiator	\$ 1,224	\$ 1,500		\$ 2,724
5	Sapphire window	\$ 510			\$ 510
6	Aluminumhousing	\$ 1,020			\$ 1,020
7	Outer PCB	\$ 1,530	\$ 1,530		\$ 3,060
8	Preamplifier	\$ 4,590			\$ 4,590
9	Digitizer SAMPIC 128 CH	\$ 12,240			\$ 12,240
	Total	\$ 56,816	\$ 51,859	\$ 48,526	\$ 157,200

NO STUDENT SUPPORT

Project **unfeasible**

19