

Development of High Precision and Eco-friendly MRPC TOF Detector for EIC

Alexender Camsonne¹, Yi Wang², Zhenyu Ye³, Zhihong Ye² 11/15/2022

[1] Thomas Jefferson Lab[2] Tsinghua University[3] University of Illinois at Chicago

TOF on EIC

- > AC-LGAD as the TOF for ePIC
 - Goals: 25ps time + 30um spatial resolutions
 - □ Cost: ~\$10M
 - □ Still under active R&D (possible risk)

- Can any places be substituted?
- ✤ Alternative TOF solution?
- The second IP detector?

• Center Detector (most recent setup for ePIC):

CTTL

beam pipe

FTTL

- \odot Electron Endcap \rightarrow \sim 0.8 m² (R~70cm),
- Hadron Endcap \rightarrow ~2 m² (R~180cm, R~65cm)
- Barrel → ~10 m² (R~64cm, Z~240cm)

Multi-gap Resistive Plate Chamber (MRPC)

General Princple

□ Low-resistivity glass plates, Standard gas (95% F134a + 5% iso-butane), HV(~12kV)

Good performances:

time resolution, efficiency, rate capacity (>30kHz/cm²), radiation-hard, magnet safe

□ Certain spatial resolution (by strip pitch)

□ Low cost, easy manufacturing, large sensitive area (up to 1.0mx0.5m)

□ Used by ALICE, STAR, etc.

MRPC

- Tsinghua's new Sealed MRPC (sMRPC)
 - \Box Gen3 MRPC with sealed gas \rightarrow No more boxes!
 - $\hfill\square$ More compact, less radiation length
 - □ Reduce greenhouse gas emmission (20cc/cm²/min)

Y. Wang et al 2019 JINST 14 C06015

□ To be used on CBM, CEE, SoLID, etc.

Tsinghua's Miyun workshop is continousely conducting mass production of sMRPC for many projects

Tsinghua's Sealed MRPC (sMRPC)

□ Tunable performance of Gen3 sMRPC

- $\checkmark\,$ Gaps, layers and HVs can be optimized for different needs
- ✓ BEST: 32-layers, 400um glass, 128um gap, 12kV

Tsinghua's Sealed MRPC (sMRPC)

□ Most recent tests: cosmic ray with x-ray background

- ✓ 32-gaps (4 stacks), 400um thin glasses
- ✓ 104um gas-gap + waveform-sampling → 20ps & 95%
 efficiency at 15kHz Y. Yu et al 2020 JINST 15 C01049
- ✓ 128um gas-gap + ToT method \rightarrow 20ps at 15kHz

Y. Yu et al 2022 JINST 17 P02005

MRPC

□ No in-beam test yet

MRPC on EIC?

➤ sMRPC's Pros and Cons:

Pros:

- ✓ Proved high-time resolution
- ✓ Radiation-hard, magnetic field safe
- ✓ Cost-effective
- ✓ Mass production
- ✓ No technical risk

□ <u>Cons:</u>

- Thick (4cm for each plane)
- Large radiation length (32 layers=10% X₀)
- Limited spatial resolution
- Greenhouse gas

□ Proposing R&D of sMRPC for EIC:

- Reduce thickness with fewer layers (time vs X₀)
- Ecofriendly gas (or gas-recycling system)
- Timing performance in high-energy beam
- Improve spatial resolution w/ finer strip pitch (\$\$\$)

F.Wang, JINST, 13(09):P09007, 2018.

Eco-Friendly Gas Replacement

- □ Possible replacements of standard gas:
 - ✓ C2H2F4 (R1234ze) + CO2
 - ✓ Argonne + CO2
 - ✓ Helium

Cons:

- Expensive (C2H2F4)
- Impact to other detectors (Helium)
- Need ultra-high HV

MRPC Standard Gas

To-dos:

- Simulation with more gas mixtures
- Cosmic ray and beam test for actual performance

Time-Correction with Machine-Learning

□ ToT method is limited by pulse height, noise, and TDC resolution

□ Limited improvement by offline time-walk correction (w/ ADC info)

□ Waveform Sampling → higher precision

✓ Further improvement w/ ComLSTM neural network model

To dos:

- ✓ Use modern machine-learning tools
- \checkmark Train with new simulation data
- ✓ Check with beam-test data

Cosmic and Beam Test

Goals:

- Validate simulation framework and machine-learning method
- Investigate different eco-friendly gas mixtures
- Study real performance with high-energy/high-rate background
- Test out front-end electronics

To-dos:

- UIC local test with cosmic-ray + xray background
 2 planes of 16-layer sMRPC + SAMPIC
- Jlab/FermiLab beam test

2 planes of 16-layer sMRPC + SAMPIC and NALU

Tsinghua's local test with cosmic-ray + x-ray background
 2 planes of 32-layer sMRPC + USTC FEE
 + DT5742 (DSR4) and DT5202 (picoTDC)

11

Budget Request

	Software Develop- ment	Neural Network	Eco- friendly Gas	Cosmic& Beam Test	Sum
Tsinghua	\$9K	\$9K	-	\$10K	\$28K
UIC	-	-	\$25K	\$55K	\$80K
JLab	-	-	-	\$10K	\$10K
Total					\$118K

Table 2: Money Matrix.

□ UIC: 1 FTE Grad. Student + Gas Circulation-System

+ Gas Mixtures + HVs + **SAMPIC** + Trip to Jlab

□ JLab: local Gas Circulation-System + Mixtures + Accessories

□ Tsinghua: 1 FTE Grad. Student + Travel to U.S.

- ✤ Additional contribution from Tsinghua
 - \checkmark 4 low-rate sMRPC with 16 gas-layers (at UIC now)
 - ✓ 2 high-rate sMRPC with 32 gas-layers (ship soon)
 - ✓ 2 picoTDC modules (128 channels)
 - ✓ DT5742 (DSR4)
 - ✓ USTC FEE

4.1 Detailed budget full funding

Tsinghua University	Graduate student 12 months	\$18K
Tsinghua University	Travel	\$10K
UIC	0.5 FTE student	\$25K
UIC	HV supply	\$10K
UIC	$SAMPIC \times 2$	\$10K
UIC	Gas system and gas	\$25K
UIC	Travel for beam test	\$10K
JLAB	Gas supplies	\$10K
Total		\$118K
	•	

4.2 80 % budget scenario Tsinghua no trip to U.S.

Tsinghua University	Graduate student 12 months	\$18K
UIC	0.5 FTE student	\$25K
UIC	HV supply	\$10K
UIC	SAMPIC×1	5K
UIC	Gas system and gas	\$25K
UIC	Travel for beam test	\$5K
JLAB	Gas supplies	\$10K
Total		\$98K

4.3 60% budget scenario No beam tests

Tsinghua University	Graduate student 12 months	\$18K
UIC	0.5 FTE student	\$25K
UIC	HV supply	\$10K
UIC	$SAMPIC \times 1$	\$5K
UIC	Gas system and gas	\$25K
Total		\$83K

Address Questions

<u>**Q**#1</u>: Please respond to the observation that the emphasis of this proposal is on simulations and gas optimizations while the proponents have not demonstrated that they have a scalable electronics readout solution that can deliver the performance that they need.

Answer:

□ For the first year of R&D w/ requested budget, the simulation and eco-friendly gas study will be the main tasks:

- Optimize the MRPC for different EIC needs (timing resolution, spatial resolution, radiation length),
- Study neural network methods for precision timing
- Study the replacement of green-house gas with eco-friendly gas

□ Besides, we will also perform <u>cosmic-ray and beam tests</u> to evaluate the realistic in-beam timing resolution of the sMRPC with background, using different layers and different gas mixtures.

□ We have <u>multiple readout solutions</u> for the cosmic ray and beam tests to achieve our goals:

- Existing: used by previous tests: DT5742 based on DSR4, USTC FEE, 10GS/s Oscilloscope
- New: SAMPIC, NALU, and picoTDC
- **Future R&D**:
 - A scalable electronics readout solution for sMRPC on EIC detectors
 - ~20ps time resolution from beam-test w/ optimized sMRPC+Eco-gas

Address Questions

Q#2: Can you make a rough comparison of the radiation length of MRPCs vs AC-LGAD's? (Include services such as cooling

Answer:

- MRPC: 5% X₀ for 16 layers (30~40ps); 10% X₀ for a 32-layer one (20ps) \rightarrow including all materials, no cooling needed
- AC-LGAD: $1\% X_0$ for ePIC Barrel; 8% for Endcaps

Address Questions

Q#3: Can you also roughly compare the cost for instrumenting the same area with MRPCs vs AC-LGAD's?

- \Box AC-LGAD: ePIC estimated cost is M/m^2
- □ MRPC: ~\$310K/m²
 - \$30K/m² for 32-layers (~\$20K for 16-layers)
 - Readout: \$280K/m² for a 5mm strip-pitch and 1-dimension readout

Q#4: What is the expected <u>position</u> resolution of the MRPCs in this proposal?

 \Box MRPC's position resolution depends on the readout strip pitch (e.g., 5mm/sqrt(2))

Summary

□ MRPC is a good candidate of TOF detectors for modern particle experiments (SoLID, EIC)

- ✓ Mature technology, high-performance, low-cost
- $\checkmark\,$ A good alternative TOF option for EIC

□ Tsinghua's new sealed MRPC (20ps at 15kHz/cm², cosmic ray + Xray) meets EIC-TOF requirements

□ Proposal of new sMRPC R&D on EIC (ePIC endcaps and/or second IP):

- ✓ Reduce thickness (less space, less material budget)
- ✓ Replacement of Eco-friendly gas
- ✓ Improve spatial resolution
- ✓ Readout electronics (partially explore)

> A formally supported EIC R&D program for sMRPC will encourage more funding supports from China

BACKUP

Time Correction

≻ToT Method vs. Sampling

ToT Method:

- ✓ Fixed threshold by DIS
- ✓ Use ADC for walk-correction
- ✓ Fewer requirements on front-ends
- ✓ Affected by signal amplitude

□ Sampling Method:

- ✓ Capture waveform of raise-edge
- ✓ Need fast sampling front-ends
- \checkmark Good for high-precision timing
- ✓ Good for large noise and varying amplitudes

MRPC

≻Tsinghua's Sealed MRPC (sMRPC)

□ Parameters of Gen3 sMRPC (32-layers, 400um glass, 128um gap)

MRPC Module	L x W x T (mm)	
Honeycoumb Board(x2)	265 x 90 x 7.5	
Outer PCB (x2)	298x120x0.6	
Inner PCB (x2)	298x120x1.2	
Center PCB (x1)	328x120x1.2	
Readout Strip (on PCB)	268x5(8 line, 2mm gap)	
Mylar film (x2*4)	268x90x0.25	
Carbon Electrode (x2*4)	250x72x0.005	
Resistive Glass (x9*4)	258x80x0.4	
Gas Layer (x8*4)	0.128	
Active Area	258 x 80	
Total Size	$328 \times 120 \times 40.3 (0.1 X_0)$	

Pulse signal before PreAMP: 2mV (integrated charge ~ 4pC)

Endcap TOF consists of 16 modules and each module consists of 3 sealed MRPC.

Figure 1.3 Arrangement of MRPCs inside the box in the End-cap.

mRPC Modules:

- \gg \$30K per m² for 32 gas-layers with regular low-resistive glasses
- For a 180cm outer radius and 10cm inner radius disk, it takes 10m² of mRPC
- ➢ Total cost: \$0.3M

Readout Electronics:

- > 1cm for each channel, read from both ends along the radial direction
 - Module#1: 51 x 2 channels
 - Module#2: 37 x 2 channels
 - Module#3: 25 x 2 channels
 - Mudule#4: 14 x 2 channels
- Total channels of each sector: 254 channels
- ➤ Total 22 sectors → 5588 channels ~ 5600 channels
- > Total cost: \$500 for each channel \rightarrow \$2.8M for readout electronics

HV Supplies:

- ➤ CAEN AG524P → 6 HV outputs, quote \$6K for each board
- Two module power one sector (positive + negative polarity)
- ➢ Total 44 HV boards
- > Nee two frames that house the HV boards \rightarrow \$8K for each
- ➤ Total: \$280K for HV power supplies
- ➤ Cables: \$??K

22

- Each sector contains a super-module with 4 \geq individual mRPC modules with different sizes
- For each mRPC module, read the signal from both \geq ends along the radius direction

Each mRPC Super-Module:

- Divide the total disk into 22 sectors
- Each sector contains a super-module with 4 individual mRPC modules with different sizes
- For each mRPC module, read the signal from both ends along the radius direction

