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Motivation
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4 The growing computational power of modern FPGA boards allows us to add more sophisticated algorithms for real-time data processing.
4+ Many tasks, such as tracking and particle identification, could be solved using modern Machine Learning (ML) algorithms which are naturally suited

for FPGA architectures.
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The correct location for the ML on the FPGA
filter is called "FEP" in this figure.

This gives us a chance to reduce traffic earlier.

Allows us to touch physics: ML brings
intelligence to L1.

However, it is now unclear how far we can go
with physics at the FPGA.

Initially, we can start in pass-through mode.
Then we can add background rejection.

Later we can add filtering processes with the
largest cross section.

In case of problems with output traffic, we can
add a selector for low cross section processes.

The ML-on-FPGA solution complements the
purely computer-based solution and mitigates
DAQ performance risks.
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Processing chain / Global PID Jefferson
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O Usually, several PID detectors are used in an experiment.
O For example, the GEM-TRD and e/m-calorimeter, both provide separation of electrons and hadrons.

O Summation and processing of joint data from both detectors at the early stages will increase the identification power of these
detectors compared to independent identification.

O To test the “global PID” performance we work on integration of the EIC calorimeter prototype (3x3 modules) into the ML-FPGA
setup.

O Preprocessed data from both detectors including decision on the particle type will be transferred to another ML-FPGA board with
neural network for global PID decision.

Detectors Low latency filter Computer farm
ML-FPGA
PID
GEMTRD JANA2

ML-FPGA ML= ARG

Global High Level
Filter Event
ML-FPGA Reconstruction
PID
emCAL

Tracking Tracking

Level 0 Level 1 Level 3




Beam setup at JLab Hall-D Jeffer<o
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« Tests were carried out using electrons with an ener%y of 3-6 GeV, produced in the
converter of a pair spectrometer at the upstream of GlueX detector.

GEMTRD prototype

Pair spectrometer

+
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Calorimeter parameters reconstruction Jefferdon Lab
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, By Dmitry Romanov
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EIC detectors prototypes in Hall-D test beam JefferSon Lab
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URWELL, pad-GEM with capacitive-sharing readout — Kondo

mRICH and GEM MM

11/16/22 EIC generic R&D 6

Sergey Furletov — —




Summary Jefferso
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O An FPGA-based Neural Network application would offer online event preprocessing and allow for data reduction based on physics
at the early stage of data processing.

O The ML-on-FPGA solution complements the purely computer-based solution and mitigates DAQ performance risks.
O FPGA provides extremely low-latency neural-network inference.

O Open-source HLS4AML software tool with Xilinx® Vivado® High Level Synthesis (HLS) accelerates machine learning neural network
algorithm development.

L The ultimate goal is to build a real-time event filter/tagger based on physics signatures.

QPM QCD-Compto Case StUdy jet tagglng
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q, g, W, Z, tinitiated jets

p(p)
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3-prong jet 2-prong jet 2-prong jet no substructure
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Figure 2.1: Feynman diagrams of the Quark Parton Model, QCD-Compton and Boson Gluon Fusion processes in NC DIS. Signal: reconstructed as one massive jet with substructure

Sublished in 2007 Jet substructure observables used to distinguish signal vs background
Measurement of multijet events at low $x_{Bj}$ and low $Q*2$ with the ZEUS detector at HERA
T Gosal \r\ [*] D. Guest at al. PhysRevD.94.112002, G. Kasieczka et al. JHEP05(2017)006, J. M. Butterworth et al. PhysRevLett.100.242001, etc..
11.01.2019 Jennifer Ngadiuba - hls4ml: deep neural networks in FPGAs 25
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Question 1 Jeffero
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There appears to be overlap in the proposed research with the current DOE-funded project on FPGA-ML tracking/full event tagging
for RHIC/EIC under DE-FOA-0002490 by LANL-MIT-FNAL-NJIT . Can you comment on how this proposal will complement that effort?

¥ DE-SC0022346: Intelligent Experiments Through Real-time Al: Fast Data Processing and  Award Status: Active
Autonomous Detector Control for sPHENIX and Future EIC Detectors (- View Less:

Institution: New Jersey Institute of Technology, UEl: SGBMHQ7VXNH5 DUNS: 075162990

Newark, NJ

Most Recent Award Date: 10/12/2022 Number of Support Periods: 2 PM: Farkhondeh, Manouchehr
Current Budget Period: 11/30/2022 - 11/29/2023 Current Project Period: 11/30/2021 - 11/29/2023 Pl: Yu, Dantong

Supplement Budget Period: N/A

Public Abstract

The upcoming sPHENIX experiment, scheduled to start data taking at the BNL Relativistic Heavy lon Collider in 2023, and the future EIC experiments will employ
sophisticated state-of-the-art, high rate detectors to study high energy heavy ion and electron-ion collisions, respectively. The resulting large volumes of raw data far
exceed available DAQ and data storage capacity. To meet this challenge, we propose to develop a selective streaming readout system comprising state-of-the-art Al-
based fast data processing and autonomous detector control systems. This will allow to effectively sample the full high energy collision events delivered by the
accelerators while maintaining the final data throughput for offline storage at a manageable level within the available DAQ bandwidth, storage, and computing capacity.
This project designs real-time Al-based algorithms that operate on high-rate data streams and allow the identification of important rare physics events from abundant
backgrounds in the sPHENIX's p+p and p+Au collisions, as well as in the future EIC experiments, such as the one proposed by the ECCE consortium. We will co-design
physics-aware high-speed deep neural networks that automatically perform complex tasks of collision event reconstruction and analysis, monitor and calibrate the beam
interaction points, and align detectors in real-time. Demonstrating such a full system integration will be the first step in autonomous control loops of powerful online Al
— algorithms for large-scale, complex high-energy nuclear physics experiments.

11/16/22 Sergey Furletov EIC generic R&D — 8
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Question 1 (cont 1) JefferSon Lab
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L The project mentioned above has a broad title that allows them to work on any topic of Real-Time Al applications for experiments
and detectors, but narrowed down to the sPHENIX and EIC experiments. |

U The last reports of this group at the workshops reveal some details about the direction of their work:

» A fast search for displaced tracks will be performed by Al-trained FPGA to identify tracks from heavy quark decays that are

pointing away from the nominal beam center.

O /In other words, they're going to make a trigger for displaced vertices based on Al in RealTime.
O Work will be done for the sPHENIX experiment and will therefore build on existing DAQ hardware.

~ H '

4 sPHENIX
MVTX (Si Pixels)
Online
INTT (Si Strips) _I buffer
Trigger signal -
TPC s
\_ W,

QL This field is new and there are no ready-made solutions yet, so any
information from other groups working in this direction will be
interesting and useful.

> i.e. despite the fact that our program also has track finding, the
methods used for this can be different.

Hardware setup

Al decisions
to TPC

Streaming Al
FELIX (FPGA)

Raw hits via
optical links

=
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A second FELIX is connected to the first FELIX through the optical transceivers,
as a dedicated FPGA hardware for smart control and real-time decision
making for TPC readout in the selective data streaming architecture.

2& Fermilab
9 10/04/2022 Micol Rigatti | Fast Machine Learning for Science Workshop 2022
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Question 1 (cont 2) FPGA test board for ML
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At an early stage in this project, as hardware to test ML
algorithms on FPGA , we use a standard Xilinx evaluation boards
rather than developing a customized FPGA board. These boards
have functions and interfaces sufficient for proof of principle of
ML-FPGA.

The Xilinx evaluation board includes the Xilinx XCVU9P and
6,840 DSP slices. Each includes a hardwired optimized multiply
unit and collectively offers a peak theoretical performance in
excess of 1 Tera multiplications per second.

Second, the internal organization can be optimized to the
specific computational problem. The internal data processing

architecture can support deep computational pipelines offering
high throughputs.

Third, the FPGA supports high speed I/0 interfaces including
Ethernet and 180 high speed transceivers that can operate in
excess of 30 Gbps.

Featuring the Virtex® UltraScale+™ XCVU9P-L2FLGA2104E FPGA

Ethernet Port
(101100/1000 Mb/s Tri-Speed Ethernet) ~ XCVU9P-LGA2104E
RLDRAM3 72-bit

(2 x 36 Components)

oflo

FMC+
(24 x GTY) vcu118-board-image

User Clock Input SMAs
SYSMON Header

USB-JTAG Connector
JTAG Header
USB-UART Connector

Samtec FireFly Interface
(4x GTYs)

QSFP28
(4 x GTYs)

QSFP28
(4x GTYs)

QSPI Flash User Push Button
Memory Switches

DDR4 80-bit PCle Edge Connector DDR4 80-bit
(5 x16 Components)  Gen3 x16, Gend x 8 (5 x 16 Components)
Bottom Side of Board (16 x GTYs)

Xilinx Virtex® UltraScale+™
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Question 2 Jefferéon Lab
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Can you make a clear case that the proposed R&D addresses problems that are currently projected to be bottlenecks for EIC
Detector 2 or an upgrade of Detector 1? For example, is it a mere detail that Detector 1 tracking technology is based on silicon
whereas this proposal would use GEMs? Are the noise and track reconstruction challenges similar? The EIC-related generic R&D

program cannot support overly generic R&D.

)
4 N I T T

PID-Cherenkov:

dRICH 300k 200 1830Gb/s
(<20Gbps to tape)

pfRICH (if selected) 225k 150 1380Gb/s
(<15Gb/s to tape)

mRICH (if selected) 288

DIRC 74k 288 11Gb/sec

L One known bottleneck is data traffic from dRICH. dRICH in its current design is based on SiPM readout and can produce up to 1.8
Tb/s of data including noise.

L One of the methods for cleaning dRICH data from noise hits could be the reconstruction of tracks in dRICH using other tracking
detectors before and/or after dRICH, followed by reconstruction of the rings.

W Track reconstruction using ML is quite general and is usually based on 2D or 3D hits in space.
Of course, the amount of noise can affect tracking performance and especially scalability.
However, the detector technology itself - GEM vs silicon should not be a problem.

Sergey Furletov EIC generic R&D 11
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Qu e S t i O n 2 ( C O n t ) Jeoma; Jeffersg'nrA’atlIongA?celerator Facility

L The current EIC/DAQ design also considers the use of a
hardware trigger as a fallback solution.

O The growing computational power of modern FPGA boards
allows us to add more sophisticated algorithms for real-time

data processing.

L Many tasks, such as tracking and particle identification, could
be solved using modern Machine Learning (ML) algorithms
which are naturally suited for FPGA architectures.

O Performing a physics event reconstruction at Level 1 can
provide a more efficient and clean trigger.

 The ML-on-FPGA solution complements the purely computer-
based solution and mitigates DAQ performance risks.

Tining System ard
Interface to Detectors.

Dave Abbott and Jeff Landgraf

L3 CAMs for EIC Detector Project

] DAQ / Electronics Status:Review

Wy, ( : { ':‘ ~+ August 291, 2022

S
S
ES

S a

Triggering and the Streamlng DAQ

« Hardware Trigger (as fallback)
» Support must be present in timing system
» Hardware trigger is not part of baseline
. Support will be simple
Provide electrical inputs in timing board to input trigger
» Link these inputs to bits in the trigger information passed each BX
* No/ rudimentary support for prescale, busy, trigger counters, etc..

* Expect trigger signal Iagodue to flight time and processing O(usec) so hardware
support must be driven by detector needs / design

» Potential mixed trigger (hardware selection but filtering implemented in DAM)

» Software Trigger
* Reduce Data volume for RICH detectors (fallback from Al/ML)
SiPM sensitive to single photons
1830Gb/sec from dRICH

Assuming zero-suppression
1/3 data reduction by applying time window with respect to the BX

» Reduce data volume for Far Backwards Detectors
Electron Bremsstrahlung leads to up to 20 tracks per bunch crossing in Far Backward detectors

~100Gb/sec
Data to be analyzed by front end computers to produce luminosity measurements

Small fraction to be read out in concert with central detector activity

11/16/22 Sergey Furletov
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Question 3 Jefferéon Lab
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Please discuss the reliability of the proposed methods, in particular for the following areas:
. What amount of by-passing data is required to study the systematic uncertainty on the acceptance efficiency for the
proposed full event ML trigger/tagger?
. Please quantify the performance difference for the inference network between the training environment and FPGA
implementation (e.g. via emulation with QONNX), as different numerical precisions are used in these two environments.
. Please comment on the following factors in the algorithm design: competence awareness, quantization aware training,
and whether/how calibration is used.

1. The amount of by-passing data depends on the specific variables Distribution of (non-zero) weights (before optimization)
provided by the neural network. If it's measurable values like .
tracks, clusters, PID then it's pretty fast, 100Hz should be enough. Klwy B
For complex parameters such as the charmed meson invariant fc1/b - ; I
mass, this depends on the stability of the detectors and
calibration. fc2jwq | -
2. In development, we actively use the open source HLS4ML fc2/b - ——
software. It provides tools for analyzing and optimizing a neural
network before implementing it into an FPGA. R - ' iy
1. -compression: reduce number of synapses or neurons fc3/b - T~
2. - quantization: reduces the precision of the calculations
(inputs, weights, biases) output/w - =D
3. - parallelization: tune how much to parallelize to make the output/b - |
inference faster/slower versus FPGA resources T , ; ' r ,
2-15 2-13 2-10 2-? 2-4 2-1
X
11/16/22 Sergey Furletov EIC generic R&D 13
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( Question 3 (cont) Jeffergon Lab
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1. The precision for used values can be adjusted manually looking on the

distribution.
hisaml
2. The result can be controlled by simulation and tests: 1 T e tagger, AUC - 96.1%
1. using HLS4ML ~ e tagger, AUC L5 6%

p tagger, AUC = 95.9%

2. using Xilinx HLS C-simulation
3. using Xilinx C/RTL Co-simulation
4. using Xilinx Vivado to build a test bench in FPGA.

._.
<

3. HLS4ML also provides an interface for training using QKeras “quantization
aware training” and study impact on FPGA metrics.
» QKeras is a library to train models with quantization in the training,
maintained by Google

4. The question of the accuracy of ML is generally quite complicated. In practice,
it can be estimated using realistic Monte Carlo simulations or by comparison
with the results obtained using conventional algorithms when working with
experimental data.

5. The quantization aware training is usually compared to the full version of the .
neural network used as a reference. o o % nal Efnciency o He

Background Efficiency

._.
<
1)

EIC generic R&D S— 14
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Question 3 (cont) FPGA test bench Jeffer€o
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O The logic test was performed with the MicroBlaze processor and the AXI Lite interface.

MO1_AXI +—l microblaze_0_axi_intc microblaze 0
.Y. MO2_AXI i
.Y. MO3_AXI 4 |4+ s axi ” + INTERRUPT
BEE MO4 AXI i s axi_aclk
MO5_AXI + Q s axi_aresetn ” + DEBUG M Bl v
. i o interrupt 4 " Clk ICro aze
MO6_AXI 4+ i intr{1:0] Reset
processor_clk
processor_rst
MicroBlaze
AXI Interrupt Controller
gnn2df_0
terconnect
+ s axi_control Vige™ HLS
ap_clk interrupt H
ze_0_xlconcat { ap_rst n d GNN Pattern FECOgnItIOH
E dout[1:0] Gnn2df (Pre-Production)
trd_fit O
Concat .

ap_rst_n

+S_ﬁxi_AXILiteS I:] R DNN/LSTM t Kk fit
- e 5| e rack fi

Trd_fit (Pre-Production)

trd_ann3_0

+ s axi_AXILiteS Vivado™ HLS
[, ] DNN PID module

ap_rst_n

Trd_ann3 (Pre-Production)
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Question 4 Jefferéon Lab
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Why implement the algorithms immediately in an FPGA board and not test it beforehand with existing data in a CPU? Of course this is
much slower but will show how good the algorithms work.

O Yes, we have been using a neural network for offline data processing from GEMTRD for a long time.
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W For data analysis we used a neural network library provided by ROOT /TMVA package:
» MultiLayerPerceptron (MLP)

L Top left plot shows ionization difference for e/pi in several bins along the track

O Top right plot shows neural network output for single TRD module:
> Red - electrons with radiator
> Blue — electrons without radiator.
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Question 4 (cont) hls4ml package Jeffer<o
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* A package hlsdml is developed based on High-Level Synthesis (HLS) to build machine learning
models in FPGAs.

article: J. Duarte et al 2018 JINST 13 P07027

Keras
TensorFlow

PyTorch

\ Co-processing kernel

~
AN

his 4 ml

compressed
model — HI-S_ -
conversion Custom firmware
. . design
Usual machine learning Jf 9
software workflow
tune configuration
precision
reuse/pipeline
: reuse = 4 before pruning after pruning
———p—P>| =
mult use 1 multiplier 4 times
pruning __ __
> mult reuse = 2 synapses
use 2 multipliers 2 times each
=p—Pp1 mult
pruning
=] mult neurons
> mult] reuse =1
use 4 multipliers 1 time each Song Han. thesi
I mult ong Han, thesis
- mult
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Question 5 Jefferso
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Please detail the planned work and deliverables from the electrical engineer, and how they fit into the current budget of
0.05+0.1 FTEs.

O Provide firmware support for surrounding infrastructure
> Ethernet TCP/IP interface
> Fiber optic serial interface
» Event building, data storage
> MicroBlaze interface

O Assistance for design implementation and testing
l > Device utilization
> Preprocessing
» Troubleshooting
> Monitoring




Question 6

Je on Lab
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is just shifted.

Regarding labor: How can a PhD student salary be cut by -20% or -40%? Is it planned to hire the student later? But then the problem

| >

assistantship.

Table 1: JLAB: FY23 request.

L For this proposal, the graduate student could be cut back in one of two ways.

The student's start could be delayed
» Also, the student could be hired at a lower level of support from JLab and supplemented by a 25% LOE teaching

Table 2: ODU: FY23 request.

» The amount of time the student could devote to this work would be reduced which would also happen if there was
delay in bringing on the student.

e ———— e ————————

Request | -20% -40% Request | -20% -40%
2 FPGA boards $20,000 | $20,000 | $20,000 PhD student $23,250 | $18,800 | $14,100
Xilinx Software License $3,000 $3,000 $3,000 Travel $5,000 $0 $0
Optical cables, transceivers $1,000 $1,000 $1,000 Xilinx Software $4.295 $4.295 | $4,295
Development computer/workstation | $3,000 $3,000 $0 Overhead (60%) | $19,677 | $13,857 | $11,037
Beam Test Travel $10,000 30 30 Total $52,222 | $36,952 | $29.432
conferences/workshops $5,000 $5,000 $0
Sub Total $42.000 | $32,000 | $24,000
Overhead $6,822 $3,822 $2,064
Total $48,822 | $35,822 | $26,064
11/16/22 Sergey Furletov EIC generic R&D 19



Question 7 Jefferéon Lab
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Please clarify to what extent the collaboration plans to be users of ML software vs developers. It sounds like the generic
software/firmware work is essentially done by hls4ml (and others, but this one is mentioned specifically). But in the proposal, it

seemed they would also be doing some development.

O The key point of our proposal is to adapt and implement existing Al/ML algorithms in real FPGA hardware and
performance test in a test beam with real prototype detectors for EIC. In Hall-d, we already have a beam line for test
prototypes EIC detectors.

O However, we are also developing new machine learning methods for certain detectors (GEMTRD) and are participating in
ML developments for other detectors (emCAL).

 While there are currently various software available to help convert algorithms from C++ to hardware description
language, this is only part of the work that needs to be done. For a complete hardware implementation, special
knowledge in FPGAs and electronics will be required.

O That is why this project is a multi-disciplinary endeavor between Physics, Electrical Engineering, and Computer scientist.

11/16/22
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GEM-TRD prototype (eRD22) for EIC R&D Jeffer€o
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* To demonstrate the operating principle of the ML FPGA, we use the existing setup

' « from the EIC detector R&D project (eRD22)

* A test module was built at the University of Virginia

* The prototype of GEMTRD/T module has a size of 10 cm x 10 cm with a
corresponding to a total of 512 channels for X/Y coordinates.

* The readout is based on flash ADC system developed at JLAB (fADC125) @125 MHz
sampling.

* GEM-TRD provides e/hadron separation and tracking

/ electron

‘ pion /

: Entrance
Radiator / window
3 2000
f e i
()
©
g 1500 ] ......
Primary g A - 3 drift time H
My ™ / O R = Drift cathode ] :
X —+ - !
clusters/ " photon® gas 8 10001
mixture -] i
500 -
A 3 I
(— B B Amplification i ——— . e
Readout region M e 3 GEMs 40 60 80 100 120 140 160 180 200
fadc time, 8ns
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GEM-TRD principle

Jef on Lab
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L The e/pion separation in the GEM-TRD
detector is based on counting the ionization
along the particle track.

£
O For electrons, the ionization is higher due to €

the absorption of transition radiation photons N

O So, particle identification with TRD consists of
several steps:

» The first step is to cluster the incoming
signals and create "hits".

»> The next is "pattern recognition" -
sorting hits by track.

> Finding a track

lonization measurement along a track

As a bonus, TRD will provide a track

segment for the global tracking system.

YV VvV

35|
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llllllllllllllllllll
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projection x, mm

25 |

20 |

GEM-TRD can work as micro TPC, providing 3D track segments

15 |
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0 5 10 15
projection y, mm
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GEM-TRD tracks Jefferéon Lab
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Q In a real experiment, GEMTRD will have GEM TRD tracks
multiple tracks. o 4000
: £
L So we also need a fast algorithm for = 180
pattern recognition “g 3500
Q As well as for track fitting. 160
—3000
140
2500
120
2000
100
1500
80 1000
60 500
40 0
-50 0 50 100 150 200
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O /n a real experiment, GEMTRD will have
multiple tracks. GEM TRD tracks

4000

L So we also need a fast algorithm for =
pattern recognition = 180
_ = 3500
O As well as for track fitting. ©
. . 160
L The decision was made to try the Graph 13000
Neural Network (GNN) for pattern
recognition. 140
2500
Q And a recurrent neural network — LSTM,
itti 120
for track fitting. 000
100
_ 1500
Number of tracks in forward
region in GlueX experiment 80 1000
u,--......,........,........,.HNngomard
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Existing GNN tracking projects

O TrackML Dataset
Public dataset hosted on Kaggle for particle tracking:
https://www.kaggle.com/c/trackml-particle-identification

O HEP advanced tracking algorithms at the exascale
(Project Exa.TrkX)

L https://exatrkx.github.io/

O https://github.com/jmduarte/exatrkx-
neurips19/tree/master/gnn-tracking

(v, e,) (e
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£ [==)

So we decided to start by evaluating an Exa.TrkX solution

1000

Je on Lab k
mas Jefferson National Accelerator Facility
:b .
—| 16 17 18
il
L bl " A L] o i
. .
] 12 13 14
™ 2
L1 - ¥ "
| L L e T B 1
3000 -2000 =-1000 0 1000 2000 3000
z |mm]
%9

e

Javier Duarte arXiv:2012.01249v2 [hep-ph| 7 Dec 2020

11/16/22

26



https://www.kaggle.com/c/trackml-particle-identification
https://exatrkx.github.io/
https://github.com/jmduarte/exatrkx-neurips19/tree/master/gnn-tracking

Moving forward : ML on FPGA

Je : on Lab

omas Jefferson National Accelerator Facility

* Offline analysis using ML looks promising.

. . . @par9
e (Can it be done inreal time ?

@par8
e Here are some of the possible solutions : @par?
@par6
» Computer farm. ors
> CPU + GPU @pard
» CPU + FPGA @par3 €
@par2 gy,
» FPGA only

@par1
@par0

Inference on an FPGA

Every clock cycle
(all layer operations can be

performed simultaneously) —_—_em T .- ~.
— — — 4 - 7 ~ o, ~ «~,
ry —» Ty —» T )y ys " f@'i cation ~ o
.
Nm — ’ “ — ' “‘
N., Wm,m-1 xm :: gm ‘Wm,m—“lxm—l + bm) .
O O . \ “ | ’; “
\ 1 /
O Nw %L S :
~
O . ~ ' addition 4
O > “n(;tv:nt\ow "xw‘\"t\‘:‘;\‘;'\ o 'O
~ -~ - am W= -
C . Ve >0 ‘\ . Multiplier
H H S’ Unit
: : LUTs, FFs, BRAMS
O output layer h IS 4 Inn I
input layer O Up to ~6k parallel operations!
layer m (#Multiplication units)

IRIS-HEP th Febraury 13,2019 Dylan Rankin [MIT]

Image: https://nurseslabs.com/nervous-system,/

Neuron

Modern FPGAs have DSP slices - specialized
hardware blocks placed between gateways and
routers that perform mathematical calculations.
The number of DSP slices can be up to 6000-
12000 per chip.
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GNN for pattern recognition Jefferson Lab
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Q Graph Neural Networks (GNNs) designed for the tasks of hit classification and segment classification.
» These models read a graph of connected hits and compute features on the nodes and edges.

W The input and output of GNN is a graph with a number of features for nodes and edges.
> In our case we use the edge classification

O A complete graph on N vertices contains N(N - 1)/2 edges.
» This will require a lot of resources which are limited in FPGA.

L To keep resources under control, we can construct the graph for a specific geometry and limit the minimum particle momentum.

O /n our case we have a straight track segments, with a quite narrow angular distribution ~15 degree.

O Thus, for the input hits (left), we connect only those edges that satisfy our geometry and the momentum of most tracks (middle)
U The trained GNN processes the input graph and sets the probability for each edge as output.

L The right plot shows edges with a probability greater than 0.7
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GNN performance
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O This type of graph neural network is not yet supported in HLS4ML.

O So we did a manual conversion first to C++ and then to Verilog using Vitis_HLS.
 This neural network has not been optimized, so it consumes a lot of resources - 70% of DSPs, (4651 of 6840).

> At the moment it can serve up to 21 hits and 42 edges, or, in our case (GEM-TRD), it will be 3-4 tracks.
O However, it performs all calculations in 1.4 us (left plot) (thanks to Ben Raydo), providing good purity and efficiency (right plot).

e e ———— e —————————————

Latency(ns) | keration Latency | Interval | Trip Count | Pipelined | BRAM(%) | DSP(%) _ i
BT _- I:D 1ot 1 fake | 1.0
1.3580E3 - 279 - no 68
15.000 £ : L true
15.000 : : yes 0.8
15.000 103 -
20.000
15.000 06 b
20,000 102 1
i 0.4
20.000
15.000 1
§0.000 10 0.2
1.080E3 I-|_ 7 —— purity
260.000 .
155,000 100 - ‘— | J |-| IJ —”]J-L‘n 0.0+ efficiency
00 02 04 06 08 1.0 00 02 04 06 08 1.0
Model output Cut on model score
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RNN/LSTM for track fit
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O The hits sorted by tracks from the pattern recognition GNN are fed into another neural network
trained to fit the tracks.

O We tested DNN and RNN/LSTM neural networks. ( thanks to Dylan Rankin for help )

O DNN is faster, but LSTM seems to be more reliable in the case of a stochastic distribution of hits

on the track.

» The work on optimization of NN is ongoing.
O The LSTM network after pruning consumes 19% of the DSP resources and has a latency of 1 us.

+ Latency (clock cycles):
* Summary:

Interval | Pipeline

% of zeros = 0.75

min | max | Type | 10° 4
+----- EEEEEE R +o---- Femmme e +
208| 208| function | -03 -0.2 -0.1 0.0 01 02 03
i e ok +----- Fommmme e e e +
0.12 4 == Utilization Estimates == Utilization Estimates
* summary: * summary:
LR e L Fommmmmmo- e T Fo-mmmmmm- +----- R S R L L L e e e T R +----- +
0.10 - | Name | BRAM 18K| DSP48E| FF | LUT | URAM| | Name | BRAM 18K| DSP48E| FF | LUT | URAM|
LR L LR Fo--mmmo-- e LR B +----- + H-c-cccccccccccc e + + +
|DSP | - -1 | - -| |DSP | | -
|Expression | - | 0| 6| -] |Expression | | |
0.08 - | FIFO | - -1 -1 -1 -| |FIFO | -1 |
| Instance | 64|  4271| 23258| 163672| -] |Instance |
| Memory | - - - -| - IMemory | |
|[Multiplexer | - - - 955 | -] [Multiplexer |
0.06 1 |Register | -1 -1 2323 - -| |Register |
R L E L L LSRR +------- Fommmmmmm s R +----- O S +
|Total | 64|  4271| 25581| 164633 0| |Total |
0.04 - R L R Fo-mmm- R e +o---- I S +
’ |Available SLR | 1440| 2280| 788160| 394080| 320| |Available SLR |
o Feemmme e D Femmmmmm R R O e +
|utilization SLR (%) | 3] 41| 0| |utilization SLR (%) |
0.02 4 R R LR L s +--\------ R o I R R R LR +
|Available | 2864480| 1182240| 960| |Available |
T T Lo LR LAl AL R el hrmeneea +e-em--- +---p---- e +----- 4 F-=sscssscsssesscsse== +
0 20 |utilization (%) | 1| 13| 0| |utilization (%) |
L R e L L LY R D +-feem Fo-------- +o---- + Foccceccceccccee e +
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MLP neural network for PID
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QO After the track is fit, the ionization along the track can

@par9
be Counted @par8 == Performance Estimates
. . e . . @par7 - .
O The distance along the track is divided into 10-20 bins, g . g e
and the ionization energy in these bins is fed to the input epars = = S = 4
| Clock | Target| Estimated| Uncertainty|
of the MLP neural network. @par4 N ! ! ! !
. . @par3 o lap_clk ( 5.@ 3.968| 0.62|
 Typically neural network weights often have many zeros, ... ; ; . ; =
thus, it is possible to reduce the size of the network by apar1 & + Latency (clock cycles):
removing weights close to zero (~50%) @par0 * Summary: | |
O The network performance near the working value of | nin e L i e | eee™® 1| Latency = 65ns
90% efficiency. e~y ey N
his4ml -
100 l 1@ 1@ ( 1!)nct10n l Il = 5ns
2501 | — etagger, AUC = 96.1% |
p tagger, AUC = 96.1% H
| ==- etagger, AUC = 95.7% { == Utilization Estimates
200 - p tagger, AUC = 95.7% §
/ * Summary:
> + + t + t
§1°'1' | Name | BRAM_18K| DSP4SE| FF | LUT | URAM|
150 - AT + : - + + + +
. & |DSP | -| -| = = =
g g |Expression | - - 0] 6] -
Z 5 |FIFO | - -| - -] -
100 4 5 |Instance | 16| 233 1241 11742 -
T o] |Memory | -| -| - = 4
0 |[Multiplexer | -1 - =| 36| -
|Register | = - 1235| - -
>0 iTotal | 16i 233] 2476i 11784i oi
iUtilization (%) | ~0 |( 3] ~0 | ~0 | @i
ol cemBlbhdeadl b L, | 10-3 L : | | | | t t t - t t t
-0.75 -0.50 —0.25 0.00 0.25 0.50 0.75 0.0 0.2 0.4 0.6 0.8 1.0 - .
weights Signal Efficiency ‘ DSP utilization 3% \
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FPGA test bench
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O Several version of IPs were synthesized and tested on

FPGA:s.

L The logic test was performed with the MicroBlaze
processor and the AXI Lite interface.

L We are currently working on a fast I/0 interface to get

data directly from the detector..

FPGA IP SYNTHESIS SUMMARY.

processor_clk
processor_rst

MO1_AXI +—l microblaze_0_axi_intc microblaze 0
s MO2_AXI +
.X. MO3_AXI + od|qp s.ax ||+ INTERRUPT
BN MO4AX i s axi_aclk ” DEBUG
MO5_AXI 4 fi Q s axi_aresetn ) b M|CrOB|aze o
- i == interrupt + || Clik
MOB_AXI i3 intr{1:0]

J

AXI Interrupt Controller

ﬂ Reset

MicroBlaze

GNN | LSTM | DNN | CNN | GarNet
Clock, ns 5 5 5 5 5
Latency, clocks 278 239 13 260 5643 —
Interval, clocks 279 234 1 245 5643
Latency, ns 1390 1195 65 1300 23215 ze_0_xlconcat
Utilization DSP (%) 68 27 3 71 3

%

E dout[1:0] ’

Concat

=

gnn2df_0

4+ s axi_control
ap_clk
ap_rst_n

interrupt

GNN Pattern recognition

Gnn2df (Pre-Production)
trd_fit O

+ s axi_AXILiteS
ap_clk
ap_rst_n

Vivado™ HLS
' interrupt

DNN/LSTM track fit

Trd_fit (Pre-Production)

_{

trd_ann3_0

+ s axi_AXILiteS
ap_clk
ap_rst_n

Vivado™ HLS
' interrupt

DNN PID module

Trd_ann3 (Pre-Production)
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CNN for calorimeter reconstruction Jefferto
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4 In this work we used a convolutional encoder with a decoder iy
consisting of dense layers, which provide e-it separation scores as the | Clock | Target| Estimated| Uncertainty| ‘
Output. iap_clk | 5.00i 4.292i 0.62i
4 This was done to minimize a network size in FPGA and due to current ’ ’ ’ ’ ’
limitation of HSL4ML of supported network layer types. ey (ereels ayener
4 FPGA synthesis with reuse factor of 2 has a latency of 1.3us and an N e e
. y v i i
interval of 245 clocks. It uses 71% of DPS resources (min | max\ﬁ min | max | Type |
E\ZGOE 2% 245i 2451 dataflow l
Actual values Predicted results ' : ' ' ' '
(& 7T == Utilization Estimates
e 988 % | 1.2 % Pr—
m 29% | 91.1% | sRa_iok) ospase| | FF | LoT | URn]
|DSP | o - | -
6] 6] |Expression | - — 0| 20| -
— |FIFO | 202 | | 8191 | 14048 | —|
" N I:Instance I 61} 4862I 63801I 239028: —I
emory = = = = =
5 5] |[Multiplexer | - — - 36 | -
|Register | - - 6| - -
°] ° TTotal T 263] 4862i 71998} 253132] oT
Nl — o ) 7] TAvailable SLR T 144@] 2280i 788160} 394080} 3zaT
] Y Y + + + + + + +
convolutional dense |[Utilization SLR (%) | 18| 213| 9| 64 | 0|
- -, encoder decoder i S ——————— e | 4320 mueusoi 1182240| 960|
Input data output |Utilization (%) | 6| K 71| ) 3 21| o]
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ADC based DAQ for PANDA STT
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e D T e T

Level 0 Open VPX Crate
ADC based DAQ for PANDA STT (one of approaches):
* 160 channels (shaping, sampling and processing)
per payload slot, 14 payload slots+2 controllers;
+ totally 2200 channels per crate;
» time sorted output data stream (arrival time, energy,...)
* noise rejection, pile up resolution, base line correction, ..

e |

a A Al Aa

' Backplane
6U VPX Plug-In X
Module \ -

1 ‘ s M =P

\

* 40 4-channel ADCs g
(configurable up to 1 GSPS); .
* Single Virtex7 FPGA

160 Amplifiers;
5 connectors for 32-
pins samtec cables

4+ All information from
the straw tube tracker
is processed in one unit.

4+ Allows to build a
complete STT event.

4 This unit can also be
used for calorimeters
readout and processing.

https://doi.org/10.1088/1748-0221/17/04/C04022

L. Jokhovets, P Kulessa ..

g JULICH

Forschungszentrum

Switch/Management Payload Slots
V:X V'I;X V:X v:x \n;x v:x v;x \ﬂ:x V:x V:,X \rnx \l:IPZX \‘:"Pax \F::X \‘.'"Psx V::X
A | e ] heme ] [ ] [ hene | [ e | [ e Lo e o e TR TR ] 5] 2022 JINST _17_C04022
I ’ [ | H ] ] I ‘
RN - E-N - - H.-'i‘.l"...L\ a  vch | e Cam L] B | L | Ea ] | Powerful Backplane
il sl i Il el up to 670 GBs
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r GPU vs FPGA Jefferson Lab
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4 Machine learning methods are widely used and have proven to be very powerful in particle physics.

4+ Although the methods of machine learning and artificial intelligence are developed by many groups and
have a lot in common, nevertheless, the hardware used and performance is different.

4+ While the large numerical processing capability of GPUs is attractive, these technologies are optimized for
high throughput, not low latency.

4 FPGA-based trigger and data acquisition systems have extremely low, sub-microsecond latency
requirements that are unique to particle physics.

4 Definitely FPGA can work on a computer farm as an ML accelerator, but the internal FPGA performance
will be degraded due to slow I/O through the computer and the PCle bus. Not to mention the latency,

which will increase by 2-3 orders of magnitude.

4 Therefore, the most effective would be the use of ML-FPGA directly between the front-end stream and a
computer farm, on which it is already more efficient to use the CPU and GPU for ML/AI.

Sergey Furletov EIC generic R&D
e e e ————————————
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GarNet for GEM-TRD and calorimeter Jefferfonlab

O Another type of neural network, GarNet, shows good offline performance for particle identification using GEM-TRD. ‘

O/t is supported in HLS4AML and we are currently working on its implementation for FPGA.
O The IP core is synthesized, but the latency is too large for an online application, so more optimization work is required.

e GravNet

{8
“Learning representations of irregular O
particle-detector geometry with

distance-weighted graph networks”
arXiv:1902.07987v2 [physics.data-an] 24 GarNet
Jul 2019 (a)

S.R. Qasim, J.K, Y. liyama, M Pierini arXiv:1902.07987, EPJC

36
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Developing ethernet interface
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By Cody Dickover

* Currently we using Microblaze setup for tests.
* For the beam test we need high speed interface to Detector/FADC.

test_per 0

* The design substitutes the generic axis payload FIFO for a bus interface
that allows for addressing register space for read/write and event building.

——

CLK
TEST_RO[31:0]
BUS_CLK TEST_RW[310
RESET SRS,
RD_EN
RESET_SOFT ACK
WR_EN DR1:0] fpga_0
AD_TYPE[1:0] . H+ tx fifo_udp_payload_axis
RW_TYPE[1:0] tcpbridge_O — P tx_fifo_udp_payload_axis_tdata[7:0]
— P tx_fifo_udp_payload axis_tvalid
AD[31:O] — 4 tx_fifo_udp_payload_axis_tready rx_fifo_udp_payload_axis =+ E
L o} TCP_CLK —== clk_125mhz_p rx_fifo_udp_payload_axis_tdata[7:0] P e
tost_por_M_O = TCP RX DATAU'O] —= clk_125mhz_n rx_fifo_udp_payload_axis_tvalid » =——
TCP_RX_DATA V.ALID TCP_RX_CTS —Q reset rx_fifo_udp_payload_axis_tready € f=——
- TCP_TX_DATA[7:0 —] b el
Xlconstant 2 i dits TCP_TX_DATA wiuri B e
i, _ —= btnd phy_sgmii_tx_n m=—
TCP_TX_CTS RESET —== btnr phy_reset_n m=——0
dout[0:0] - TCP_CONNECTED RESET SOFT —= btnc phy_mdio m=—o
l -Q BUS_RESET - — sw[3:0] phy_mdc =—
o - WR_EN —== phy_sgmii_n_p clk_125mhz_out p=—o
Constant =@ BUS_RESET_SOFT AD.TYPE[1:0] — rst_125mhz_out P—
L BUS_CLK - ’ —== phy_sgmii_clk_p vart_txd p=—
RD EN RW_TYPE[1.0] —== phy_sgmii_clk_n uart_rts p=—
- AD[31:0] —== phy_int_n
ACK —== uart_rxd
T\ DI31:0] —= uart.ats
fpga_v1.0
11/16/22 Sergey Furletov EIC generic R&D 37



GEM-TRD offline analysis JefferSon Lab
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&%\ Background (no rad)
/%/ Signal (radiator)

A

@par9
@par8
@par7

AL

TPPPU TOUTTPVPT PRVIT FYPU PRVIT PPV PRV VTPV IO PPV PR POMT TP IV |
0 20 30 40 S0 &0 /0 A0 90 T 200 30 40 50 &0 /0 A0 90

TPVPT TOUTT VPR TRVIT PYPT POVIY PP PRV
0 20 30 40 S0 &0 /0 A0 90

par_pi_4 par_pi_5 par_pi_6

@par5

@par4

%
TP FOTI PP PRPT PRI PR PP PO Loyl bl ) |
10 D30 40 S0 &0 (1) 0 0 30 40 50 &0 @ ar3 Y
par_pi 8 par_pi_8 p :’0’
| | | — i \ .:.:
) = AN SRS ONNY
10 \-0 NS
N0 v
@par2 \‘ S
10 -,0,:,00 N

TTTT[TTT T[T T T T[T T TT [T T T T[T TTT[TTTT[TTTT[TTT
l | l l l l { I

2258)

RN R X
N R TR SI%
I ILREARIKK
BRSNS
R RIS
R R R R R R RRRIIRRIRS

0.6

@par1

R~ -\ V/ Y /57
- 3\

2 o VA
S et @par0 @& \F¥~

8 1
NN output

o
o
o
AN

E. AT TR PP T PV TP 1
¢ 0 20 30 40 S0 &0 J0 A0 90 020 30 40 S0 &0 VU A0 90

 For data analysis we used a neural network library provided by root /TMVA package :
» MultiLayerPerceptron (MLP)

O Top left plot shows ionization difference for e/pi in several bins along the track

O Top right plot shows neural network output for single TRD module:
> Red - electrons with radiator
> Blue — electrons without radiator.
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The C/C++ code of the
trained network is used
as input for Vivado_HLS.

The Xilinx Vivado HLS (High-Level
Synthesis) tool provides a higher
level of abstraction for the user by
synthesizing functions written in
C,C++ into IP blocks, by generating
the appropriate ,low-level, VHDL
and Verilog code. Then those
blocks can be integrated into a real
hardware system.

17/

i ;; float regex.sh:: converted to (tx t) 2// RTL generated by Vivado(TM) HLS - High-Level Synthesis from C, C++ and SystemC
3 Jfemmmn- T - 3// Version: 2019.1 o )
4 Jfemmmeee exx File —---mo-- 4// Copyright (C) 1986-2019 Xilinx, Inc. All Rights Reserved.
5 #include "trd_ann.h" 51/
6 #include <cmath= (j//
Solre 7 e
8 fx_t ann(int index,fx_t 1ne,fx_t 1nl,fx_t 1n2,fx_t 1n3,fx_t 1n4,fx_t in5,fx_t 1n6,fx_t 1in7, IL:' timescale 1 ns / 1 ps
9  inputd = (in0 - (fx_t)1.96805)/(fx_t)7.63362; ’ .
10 inputl = (1nl - (fx_t)4.75766)/(fx_t)11.9138; 10 (* CORE_GENERATION_INFO="trdann,hls_ip_2019_1,{HLS_INPUT_TYPE=cxx,HLS_INPUT_FLOAT=1
11 input2 = (1n2 - (fx_t)4.40589)/(fx_t)11.4831; t
12 input3 = (in3 - (fx_t)4.24519)/(fx_t)11.2533; 12module trdann (
13 inputd = (ind - (fx_t)4.30175)/(fx_t)11.2252; 12 ap_clk,
14 input5 = (in5 - (fx_t)3.87414)/(fx_t)10.1781; 14 ap_rst_n,
15  inputé = (in6 - (fx_t)3.75959)/(fx_t)9.69367; 15 s_ax1_AXILiteS_AWVALID,
16 input7 = (in7 - (fx_t)3.84352)/(fx_t)9.66213; 16 s_ax1_AXILiteS_AWREADY,
17  input8 = (in8 - (fx_t)3.65047)/(fx_t)9.09565; v s_ax1_AXILiteS_AWADDR,
18 input9 = (in9 - (fx_t)5.96775)/(fx_t)11.3203; ° S_ax1_AXILiteS_WVALID,
19 switch(index) { 19 s_ax1_AXILiteS_WREADY,
20 case 0: 20 s_aX}_AXIL}teS_WDATA,
21 return neuron0x32b4c9o(); fll s_ax!._AXIL!.teS_WSTRB,
22 default: 22 s_ax;._AXIL;.teS_ARVALID,
23 n . P SeaX Il AXTI1teS ARREADY o 2
2 ) return (fx_t)e.; C++ 24 s_axi_AXIL1teS_ARADDR, g Ver||08
25 } 25 s_aX}_AXIL}teS_RVALID,
26 */ 26 s_ax;_AXIL}teS_RREADY,
27= fout_t trdann(int index, finp_t input[10]) { ‘/Z S_ax1_AXILiteS_RDATA,
28 inpute = (fx_t(input[e]) - (fx_t)1.96805)/(fx_t)7.63362; 28 s_axi_AXILiteS_RRESP,
29 inputl = (fx_t(input[1]) - (fx_t)4.75766)/(fx_t)11.9138; - S-ax1_AXILiteS BVALID,
30 input2 = (fx_t(input[2]) - (fx_t)4.40589)/(fx_t)11.4831; 20 s_ax1_AXILiteS_BREADY,
31 input3 = (fx_t(input[3]) - (fx_t)4.24519)/(fx_t)11.2533; - s_ax1_AXILiteS_BRESP,
32 inputd = (fx_t(input[4]) - (fx_t)4.30175)/(fx_t)11.2252; - interrupt
33 input5 = (fx_t(input[5]) - (fx_t)3.87414)/(fx_t)10.1781; f*)'
34 inputé = (fx_t(inputl6]) - (fx_t)3.75959)/(fx_t)9.69367; fj‘ .
35 input7 = (fx_t(input[7]) - (fx_t)3.84352)/(fx_t)9.66213; 35parameter  ap_ST_fsm statel = 23|d1‘
36 input8 = (fx_t(input[8]) - (fx_t)3.65047)/(fyx_t)9.09565; 36 parameter  ap_ST_fsm_state2 = 23,"2?
37 input9 = (fx_t(input[9]) - (fx_t)5.96775)/(ff_t)11.3203; 37parameter  ap_ST_fsm state3 = 23'd4;
38 switch(index) { 38 parameter ap_ST_fsm_state4 = 23'ds;
39 case 0: 30 parameter ap_ST_fsm_state5 = 23'd16;
40 return neuron0x32b4c90(); 40 parameter ap_ST_fsm_state6 = 23'd32;
0 default: 41 parameter ap_ST_fsm_state7 = 23'd64;
42 return (fx t)o.; 42 parameter ap_ST_fsm_state8 = 23'd128;
43 } - 43 parameter ap_ST_;sm_stateQ = 23'd§56;
A 1 1 44 parameter ap_ST_fsm_stateld = 23'd512;
jj ’ NOte' flxed pOInt CalCUIatlon 45 parameter ap_ST_fsm_statell = 23'd1024;
46° fx t neuron®x32bfss50() { 46 parameter ap_ST_fsm_statel2 = 23'd2048;
a7 Teturn inpute; 47 parameter ap_ST_fsm_statel3 = 23'd4096;
a8 '} 48 parameter ap_ST_fsm_stateld4 = 23'd8192;
49 49 parameter ap_ST_fsm_statel5 = 23'd16384;
50© fx t neuron®x32bf19e() { 50 parameter ap_ST_fsm_statel6 = 23'd32768;
- Teturn inputl; 51 parameter ap_ST_fsm_statel7 = 23'd65536;
52 } 52 parameter ap_ST_fsm_statel8 = 23'd131072;
53 Thanks to Ben Raydo for help 53 parameter ap_ST_fsm_statel9 = 23'd262144;
54° fx t neurone®x32bfade() { . 54 parameter ap_ST_fsm_state20 = 23'd524288;
55 Teturn input2; 55 parameter ap_ST_fsm_state2l = 23'd1048576;
56 }
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Test NN IP in FPGA Jé

I mas Jefferson National Accelerator Facility

C++ code for test:

Test tools:
, XTrdann ann; // create an instance of ML core.

1. Vivado SDK
2 o Peta | i n UX ::;di:;:‘ :n;‘:'rdann_lnitialize(&ann, 0);

xil_printf(" XTrdann_Initialize =%d \n\r", ret);

XTrdann_Start(&ann) ;

ev:@ OUt=0 . 192 0Ut0=@ . 197 xil_printf(" XTrdann_Started \n\r");

ev=1 out=0.192 out0=0.197 for (nt s =0ia <8 ian )

ev=2 out=0.233 outf=0.236 for (int k=0; k<10; k++)

ev=3 out=0.192 out0=0.197 ovcelantatal et

ev=4 out=0.165 out0=0.169 ann_stat(&ann) ;

ev=5 OUt=0 : 192 OUt0=0 ' 196 i:: ::::,e;c:%rdann Write_input_r_Words(&ann, offset, (u32*)&params[e], 10);

ev=6 out=0.462 out0=0.470 ;ﬁag;f‘n;:g.i:;ei??’::nre;isd e
ev=7 out=0.187 out0=0.191 - PO

XTrdann_Start(&ann);

while (!XTrdann_IsReady(&ann))
ann_stat(&ann);
ann_stat(&ann);

% Background (no rad)
/%/ Signal (radiator)

int hl=out@; int dl=(out0-h1l)*1000;

float *xout; // *x1in@, *xinl, *xin2;
u32 iout = XTrdann_Get_return(&ann);
xout = (float*) &iout;
int whole = *xout;
int thousandths = (*xout - whole) * 1000;
if (whole==0 && thousandths<e)
x11_printf("xout=-%d.%03d out0=%d.%03d\n\r", whole,-thousandths,hl,d1);

else

x11_printf("xout=+%d.%03d out0=%d.%03d\n\r", whole, thousandths,hl,dl);

//u32 1n@ = XTrdann_Get_1in0(&ann); x1n® (float*) &in0; int hine
//u32 1nl = XTrdann_Get_inl(&ann); xinl (float*) &inl; int hinl
//u32 1n2 = XTrdann_Get_in2(&ann); xin2 = (float*) &in2; int hin2
//x11_printf(" XTrdann 1n0=%d.%03d", hin@,dine);

//x11_printf(" 1n1=%d.%03d ",hinl,dinl);

//x11_printf(" 1n2=%d.%03d ",hin2,d1in2);

x1l_printf(" ev=%d out=%d.%03d out0=%d.%03d\n\r",1,whole,thousandths,hl,dl);

*x1n0 ; 1int din@=(*x1n0-h1n0)*1000;
*x1nl ; int dinl=(*xi1nl-hinl)*1000;
*x1n2 ; 1int din2=(*x1n2-h1n2)*1000;
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