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Separating coherent and incoherent production is critical for using vector meson production 
for nuclear imaging and studies of gluonic fluctuations
The far-forward detectors are critical for 
distinguishing between:
• coherent diffractive scattering
• incoherent scattering where 

the nucleus breaks up
• incoherent excitations of the nucleus

Incoherent breakup of the nucleus can relatively easily be identified by detection of spectator 
neutrons in the ZDC or charged fragments in the Roman Pots

Incoherent excitations are more challenging...
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Identifying Event Types with the 
Far-Forward Detectors
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Soft Photon Detection Can Help Veto 
Incoherent Excited Nucleus Events

The photon decay chain of an excited heavy 
nucleus is dominated by ~few keV photons – but for 
doubly-magic nuclei such as 208Pb, every bound-state 
decay sequence has at least one photon with energy of 
at least 2.6 MeV

Assuming a nucleus boost of ~100 GeV/c per nucleon, 
that photon energy becomes 455 MeV (or more)

This “soft” photon falls within the ZDC aperture 
(~4.5 mrad) 20% of the time in the current EPIC geometry

ZDC performance requirements for these photons is 
>90% detection efficiency, but it has not yet been widely 
studied – and not in the presence of event backgrounds Broda et al., Phys Rev C 95 064308 (2017)
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The Zero Degree Calorimeter (ZDC)
The ZDC is critical for:
• identifying coherent vs. incoherent scattering
• e+A collision geometry measurements
• spectator tagging in e + d/3He
• Asymmetries of leading baryons
• Spectroscopy

Current design consists of 64 layers:
• 1 x pixelated Si (3mm x 3mm)
• 1 x PbWO4 crystals (3cm x 3cm x 7cm)
• 4 x W/pixelated Si (3mm x 3mm) +  

20 x W/pad Si (1cm x 1cm)
• 12 x Pb/pixelated Si (1cm x 1cm)
• 30 x Pb/scintillator (10cm x 10cm)

EMCAL

HCAL
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Backgrounds Will Interfere 
With Soft Photon Detection

There are many sources of background in the far-forward region:
• Neutrons and photons from e and p interactions with the beampipe
• Neutrons from proton-gas interactions in the beam line
• Pion decays and conversions from the IR

Some background analyses have 
been done for potential Si damage 
from neutrons 

Unfortunately, simulations of event backgrounds have not yet been done and 
proper event mixing is still not present in the current EIC software framework



The ability to clearly identify soft photons will depend on the resolution 
of multiple detector parameters (energy, position, timing, etc.)
• There are many potential parameters (channels) in the ZDC

Hyperparameter Optimization is a machine learning method of 
tuning for a set of optimal hyperparameters, which are used to control 
the values of actual parameters (e.g. by weighting)
• Different optimization methods are possible:  exhaustive grid search, random 

search, Bayesian, gradient based, etc.
• These results will not only identify what parameters are most important to 

identifying soft photons, but can also provide input as to optimal required 
resolutions and/or improved detector designs

This will also help ensure that this physics channel will not be affected 
by any potential data reduction or compression measures taken to 
reduce data flow to the DAQ system 6

Machine Learning Approaches

A. Elvers, CC BY-SA 4.0
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Other Potential Machine Learning Approaches

The combination of the spatial and temporal structure of neutron vs. photon clusters could be 
accommodated by Graph Neural Networks, which have been used with some success to 
reconstruct high-energy clusters in the CMS HGCAL.  The extension to lower energies and 
incorporation of time information would likely require more significant development, with 
relevant expertise at PNNL.

Two-dimensional “jet image” methods have applied Convolutional Image Recognition 
networks to the reconstruction of events in 2D at the LHC and in the MicroBoone liquid argon 
TPC.  These methods could be extended to the 3D structure of the ZDC, with the further 
addition of shower timing information.  

While our optimization will initially be limited to low-energy physics, it is quite likely that 
findings translate to the general case, particularly since we intend to include background in 
our simulation. 



8

Work Done So Far

Current EIC work at PNNL is being funded on DOE SULI internship and 
program development funds for supervision

Efforts have focused on getting the dd4hep ZDC simulation up and running
• Currently pioneering the validation of dd4hep geometry and detector simulation
• Submitted various issues and pull requests for dd4hep and ZDC

Next steps:
• Digitization not in the geometry design, must be done in software – preliminary code
• Initial support for machine learning development
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Proposal Tasking

1) Generation of simulated data and backgrounds as a training set [RIKEN, Bergen, 
Old Dominion, Chicago State] 

 RIKEN and U. Bergen are experienced with far-forward detector simulations
 Old Dominion has investigated beam backgrounds previously
 Chicago State is closely involved with the ALICE FoCal, on which the current ZDC design is based

2) Development of an initial ML method for identifying low-energy photons [PNNL, Kansas] 
 PNNL has extensive ML capabilities and has successfully implemented ML models on high-energy physics 

detectors at the Belle II experiment at KEK.

3) Evaluation and optimization of the method [PNNL, Kansas]
 Iteration and improvement, including potential optimization of transverse segmentation of various layers.

4) Investigation and identification of further possible work [all]: 
 Generalizing the solutions identified for other far-forward particle ID capabilities  Transfer Learning
 Evaluation of scaling the ML method to support real-time analysis on the detector
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Resources Required
PNNL – project management, machine learning model development and optimization 
• Staff support for project management and supervision of students and junior staff

University of Kansas – simulation, machine learning model development and optimization 
• Grad student support, including partial year spent at PNNL

RIKEN – ZDC geometry and simulations 
• No funding is requested 

Old Dominion University – far-forward backgrounds 
• Postdoc support for background generation

University of Bergen – calorimeter simulations 
• No funding is requested 

Chicago State U. – input from FoCal development and simulations 
• No funding is requested 

Every effort will be taken to leverage 
student support programs (SULI, SCGSR, 
NSIP, Young Women in Science, etc.)

PNNL also has strong internal support for 
internship programs with MSI, including 
involvement in NNSA’s MSIPP program, an 
existing relationship with U. Hawaii and a 
new partnership with U. Texas El Paso
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Maximizing Detection Efficiency
of Soft Photons Maximizes Physics

The need for tagging of soft photons to identify incoherent excitation is called 
out as a fundamental requirement in the Yellow Report – we propose to
improve upon traditional methods to maximize physics

Why Machine Learning?
Driven by modern computing capability and “big data”,
machine learning is rapidly becoming a critical tool in 
our field of research, with many potential applications 

This proposal is one such application, where the ability
of a machine learning model to simultaneously analyze 
and optimize across many channels of data is likely to 
provide improvements over the current deterministic 
analysis methods

Inspire-HEP search – Nov 2022

Nuclear physics articles that
mention machine learning
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