DE LA RECHERCHE À L'INDUSTRIE

www.cea.fr

Radiation tolerant low power PLL IP block in 65nm technnology for precision clocking at EIC

Damien Neyret (CEA Saclay IRFU) for Sao Paulo University and CEA Saclay IRFU teams Generic R&D for EIC review 15/11/2022

Motivations Specifications and state of the art Research program Budget

Clock signals crucial in frontend electronics

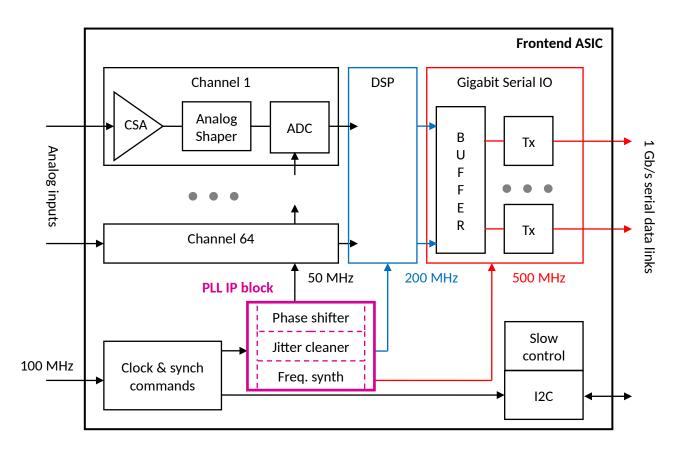
- Used for several functionalities
 - Time and amplitude measurements
 - Gigabit serial communications
 - Embedded signal processing
- Fine tuning of phases of the different clocks to optimize signal samplings
- Reduction of jitter of external clock signals to optimize ADC, time measurements and signal over noise ratio
- Radiation hardness

A phase-locked loop (PLL) device could meet all the above requirements

Objectives of the project

- Study and design of a PLL IP block in TSMC 65nm technology
- Wide range of input reference clock
- Several clock outputs derived from external clock signal, with configurable frequencies and phase shifts
- Low jitter < 10ps
- Small size
- Low power consumption
- Radiation hard
- To be integrated in new ASICs designed in same technology, like the SALSA chip
- To be the base of a possible standalone jitter cleaner PLL or clock fan-out ASIC to be used in electronics boards
- Freely available for all EIC projects

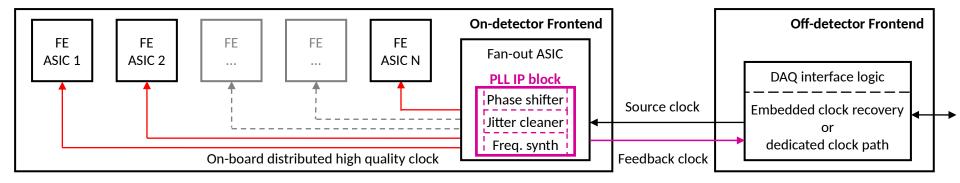
Technology	CMOS TSMC 65nm		
Power voltage	1.2 V		
Internal VCO oscillator frequency	2.4-4 GHz, nominal value 3.2 GHz		
Input clock frequency	Optimally 100 MHz, large range at least 40-125 MHz		
Number of output clocks	4		
Output frequencies	Programmable fractions of VCO up to 1.6 GHz		
Phase shifter steps	300 ps		
Internal jitter, analog PLL case	< 10 ps RMS up to 1 GHz		
Internal jitter, hybrid PLL case	~ 3 ps RMS up to 1 GHz		
Power consumption	< 3 mW, < 6 mW for hybrid PLL case		
Size of the block	~0.1 mm ²		
Radiation hardness aspects	Triple redundancy (TMR) including clock divider, minimized SEE, total ionization dose up to 4 MGy		



EXAMPLES OF USAGE OF PLL BLOCK

Possible usage in a front-end ASIC

- Frequency upscaling from reference clock
- Delivery of signals with different frequencies
- Reduction of jitter
- Tuning of phase shifts for ADC clock

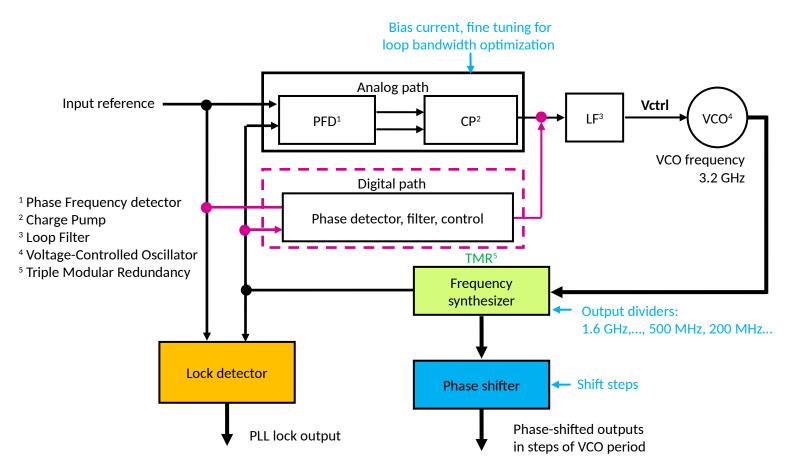


Possible usage as a clock fan-out ASIC in a front-end card

- Fan-out of low-jitter clock signals to front-end ASICs with configurable phase shifts
- Possible clock feedback to DAQ
- Configuration through I2C bus
- Minimizes the number of signals exchanged between the common and the specific parts of the front-end electronics
- Facilitates card designs
- Improves signal integrity

Existing PLL chips

- Several commercial chips exist with large input frequency range and excellent output clock purity
- Phase can be tuned but not with thin enough granularity
- Often large power consumption, too small number of outputs, or no radiation hardness


Existing IP blocks

- IP block for IpGBT ASIC developed in 65nm technology: radiation hard, large output frequency range, very low jitter (< 5ps), phase adjustable; but designed for input frequency of 40MHz only (+-1MHz); impossible to adapt without support from CERN IpGBT team
- Block from HGCROC chip for CMS: large input clock frequency range, radiation hard, but 130nm technology. Developed at IRFU, would be used as a base for the development of the future IP block

Digital PLL

- Based on digital loops instead of analog ones \rightarrow smaller passive elements, easier to filter noise
- Superior jitter performances with larger input frequency range
- Best performance obtained by combining analog and digital loops (hybrid PLL)

Analog PLL based on a voltage controlled oscillator at 3.2 GHz nominal Optional combined analog+digital control of the oscillator Tuning of different parameters with slow-control: CP biasing, filter bandwidth, divider settings for the different outputs, phase shifters

COO RESEARCH PROGRAM

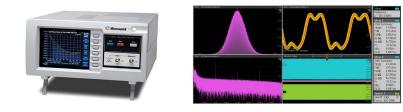
9

R&D on PLL block

- TSMC 65nm ASIC for larger density, speed and radiation tolerance, already used in some recent ASICs in HEP
- But based on know-how acquired with 130nm PLL developed for HGCROC chip
- R&D based on TSMC PDK simulation tools in order to estimate and optimize performance of the block, + measurements on real prototypes
- Study foreseen on possibility to add digital regulation in loop control, in order to improve jitter performance over a large frequency range with minimal increase of area and power consumption

Development program and schedule

- Development of the low jitter PLL, associated to the study on additional digital regulation of the PLL loop; development of the phase adjustment feature; design of a standalone prototype chip based on the developed IP block, associated with required support circuitry (slow-control, biasing) → 4 months
- Production of the prototypes through the TSMC mini@sic program, suitable for die surfaces up to $2x2mm^2 \rightarrow 3-4$ months
- Packaging in standard packages (QFN) \rightarrow ~1 month
- Production of test cards \rightarrow 4 months (in parallel with chip production)
- Performance measurement with test-bench at IRFU, environmental tests at University of Sao Paulo, at IRFU, and in irradiation facilities \rightarrow 4-6 months



Tests to be done on prototypes

- Determination of lock ranges of PLL; measurements of absolute output frequencies vs expected values
- Measurements of jitter over both short (between two consecutive ticks) and long periods of time; Noise frequency spectra; Measurements of phase noise levels
- With different configurations of the PLL loop
- In different conditions: variation of supply voltage values, noisy supply voltages, various chip temperatures, impact of irradiation, etc...

Test-bench equipment

- ASIC evaluation test-bench already existing at IRFU
- Also existing at IRFU
 - Variable frequency clock generators, with possibility to degrade clock quality
 - 80GS/s oscilloscope
 - phase noise spectrum analyzer
 - Variable temperature chamber (-30 to 60°C)
- Irradiation facilities at Sao Paulo, at CERN and in Slovenia

IP block to be integrated to the SALSA frontend chip design

- Provides clock signals to different elements: integrated ADCs, DSP, Gigabit link
- Same 65nm technology for the block and the ASIC

Also open to be integrated to other ASIC designs for EIC

- If same TSMC 65nm technology
- If block input frequency range compatible with the ASIC specifications
- Full layout of the block directly provided, ready to be implemented in the design
- Slow-control registers to be connected to the block
- Freely available for EIC applications, details of the agreement to be discussed directly with interested groups, including documentation and reasonable support
- Public advertisement to be done to the EIC community and to the HEP community about this project

Standalone PLL and/or clock fan-out ASIC

- Possibility to produce a standalone PLL ASIC based on this block, with fan-out capability if needed
- ASIC design to be adapted if more output clock signals required
- Also public advertisement foreseen to EIC in order to get expressions of interest
- Future production to be discussed with interested groups

Nature of expenses	Cost (k\$)	Group	
Mini@sic ASIC submission	18	IRFU	
Packaging and test cards	10	IRFU	
TID radiation tests	5	Univ. Sao Paulo	
SEU radiation tests	10	IRFU	
Intern student (4-6 months)	6	IRFU	
Travels for radiation tests	5	IRFU	
Total	54		

	ASIC production	Tests	Radiation tests	Travels	Total
IRFU CEA Saclay	18 k\$	16 k\$	10 k\$	5 k\$	49 k\$
U. Sao Paulo			5 k\$		5 k\$
	18 k\$	16 k\$	15 k\$	5 k\$	

IRFU CEA Saclay

- Damien Neyret (contact person)
- Pascal Baron
- Florent Bouyjou
- Olivier Gevin
- Fabrice Guilloux
- Irakli Mandjavidze
- Additional intern student to perform test measurements

University of Sao Paulo

- Wilhelmus Van Noije (contact person)
- Marco Bregant
- Hugo Hernandez
- Bruno Sanches