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Aluminium Flexible PCB (cable)

Fast timing (<10ps, <10um) MAPS layer
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i Aluminium Flex PCB (cable)

Characteristics - 2 Layer Boards

SUPERCONDUCTIVE
CRYOGENIC PCB
MANUFACTURER

20um, 22um
Aluminum thickness 30um
>> LOW TEM PERATURE (lower or higher upon request)

Specifications Plated Through Hole Version Non Plated Through Hole Version

» SUPERCONDUCTIVE

Aluminum alloy Pure aluminum AL 3003 H18
> ALUMINUM BONDING PADS/TRACES AD1000 - Rogers
Base material type 4350B - Rogers FR4

P96/P26 - Isola

As per base material type offerings from
Base material thickness P 4 i . 0.009"-0.031"

manufacturer

PCB final surface finish Bare Aluminum / Aluminum with selective copper

https://www.omnicircuitboards.com/
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2.76 inch

Aluminium PCB example
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2.36 inch

https://www.omnicircuitboards.com/

2 layer

Finished PCB Thickness: .025"

Finish: Aluminium Hard Gold: No Laminate: FR4 Ext Cu/Plated Cu: Oz/Sq ft
Solder Mask: Top Green

Silkscreen: Top White

Holes per Board: 3 Plated Slots: 0 Unplated Slots: 0 Min Trace: 0.008" Min
Space: 0.007"

Min Hole: 0.118" Max Plated Hole: 0.118" Route: Single Aluminium Plate: No
Internal Build Al: SK-LM-MT5305u40-6Xf2116MR-ccU9

NRC (tooling) cost: $210.00

10 boards @ $109.00 per board

Kapton (Polyimide) is available (P96/P26 from Isola)
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e Aluminium Flex PCB (cable)

BERKELEY LAB

Aluminum conductors for existing vertexing instruments came from:
CERN

Kharkiv Institute

Commercial sector is developing closely related capabilities driven by
applications in Quantum Computing and other interests; explore
possibility to commercially manufacture flex PCB for EIC tracking /
vertexing subsystem and reduce risk(s),

Request: 15 k$ in seed funds (12.5k$ material + 2.5k$ travel)

Deliverables: manufacturability & accurate cost estimate at scale
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gy MAPS with 10ps timing, 10um resolution e
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Hadronization of charm-quarks is a driving motivation for L m Piows (overane)

vertexing and time-of-flight (TOF) capabilities, [ # | & e s
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Integration of both capabilities in a single subsystem will ) ¢

reduce material, can improve performance, and will provide 110 | i ﬂﬂ o

technological complementarity to the current EIC concepts.
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el Add ~10ps timing resolution to pixel (2018 proposal) S
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= Keep all nice features of MAPS (10um spatial resolution) [>,l chd e
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i Existing fast-timing circuitry implemented in CMOS
i Existing fast-timing charge/light sensor in CMQ :
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~10ps timing: on the verge of possibility s
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Sub-10 ps Minimum Ionizing Particle Detection with Geiger-Mode APDs

Francesco Gramuglia,!’* Emanuele Ripiccini,!'* Carlo Alberto Fenoglio,*
Ming-Lo Wu,! Lorenzo Paolozzi,??® Claudio Bruschini,’ and Edoardo Charbon!

LEcole polytechnique fédérale de Lausanne (EPFL)
?University of Geneva
*CERN
(Dated: November 22, 2021)
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M Avalanche Diode (distributed)
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P-sub 1 lateral diffusion area

Can be ~lpym

A Scaling Law for SPAD Pixel Miniaturization, Sensors 2021, 21(10), 3447

Array of tiny SPADs

20~50pm
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@l AD-TL pixel array and TDC readout Sl

BERKELEY LAB DIVISION

1 Rdx Ldx
U= —F/— o—M—TN
LC
/Inductor coil \/f de -r;dx
C

Transmission Line Pixel

A Zy =
1 o
!
A Moderate-Gain
Avalanche Diode
Array in Pixel
parﬁsles MAPS Pixel (100% fill-factor)

SN NMOS

e

Radlatlon damage

Gl
(‘) charge >

P
7 lost
epl-layer

99199 ©©©\©

Pixel Array LT _
Potential energy (electrons)/e P-sub 1 lateral diffusion area
2l 2121 2] End-of-column readout Avalanche Diode in CMOS
E E‘ B E‘ REEp s § § |




@]l  MAPS with 10ps timing, 10um resolution i
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= What is the physics case for an ultra-fast MAPS beyond the existing RICH and LGAD technology?
= What is the effective fill factor of the SPAD array - how closely can they be packed?
0 Alarge array of tiny SPADs with sub-charge cloud size spacing. The first one gets charge fires.
= Dark noise control - do they have to be cooled? How much material and power would this use?
[0 To be explored. Split SPADs onto many separate delay lines allow coincidence and dark count rejection.
= Charge sharing - how would multiply hit SPADs affect the transmission line scheme?
0 Split SPADs onto interleaved delay lines.

= Regarding the TDC: A low power, psec TDC is very difficult to design, hence will probably dominate the power.
Will the power consumption become problematic when a realistic TDC is considered?

0 TDCs should dominate power. TDCs are placed at the edge of the chip, which allow concentrated
cooling. Many good designs have been demonstrated.
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