

Simplified LGAD structure with fine pixelation

Gabriele Giacomini (PI), Wei Chen, Gabriele D'Amen, Enrico Rossi, Alessandro Tricoli Brookhaven National Laboratory

EIC-Related Generic R&D FY22 November 15th 2022 Simone Mazza, Jennifer Ott, Bruce Schumm (co-PI) University of California at Santa Cruz

Basic structure of LGADs

Low-gain Avalanche Diodes (LGADs) are Avalanche Diodes specifically tailored for the detection of mips in HEP

LGADs are 20-50um thick (only active volume!) as compared to hundreds of um of std strip/pixel sensors. LGADs feature a p+-layer (gain layer) under the n+.

Depletion of the p+ gain layer creates intense Electric Field, high enough for electron impact ionization to occur. Hole impact ionization ~ 0

- → LGADs operate before BreakDown (linear region)
- → gain ~ few 10s

Amplification is needed to have a good S/N when reading-out fast.

For mips: if the substrate is thin (~ 50 μ m) and the gain is ~ 20 \rightarrow signal is fast (~30 ps)

Limits of LGADs

Lateral dimensions of Gain layer must be much larger than thickness of substrate, for a uniform multiplication.

Dead volume (gain~1) extends within the implanted region of the gain layer:

- → pixels/strips (pitch ~ 100 µm) with gain layer below the implant have a Fill Factor<<100% (Voltage dependent)</p>
- \rightarrow large pads are preferred (~ 1 mm);
 - e.g., HGTD of ATLAS and MTD of CMS
- \rightarrow 4D detector not possible!!!

Towards a 4D detector AC- LGAD

Modification of DC-LGAD Fabricated @ BNL, FBK, HPK, CNM.

Brookhaven National Laboratory

- Signal shared among several AC-pads, making occupancy high (only low event rate possible)
- Signal sharing can be used to fit hit position and hit time. Need also reconstruction algorithms.
- Optimization of several technology parameters (ρ_{n+} C_{AC}, ...)
 → still ongoing
- Optimization of AC-metal needed, but pitch/resolution > 20
- High capacitance (long strips show slower signal) – difficult to measure at HF

 $(\sigma_t \text{ can be lower if} substrate is thinner – i.e. 20um – and gain larger)$

(σ_x includes the resolution of the tracker, ~ 10um)

4

Towards a 4D detector Deep-Junction LGAD

Uniform junction is buried deep into the substrate

- Position resolution given by pitch, as in std pixel/strip detector
- Careful: slightly smaller electric field in the gain region in-between pads, but seems OK from TCAD simulations: to be verified
- Under development by UCSC, BNL and Cactus Materials: firs batch completed, under study.

A possible Solution:

Closely-spaced electrodes can be put on the opposite of the wafer (i-LGADS, CNM Barcelona),

but wafers must be thick to be processed.

 \rightarrow not possible to associate fast-time information on a perpixel level!

<u>Or:</u>

The n+ is replaced by a thick CZ wafers, acting as: 1. mechanical support 2. ohmic contact

Aim of the project

- Fabrication @ BNL (+ external vendors)
- Test @ UCSC + BNL

Requires wafer bonding + grinding/polishing Not @ BNL, but still standard in industry (we are already collaborating with the vendor)

TCAD simulations

Current pulses at DC-coupled electrodes

Even in the case of pitch 50um when we expect max dis-uniformity, no major difference in pulses from devices with different gap value.

Electrostatic potential

Strip pitch = 50 μ m

Along the gain layer, X-electric field show oscillations but:

- 1/5e3 in the case of gap $30\mu m$
- 1/1e4 in the case of gap 10μm

Negligible!

Good news:

Interstrip Capacitance in thin layers

To make the weighting field as uniform as possible, small gaps between pixels are preferred.

How does the interpixel capacitance behave?

Challenge

The scribeline will introduce defects, acting as generation center (high leakage current). May be hard to bias \rightarrow trench terminate the LGAD !!!!

Trench termination

followed by oxidation for passivation of defects Both trenching options will smooth the electric fields at the edge, preventing early breakdowns

Timetable

month 1-3:

refinement of TCAD simulations (students), production of the photolithographic masks and definition of the clean-room process.

Splittings in the process for the gain layer dose (start with ~ 8 wafers)

month 4: initial wafers (CZ and FZ) ready for wafer-bonding

month 5-7: CZ and FZ wafers bonded together

month 8-9: LGAD devices completed at BNL

month 10: results of static tests at BNL

month 11 -12: results of functional test at UCSC/BNL

month 13-14: with inputs from the characterization, study of the would-be issues and solutions. Publications.

Budget

	Sensor fabrication	Sensor testing	
BNL	\$145k	\$45k	\$190k
University California at Santa Cruz	N/A	\$25k	\$25k
	\$145k	\$70k	\$215k

Budget scenario (80% full funding) :

no test at BNL

Budget scenario (60% full funding) :

- no test at BNL,
- delays in fabrication, which will not be prioritized

