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Standard approach to data analysis of a resonance
lineshape

Take an amplitude, it has parameters to be determined by data

s Fit data using y?

memmmmm £ Xtract parameters and get pole positions and compute uncertainties

memmmm  ASsess the probability that those data were generated by your amplitude

If 2 is reasonable, one can claim that the physical interpretation of the data is possible

One can do this with different amplitudes that represent different underlying dynamics

mammmm $ COmpare amplitudes? Compare dynamics?
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Machine Learning provides methods to learn from data to perform tasks

Widely used nowadays thanks to:

* Improvement in algorithms and hardware

Examples:

* Neural networks, Random forest, Genetic algorithms, ...

Widely used in physics

* Fitters, universal interpolators, classifiers

Explainability

* NNSs are usually black boxes, so statistical methods have been developed to study them

CFR. AIML@JPAC




AI/ML/NNs in hadron physics

mmme EXperiments

* Particle ID, ...

SN ) DAPT

* Exploring NNs to extract amplitudes from data. LRDR funded

sy Universal interpolators

* NNPDF

Regression

* Lattice QCD

— Classifiers

* Hadron spectroscopy (this talk)
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Can machine learning help us?

e | he question

« Can we train a neural network to analyze a lineshape and get as a result what is the probability of each
possible characterization?

First explorations of neural networks as classifiers for hadron spectroscopy

« Sombillo et al., 2003.10770, 2104.141782, 2105.04898

s |f pOSsSIible...

» What other information can we gain by using machine learning techniques?

— Benchmark case

« The P,(4312) lineshape: Ng et al. (JPAC) 2110.13742

Still far away from answering this question but we are advancing
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Holy Grail: Al as a tool for physics discovery




Neural networks as classifiers

Rat




Neural networks as classifiers

Rat
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Neural networks as classifiers




Neural networks as classifiers
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Neural networks as classifiers

CFR. AIML@JPAC

Dog

3%

Cat

96.8%

Rat

0.1%

Pig

Disc

0.1%

laimer: Made up percentages

11



Bu

ilding a benchmark

Training the neural network

« We choose a model that we fully understand to teach the NN about lineshapes

Comparison

« Simple enough to perform a direct comparison between standard and NN approaches

Experimental data

* We use the model on data that we know well

Error analysis

* Implement uncertainites both in the training and the data analysis
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Building the training set

s 10° training curves

» Generated by randomly setting parameter values
in a wide range

» Curves are computed at the experimental
energies

%

<
A

Physical axis

== Convolution

* Model is convoluted with the experimental
resolution

== (Gaussian noise

 Included to mimic uncertainties
« Compare “blurry” to “blurry”
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Training / validation
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Training determines the parameters (weights) of the NN
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Experimental uncertainties: bootstrap

Associate a distribution to each

experimental datapoint

* Typically a Gaussian with mean and
sigma from experiment

o Monte Carlo

- Generate pseudodata according to the
chosen distribution

Jll Run statistics on the
pseudodatasets

« Compute distributions, mean, standard
deviation, quantiles, ...
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Applying the NN to LHCb data

Probability
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mip all 5.4% < 0.1% 21.0% 73.6%
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B NN

We pass the data through the

» We pass the three LHCb datasets through
the same NN to obtain three answers

Uncertainties

» Bootstrap and dropout

Obtain proability distributions

« Sanity check: We recover the same result
as with the standard approach: v|4
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What we get from the NN

The NN is comprehensive exploring the parameter space

s Rather than testing a single model hypothesis, the NN tests various models all at once w

e m But, there’s more... {
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Explainability

= OHAP values

« SHapley Additive exPlanations

8
o

3
(=)

= Inherited from game theory

5
o
San|eA dvHS ueay

Candidates /(2 MeV)

Application

» Allows to determine how a given
feature in the input layer (in our case
an experimental datapoint) impacts
the decision made by the NN in the
output layer (the classes)

S
o

17 Dthr.:
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Takeaways

We tested a relatively simple, ML based application, and we are positively
surprised by the results

* Ng etal. (JPAC), 2110.13742

We started as skeptics and became excited about Al/ML

« Engaging topic for prospect students

NN is not a substitution of the canonical approach to analyzing data

We are (hopefully) just in the begining...
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