# Future prospects and XYZ

## **Alessandro Pilloni**

JPAC review, November 17<sup>th</sup>, 2022



### Looking at the future

Summary of Topical Group on Hadron Spectroscopy (RF07) Rare Processes and Precision Frontier of Snowmass 2021

Conveners: Richard F. Lebed<sup>1</sup>, Tomasz Skwarnicki<sup>2</sup>

<sup>1</sup>Department of Physics, Arizona State University, Tempe, AZ 85287-1504, USA <sup>2</sup>Department of Physics, Syracuse University, Syracuse, NY 13244, USA

Contributing Authors: Liupan An<sup>3</sup>, Sean Dobbs<sup>4</sup>, Bryan Fulsom<sup>5</sup>, Feng-Kun Guo<sup>6,7</sup>, Marek Karliner<sup>8</sup>, Ryan E. Mitchell<sup>9</sup>, Alessandro Pilloni<sup>10,11</sup>, Alexis Pompili<sup>12,13</sup>, Sasa Prelovsek<sup>14,15</sup>, Elena Santopinto<sup>16</sup>, Justin Stevens<sup>17</sup>, Adam Szczepaniak<sup>18,19,20</sup>

### **Amplitude analyses**

and

### (Light) Hadron Spectroscopy

2022 Town Hall Meeting

Arkaitz Rodas

arXiv:2207.14594 The physics of the next decade is being planned now! The next Long Range Plan for Nuclear Science will appear in 2023 The DPF Snowmass process has just completed arXiv:2203.08208 JPAC is investing in making the case for spectroscopy

Need for amplitude analysis in the discovery of new hadrons

Miguel Albaladejo,<sup>1</sup> Marco Battaglieri,<sup>2</sup> Lukasz Bibrzycki,<sup>3</sup> Andrea Celentano,<sup>2</sup> Igor V. Danilkin,<sup>4</sup> Sebastian M. Dawid,<sup>5,6</sup> Michael Döring,<sup>7</sup> Cristiano Fanelli,<sup>8</sup> César Fernández-Ramírez,<sup>9,10,\*</sup> Sergi Gonzàlez-Solís,<sup>11</sup> Astrid N. Hiller Blin,<sup>12</sup> Andrew W. Jackura,<sup>13,14</sup> Vincent Mathieu,<sup>15,16</sup> Mikhail Mikhasenko,<sup>17,18</sup> Victor I. Mokeev,<sup>19</sup> Emilie Passemar,<sup>5,6,13</sup> Robert J. Perry,<sup>20</sup> Alessandro Pilloni,<sup>21,22,†</sup> Arkaitz Rodas,<sup>13,23,‡</sup> Matthew R. Shepherd,<sup>6</sup> Nathaniel Sherrill,<sup>24</sup> Jorge A. Silva-Castro,<sup>10</sup> Tomasz Skwarnicki,<sup>25</sup> Adam P. Szczepaniak,<sup>5,6,13,§</sup> and Daniel Winney<sup>5,6,26,27</sup> (Joint Physics Analysis Center)

### JPAC interactions with experiments



## The programs of Hall-D at JLab

| Activity, experiment<br>running          | 2021<br>sched | 2022<br>Juled | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | Support required<br>for planning the |
|------------------------------------------|---------------|---------------|------|------|------|------|------|------|------|------|--------------------------------------|
| Run PRIMEX-ղ                             |               |               |      |      |      |      |      |      |      |      | experiment                           |
| Run SRC                                  |               |               |      |      |      |      |      |      |      |      | and/or for                           |
| Installation CPP                         | [             |               |      |      |      |      |      |      |      |      | analyzing data                       |
| Run CPP-NPP                              |               |               |      |      |      |      |      |      |      |      |                                      |
| Run GlueX-II Gui                         |               |               |      |      |      |      |      |      |      | -    |                                      |
| Installation FCAL2                       |               |               |      |      |      |      |      |      |      |      |                                      |
| Run GlueX-II+JEF Guite                   |               |               |      |      |      |      |      |      |      |      | → <b>→</b>                           |
| Installation KLF (K <sub>L</sub> beam) 📢 |               |               |      | [    |      |      |      |      |      |      | ·                                    |
| Commissioning, Run KLF                   |               |               |      |      |      |      |      |      |      |      |                                      |
| Back to photon beam                      |               |               |      |      |      |      |      |      |      |      |                                      |
| Installation of GDH                      |               |               |      |      |      |      |      |      |      |      |                                      |
| Commissioning, Run GDH                   |               |               |      |      |      |      |      |      |      |      |                                      |
|                                          |               | E. Chudakov   |      |      |      |      |      |      |      |      |                                      |

~8 years at ~30 weeks/year already planned

A. Pilloni – Future prospects and XYZ

### JPAC and the JLab12 program

#### Strange Hadron Spectroscopy with Secondary $K_L$ Beam in Hall D

#### Theoretical Support:

Alexey Anisovich<sup>5,44</sup>, Alexei Bazavov<sup>38</sup>, Rene Bellwied<sup>21</sup>, Veronique Bernard<sup>42</sup>, Gilberto Colangelo<sup>3</sup>, Aleš Cieplý<sup>46</sup>, Michael Döring<sup>19</sup>, Ali Eskanderian<sup>19</sup>, Jose Goity<sup>20,49</sup>, Helmut Haberzettl<sup>19</sup>, Mirza Hadžimehmedović<sup>55</sup>, Robert Jaffe<sup>36</sup>, Boris Kopeliovich<sup>54</sup>, Heinrich Leutwyler<sup>3</sup>, Maxim Mai<sup>19</sup>, Terry Mart<sup>65</sup>, Maxim Matveev<sup>44</sup>, Ulf-G. Meißner<sup>5,29</sup>, Colin Morningstar<sup>9</sup>, Bachir Moussallam<sup>42</sup>, Kanzo Nakayama<sup>58</sup>, Wolfgang Ochs<sup>37</sup>, Youngseok Oh<sup>31</sup>, Rifat Omerovic<sup>55</sup>, Hedim Osmanović<sup>55</sup>, Eulogio Oset<sup>62</sup>, Antimo Palano<sup>64</sup>, Jose Peláez<sup>34</sup>, Alessandro Pilloni<sup>66,67</sup>, Maxim Polyakov<sup>48</sup>, David Richards<sup>49</sup>, Arkaitz Rodas<sup>49,56</sup>, Dan-Olof Riska<sup>12</sup>, Jacobo Ruiz de Elvira<sup>3</sup>, Hui-Young Ryu<sup>45</sup>, Elena Santopinto<sup>23</sup>,

#### A Search for Hybrid Baryons in Hall B with CLAS12

Vincent Mathieu<sup>†</sup>, Vladyslav Pauk, Alessandro Pilloni, Adam Szczepaniak<sup>†</sup> Theory Center, Jefferson Laboratory, Newport News, Virginia 23606, USA (<sup>†</sup>Joint with Indiana University, Bloomington, Indiana 47405, USA)

#### Backward-angle Exclusive $\pi^0$ Production above the Resonance Region

Wenliang Li (Spokesperson and contact person),\* Justin Stevens (Spokesperson), David Armstrong, Todd Averett, Andrew Hurley, Lydia Lorenti, Arkaitz Rodas, and Amy Schertz *College of William and Mary, Williamsburg, VA, USA*  support is requested by a number of proposals that enrich the 12 GeV program

Measurement of the parameters of the LHCb pentaquark states through double polarization asymmetries with SBS in Hall A

> C. Fanelli MIT, Cambridge, MA 02139

L. Pentchev, B. Wojtsekhowski Thomas Jefferson National Accelerator Facility, Newport News, VA 23606

### JPAC and the hybrid at GlueX





JPAC reconciled the  $\pi_1(1400)/\pi_1(1600)$  puzzle Tools and methodology created for GlueX analysis A. Rodas *et al.* (JPAC) PRL122, 042002 JPAC, PPNP 127, 103981

6



### Charmonia studies at GlueX



JLab12 has the right energy to study charmonium photoproduction in the near threshold region

JPAC is helping in implementing models for  $J/\psi$  and other positive-parity charmonia

Diffractive model JPAC, PRD 100 (2019) 3, 034019 Low energy model Du *et al.*, EPJC 80, 1053 (2020)

### Exotic landscape in $c\bar{c}$

### JPAC, PPNP 127 (2022), 103981



## XYZ at JPAC

This is the hottest topic in spectroscopy in the last two decades Big effort within JPAC to study this sector



D. Winney *et al.*, PRD106 (2022) 094009 L. Ng *et al.*, PRD 105 (2022) 9, L091501 M. Albaladejo *et al.*, PRD102 (2020) 114010 D. Winney *et al.*, PRD 100 (2019) 3, 034019 C. Fernandez-Ramirez *et al.*, PRL 123 (2019) 9, 09200 AP *et al.*, PLB 772 (2017) 200-209 A. Hiller Blin *et al.*, PRD 94 (2016) 3, 034002

### as well as contributing to experimental papers

LHCb, arXiv:2210.10346 LHCb, arXiv:2204.12597 LHCb, Nature Commun. 13 (2022), 3351 LHCb, Phys. Rev. Lett. 128 (2022), 062001 LHCb, Phys. Rev. Lett. 122 (2019), 222001

### Exotic landscape

Broad mesons seen in *b* decay: *X*(4140), *Z*(4430), *Z*<sub>cs</sub>(4000)...

Scarce consistency between various production mechanisms

Narrow structures seen in b decay:  $X(3872), P_c, (P_{cs})$ 

Narrow structures seen in  $e^+e^-$ : X(3872), Y(4260),  $Z_{c,b}^{(\prime)}$ 

## Why photoproduction?

- It's new: no XYZ state has been uncontroversially seen so far
- Dependence on beam energy can disentangle rescattering mechanisms that could mimic resonances in multibody decays
- The framework is (relatively) clean from a theory point of view
- Radiative decays offer another way of discerning the nature of the states

## The jpacPhoto library

- Couplings extracted from data as much as possible, not relying on the nature of XYZ
- Diffractive model, aiming at order-of-magnitude estimates



M. Albaladejo *et al.* [JPAC], PRD102 (2020) 114010 D. Winney *et al.* [JPAC], PRD106 (2022) 094009

Code libraries available on GitHub

### XYZ at the Electron Ion Collider



SCIENCE REQUIREMENTS AND DETECTOR CONCEPTS FOR THE ELECTRON-ION COLLIDER

EIC Yellow Report

Collaboration with D. Glazier and J. Stevens to perform feasibility studies for spectroscopy at the EIC

These have entered the EIC yellow report





A. Pilloni – Future prospects and XYZ

### XYZ at Jefferson Lab

#### XYZP spectroscopy at a charm photoproduction factory

M. Albaladejo,<sup>1</sup> M. Battaglieri,<sup>2,3</sup> A. Esposito,<sup>4</sup> C. Fernández-Ramírez,<sup>5</sup> A. N. Hiller Blin,<sup>1</sup> V. Mathieu,<sup>6</sup> W. Melnitchouk,<sup>1</sup> M. Mikhasenko,<sup>7</sup> V. I. Mokeev,<sup>2</sup> A. Pilloni,<sup>3,8,\*</sup> A. D. Polosa,<sup>9</sup> J.-W. Qiu,<sup>1</sup> A. P. Szczepaniak,<sup>1,10,11</sup> and D. Winney<sup>10,11</sup>

### Lol RF7\_RF0\_120

PPNP 127 (2022) 103985

Physics with CEBAF at 12 GeV and Future Opportunities



#### J. Arrington<sup>1</sup>, M. Battaglieri<sup>2,15</sup>, A. Boehnlein<sup>2</sup>, S.A. Bogacz<sup>2</sup>, W.K. Brooks<sup>10</sup>, E. Chudakov<sup>2</sup>, I. Cloët<sup>3</sup>, R. Ent<sup>2</sup>, H. Gao<sup>4</sup>, J. Grames<sup>2</sup>, L. Harwood<sup>2</sup>, X. Ji<sup>5,6</sup>, C. Keppel<sup>2</sup>, G. Krafft<sup>2</sup>, R. D. McKeown<sup>2,8,\*</sup>, J. Napolitano<sup>7</sup>, J.W. Qiu<sup>2,8</sup>, P. Rossi<sup>2,14</sup>, M. Schram<sup>2</sup>, S. Stepanyan<sup>2</sup>, J. Stevens<sup>8</sup>, A.P. Szczepaniak<sup>12,13,2</sup>, N. Toro<sup>9</sup>, X. Zheng<sup>11</sup>

arXiv:2203.08290

Submitted to the Proceedings of the US Community Study on the Future of Particle Physics (Snowmass 2021)

Hadron Spectroscopy in Photoproduction

Miguel Albaladejo<sup>1</sup>, Łukasz Bibrzycki<sup>2</sup>, Sean Dobbs<sup>3</sup>, César Fernández-Ramírez<sup>4,5</sup>, Astrid N. Hiller Blin<sup>6</sup>, Vincent Mathieu<sup>7,8</sup>, Alessandro Pilloni<sup>9,10</sup>, Justin Stevens<sup>11</sup>, Adam P. Szczepaniak<sup>12,13,14</sup>, and Daniel Winney<sup>13,14,15,16</sup>

Explore the complementarity w.r.t. the forthcoming Electron Ion Collider

### **JPAC** leads the upgrade efforts



Spectroscopy is one of the main physics cases to push for the energy upgrade

JPAC is leading this effort on the theory side Heavy involvement in workshop organization and white paper drafting

> **OPPORTUNITIES WITH JLAB** ENERGY AND LUMINOSITY UPGRADE



0(4240) Z (4020) Zcs(4000) Zcs(3985)  $Z_c(3900)$ 

Hadron Spectroscopy with a CEBAF Energy Upgrade

Marco Battaglieri, Sean Dobbs, Derek Glazier, Alessandro Pilloni, Justin Stevens, Adam Szczepaniak

Recent observations in heavy-quark spectroscopy have provided numerous candidates for hadronic resonances which are exotic in nature, the so-called XYZ and Pc states. With a CEBAF energy upgrade to 20-24 GeV these states and other charmonia may be studied in photoproduction and electroproduction measurements at JLab. This workshop aims to identify the key measurements made possible by such an upgrade, utilizing recent theoretical models for production and evaluating the detector performance requirements.

> duction will enable studies of the gluonic properties of the proton, and an extensive program a the intensity frontier will cover light and heavy guark hadron spectroscopy in a single experiment. The possibility of a positron beam with the same properties and qualities as the electron beam will be a us benefit for the physics program and the production of secondary beams at 3Lab, for instance, \$K\$-long beams will also benefit enormously from the energy upgrade, providing access to uch wider kinematic domains

### A. Pilloni – Future prospects and XYZ

## Conclusions

- JLab12 program has a full schedule well into the future several current and planned experiments require JPAC work for results to be delivered
- Close collaboration with GlueX in order to achieve the first observation of a hybrid meson in photoproduction
- Strong effort in creating a XYZP spectroscopy program at the EIC and at an upgraded JLab facility
- Involvement in other running and future experiments around the world to make the best of high statistics data
  Thank you!

# BACKUP



### Timescales

- BESIII plans to operate for up to 10 more years
- Upgrades planned for 2024
  - Increase center of mass energy up to 5.6 GeV → access new thresholds!
  - Increase luminosity by a factor of 3 → better statistics!
- Many more analyses in the works

